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Abstract 

Mechanical failures in industrial machinery can cause costly disruptions, increase maintenance 

expenses, and pose serious safety risks. As industries prioritize early fault detection, the global market 

for predictive maintenance technologies surpassed $10 billion in 2023. Accurate fault classification is 

key to keeping equipment reliable and preventing downtime. Traditional diagnosis methods, like 

manual inspections and heuristic analysis, are time-consuming, require expert knowledge, and often 

fail to catch early signs of failure. While techniques such as visual inspections and vibration analysis 

are useful, they are mostly reactive, addressing problems only after they become noticeable. This 

highlights the need for automated solutions that can detect issues before they escalate. Machine 

learning offers a game-changing approach by analyzing sensor data to recognize patterns linked to 

different types of faults. With classification algorithms, anomaly detection, and deep learning models 

trained on historical data, these systems can predict potential failures with high accuracy. By 

continuously monitoring vibrations, temperature, and other key parameters, AI-driven models provide 

early warnings, enabling timely maintenance and reducing unexpected breakdowns. This shift to 

predictive maintenance not only helps optimize repair schedules but also cuts costs and improves 

operational efficiency. With automation and AI-powered analytics, industries can move from reactive 

maintenance to a proactive, data-driven approach, ensuring machinery stays in top condition while 

minimizing downtime and expensive repairs.Keywords: accuracy, anomaly detection, deep learning, 

fault classification, machine learning, predictive maintenance, reliability 

1. Introduction 

Permanent Magnet Synchronous Machines (PMSMs) have a rich history dating back to the late 19th 

century when electrical machinery began to revolutionize industrial processes. The concept of using 

permanent magnets to generate motion in synchronous machines emerged as a promising alternative 

to traditional electromagnets. In the early 20th century, significant advancements in magnet materials 

and manufacturing techniques facilitated the widespread adoption of PMSMs in various applications, 

including power generation, transportation, and industrial automation. 

The development of PMSMs gained momentum during the mid-20th century with the advent of 

modern power electronics and control systems. The integration of solid-state devices such as 

transistors and thyristors enabled more precise control over motor operation, leading to improved 

efficiency and performance. As industries increasingly sought energy-efficient solutions, PMSMs 

emerged as a preferred choice due to their high efficiency and superior controllability. 

In recent decades, advancements in materials science, motor design, and computational modeling 

have further propelled the evolution of PMSM technology. The integration of rare-earth magnets, such 

as neodymium and samarium-cobalt, has significantly enhanced motor performance while reducing 

size and weight. Moreover, advancements in sensor technology and data analytics have enabled the 

development of sophisticated monitoring and diagnostic systems for PMSMs, enhancing reliability 

and maintenance efficiency. 
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Despite their long history and widespread adoption, PMSMs continue to evolve, driven by ongoing 

research and technological innovation. Emerging trends such as Industry 4.0 and the Internet of 

Things (IoT) are shaping the future of PMSM technology, ushering in an era of smart, interconnected 

machines with enhanced monitoring, diagnostics, and predictive maintenance capabilities. 

2. Literature Survey 

Electric vehicles (EVs) are attracting more and more attention in transportation due to enhanced 

performance, safety, and reduced environmental impacts. In particular, permanent magnet 

synchronous motors (PMSM) are applied widely as traction motors in EVs because of their high 

efficiency and power density. The healthy operation of the traction motor is crucial for the proper 

functioning of an EV. Since EV motors run in a harsh environment and complicated operating 

conditions, the stator winding insulation exhibits a higher failure rate [1]. This fault can lead to a 

catastrophic accident; therefore, timely identification and diagnosis of insulation faults for traction 

PMSMs are extremely important to ensure the safe operation of EVs. 

It is reported that inter-turn short faults (ITSF) account for 21% of all motor faults [2], which can lead 

to reduced motor efficiency and power output and even catastrophic failure. The majority of ITSFs 

originate in winding faults, which are caused by insulation malfunctions [3], but rapidly evolve into 

more severe failures that substantially impact motors. On the one hand, short-circuit paths in the 

motor can lead to a decline in its performance. These paths allow currents to bypass the normal 

winding segments [4], leading to reduced output power and efficiency. For PMSMs, this type of fault 

can generate a magnetic field with a higher intensity than the coercivity of the magnets, leading to 

permanent demagnetization and machine damage. On the other hand, ITSFs cause excessive 

temperature rises in the motor. Excessive heat can accelerate the aging and embrittlement of insulation 

materials, potentially leading to burnouts and exacerbating the short-circuit phenomenon [5]. 

Furthermore, ITSFs increase motor noise and vibration. The presence of short-circuit paths introduces 

additional electromagnetic forces and vibrational forces in the motor, resulting in abnormal sounds 

and vibrations [6]. This not only adds to the noise pollution in the working environment but also risks 

loosening and damaging other components, further exacerbating the development of faults. 

The impacts and losses caused by stator winding short circuits in electric motors are extremely severe 

[7]. Therefore, timely diagnosis and repair of these faults are crucial to ensure the safe operation and 

prolongation of the motor’s lifespan. 

