CHANG IL KIM

ABSTRACT. In this paper, we establish some stability results for the following additive-cubic functional equation with an extra term G_f

 $f(2x + y) + f(2x - y) + G_f(x, y) = 2f(x + y) + 2f(x - y) + 2f(2x) - 4f(x)$. in Banach spaces, where G_f is a functional operator of f. Using these, we give new additive-cubic functional equations and prove their stability.

1. INTRODUCTION

In 1940, Ulam [12] raised the following question concerning the stability of group homomorphisms: "Under what conditions does there is an additive mapping near an approximately additive mapping between a group and a metric group ?" In the next year, Hyers [5] gave a partial solution of Ulam's problem for the case of additive mappings. Hyers 's result, using unbounded Cauchy different, was generalized for additive mappings in [1] and for a linera mapping in [11]. Some stability results for additive, quardartic and mixed additve-cubic functional equations were investigated ([2], [3], [4], [6], [7], [8], [9], [10]).

The generalized Hyers–Ulam stability for the mixed additive-cubic functional equation

(1.1)
$$f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 2f(2x) - 4f(x)$$

in quasi-Banach spaces has been investigated by Najati and Eskandani [8]. Functional equation (1.1) is called an additive-cubic functional equation, since the function $f(x) = ax^3 + bx$ is its solution. Every solution of this mixed additive-cubic functional equation is said to be an additive-cubic mapping.

In this paper, we are interested in what kind of a term $G_f(x, y)$ can be added to (1.1) while the solution of the new functional equation is also an additive-cubic functional equation and the generalized Hyers-Ulam stability for it still holds, where $G_f(x, y)$ is a functional operator depending on the variables x, y, and function f. The new functional equation can be written as

(1.2)
$$f(2x+y) + f(2x-y) + G_f(x,y) = 2f(x+y) + 2f(x-y) + 2f(2x) - 4f(x)$$
.

We give some new functional equations in section 3 as examples of our results and prove the generalized Hyers-Ulam stability for these.

²⁰¹⁰ Mathematics Subject Classification. 39B62, 39B72.

Key words and phrases. Hyers-Ulam stability, additive-cubic functional inequality.

^{*} Corresponding author.

 $\mathbf{2}$

CHANGIL KIM

2. The generalized Hyers-Ulam stability for (1.2)

Let X be a real normed linear space and Y a real Banach space. For given $l \in \mathbb{N}$ and any $i \in \{1, 2, \dots, l\}$, let $\sigma_i : X \times X \longrightarrow X$ be a binary operation such that

$$\sigma_i(rx, ry) = r\sigma_i(x, y)$$

for all $x, y \in X$ and all $r \in \mathbb{R}$. Also let $F : Y^l \longrightarrow Y$ be a linear, continuous function. For a map $f : X \longrightarrow Y$, define

$$G_f(x,y) = F(f(\sigma_1(x,y)), f(\sigma_2(x,y)), \cdots, f(\sigma_l(x,y))).$$

Throughout this section we always assume that G_f satisfies the following two conditions unless a specific expression for G_f is given.

Condition P_1 : Suppose that $f: X \longrightarrow Y$ is a mapping satisfying f(2x) = 2f(x) and

(2.1)
$$f(2x+y) + f(2x-y) + G_f(x,y) = 2f(x+y) + 2f(x-y)$$

for all $x, y \in X$. Then f is an additive mapping.

Condition P₂: Suppose that $f: X \longrightarrow Y$ is a mapping satisfying f(2x) = 8f(x) and

(2.2)
$$f(2x+y) + f(2x-y) + G_f(x,y) = 2f(x+y) + 2f(x-y) + 12f(x)$$

for all $x, y \in X$. Then f is a cubic mapping.

For any $f: X \longrightarrow Y$, let

$$f_a(x) = \frac{4}{3}f(x) - \frac{1}{6}f(2x), \ f_c(x) = -\frac{1}{3}f(x) + \frac{1}{6}f(2x)$$

Now, we prove the following main theorem.

Theorem 2.1. Let G_t be a functional operator satisfying Condition P_1 and Condition P_2 . Further, suppose that there is a real number $\lambda(\lambda \neq -1)$ such that

(2.3)
$$G_t(x,2x) + 2G_t(x,x) - 2G_t(0,x) = \lambda[t(4x) - 10t(2x) + 16t(x)]$$

for all $x \in X$ and all mapping $t : X \longrightarrow Y$. Let $\phi : X^2 \longrightarrow [0,\infty)$ be a function such that

(2.4)
$$\sum_{n=0}^{\infty} 2^{-n} \phi(2^n x, 2^n y) < \infty$$

for all $x, y \in X$. Let $f: X \longrightarrow Y$ be a mapping such that f(0) = 0 and

(2.5)
$$\|f(2x+y) + f(2x-y) + G_f(x,y) - 2f(x+y) - 2f(x-y) - 2f(2x) + 4f(x)\| \le \phi(x,y)$$

for all $x, y \in X$. Then there exists an unique additive-cubic mapping $F: X \longrightarrow Y$ such that

$$\|F_a(x) - f_a(x)\|$$

(2.6)
$$\leq \frac{1}{12|\lambda+1|} \sum_{n=0}^{\infty} 2^{-n} [\phi(2^n x, 2^{n+1} x) + 2\phi(2^n x, 2^n x) + 2\phi(0, 2^n x)]$$

and

(2.7)
$$\|F_c(x) - f_c(x)\| \le \frac{1}{48|\lambda+1|} \sum_{n=0}^{\infty} 2^{-3n} [\phi(2^n x, 2^{n+1} x) + 2\phi(2^n x, 2^n x) + 2\phi(0, 2^n x)]$$

for all $x \in X$.

Proof. By (2.5), we have

(2.8)
$$||f(x) + f(-x) - G_f(0, x)|| \le \phi(0, x),$$

(2.9)
$$||f(3x) - 4f(2x) + 5f(x) + G_f(x,x)|| \le \phi(x,x),$$

and

(2.10)
$$||f(4x) - 2f(3x) - 2f(2x) - 2f(-x) + 4f(x) + G_f(x, 2x)|| \le \phi(x, 2x)$$

for all $x \in X$. By (2.3), (2.8), (2.9), and (2.10), we have

(2.11)
$$||2^{-1}f_a(2x) - f_a(x)|| \le \frac{1}{12|\lambda+1|} [\phi(x,2x) + 2\phi(x,x) + 2\phi(0,x)]$$

for all $x \in X$. By (2.11), for $m, n \in \mathbb{N} \cup \{0\}$ with $0 \le m < n$, we have

(2.12)
$$\begin{aligned} \|2^{-n}f_a(2^nx) - 2^{-m}f_a(2^mx)\| \\ &= 2^{-m}\|2^{-(n-m)}f_a(2^{n-m} \cdot 2^mx) - f_a(2^mx)\| \\ &\leq \frac{1}{12|\lambda+1|} \sum_{k=m}^{n-1} 2^{-k} [\phi(2^kx, 2^{k+1}x) + 2\phi(2^kx, 2^kx) + 2\phi(0, 2^kx)] \end{aligned}$$