The health model of the Kalman filter is used to estimate the residual voltage drop of the rotor 

reference DQ axis under an ITSF [10]. This observer avoids the use of voltage sensors but does not 

reduce the diagnostic accuracy of the ITSF. Ali performed KF observations on the current and voltage 

signals respectively [11], using the residual signal as the fault detection index; this method was robust 

against different fault resistances. However, linear KF cannot be used for systems with significant 

nonlinearity. Since most systems are nonlinear, suboptimal state estimation techniques can be 

employed. The extended Kalman filter (EKF) is one of these suboptimal techniques [12], where the 

measurement and system model equations are linearized, enabling the application of the linear 

Kalman filter algorithm. Nonetheless, the linearization in EKF may introduce instability to the 

method, particularly when dealing with extremely nonlinear systems. To overcome the limitations of 

EKF, the unscented Kalman filter (UKF) was proposed in [13]. The UKF employs a set of sigma 

points to estimate the propagation of the mean and covariance matrix [14]. EKF and UKF were used 

to detect the percentage and location of faults [15]. Another difference in the method is that the ratio 

of short-circuit turns is used as the state estimator. 
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The ITSF diagnosis method based on the Luenberger state observer and current second-order 

harmonics was established in [16].  

3. Proposed System 

This project focuses on the development and evaluation of stator fault detection strategies in 

Permanent Magnet Synchronous Machines (PMSMs) using machine learning techniques as shown in 

Figure 1. Let's break down the key components and functionalities of the code. 

 

Figure 1: Block Diagram of Proposed System. 

⎯ Importing Libraries and Modules: By importing necessary libraries and modules  such as 

NumPy, Pandas, Matplotlib, Seaborn, scikit-learn, and CatBoost. These libraries provide 

functionalities for data manipulation, visualization, model building, and evaluation. 

⎯ Importing Dataset: The dataset containing various electrical parameters of PMSMs is 

imported using Pandas' read_csv function. This dataset serves as the foundation for training 

and testing machine learning models for stator fault detection. 

⎯ Data Analysis and Visualization: Exploratory data analysis (EDA) techniques are employed 

to gain insights into the dataset's characteristics. Descriptive statistics, correlation analysis, 

and visualization using Seaborn are utilized to understand the distribution of data and identify 

patterns relevant to stator fault detection. 

⎯ Data Preprocessing: Data preprocessing steps such as handling missing values, encoding 

categorical variables, and splitting the dataset into independent variables (features) and the 

target variable (stator fault) are performed. Additionally, the dataset is divided into training 

and testing sets using scikit-learn's train_test_split function. 

⎯ Model Building: Two classification algorithms, namely Ridge Classifier and CatBoost 

Classifier, are chosen for stator fault detection. Ridge Classifier is a linear classification 

algorithm, while CatBoost Classifier is a gradient boosting algorithm specifically designed to 

handle categorical features efficiently. Both models are trained using the training data. 

⎯ Performance Evaluation: The performance of each classifier is evaluated using various 

evaluation metrics such as accuracy, precision, recall, F1-score, and confusion matrix. The se 

metrics provide insights into the models' ability to accurately classify instances into their 

respective classes, including the detection of stator faults. 

3.1 CatBoost Classifier: 
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CatBoost Classifier is a gradient boosting algorithm designed for classification tasks, particularly 

when dealing with categorical features as shown in Figure 2. It belongs to the family of ensemble 

learning methods and is known for its robustness, efficiency, and ability to handle categorical 

variables without the need for extensive preprocessing. Below is a detailed explanation of the 

principle, working, and process of the CatBoost Classifier, along with its disadvantages. 

Principle: The principle behind the CatBoost Classifier lies in its gradient boosting framework, which 

combines multiple weak learners (decision trees) to create a strong predictive model. CatBoost stands 

for "Categorical Boosting," indicating its capability to handle categorical features effectively. It 

employs a variant of gradient boosting that incorporates techniques to handle categorical variables and 

mitigate overfitting. 

 

Figure 2: Cat Boost Classifier Model Diagram. 

4. Results Description 

The figure 3 confusion matrix of the Ridge Classifier model visually represents the performance of 

the model in classifying different categories of mouth diseases. It provides a clear overview of the true 

positive, true negative, false positive, and false negative predictions made by the model for each class. 

The figure 4 classification report of the CatBoost Classifier model presents a detailed summary of the 

model's performance in terms of precision, recall, F1-score, and support for each class. It offers 

insights into the model's ability to correctly classify instances of each disease category. The figure 6 

confusion matrix of the CatBoost Classifier model illustrates the model's performance but specifically 

for this classifier. It provides a visual representation of how well the model predicts the actual classes 

of Fitness activities, aiding in understanding its activities. 
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Fig 3: Shows a classification report of a Ridge Classifier model. 

 

Fig 4: Confusion matrix of Ridge Classifier model. 

The figure 5 comparison table of performance metrics presents a comprehensive overview of the 

performance of different classifiers, such as Ridge Classifier and CatBoost Classifier. It allows for a 

direct comparison of metrics such as accuracy, precision, recall, and F1-score, enabling stakeholders 

to make informed decisions about model selection. The figure 6 proposed CatBoost Classifier model's 

prediction of fault on a test data demonstrates the practical application of the model.  
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Fig 5: Shows a classification report of a CatBoost Classifier model. 

 

 

Fig 6: Confusion matrix of CatBoost Classifier model. 

5. Conclusion 

The development of advanced stator fault detection strategies for PMSMs is essential for ensuring 

reliable and uninterrupted operation in industrial applications. By leveraging cutting-edge 

technologies such as machine learning and sensor fusion, researchers aim to overcome the limitations 

of traditional maintenance methods and develop proactive fault detection systems capable of 

accurately identifying stator faults in real-time. Looking ahead, future research in this field may focus 

on further improving the accuracy, robustness, and scalability of fault detection algorithms, as well as 
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exploring novel sensor technologies and data analytics techniques. Additionally, integrating fault 

detection systems with predictive maintenance and condition monitoring platforms can enable more 

proactive and data-driven maintenance strategies, further enhancing the reliability and efficiency of 

PMSMs in industrial environments. 
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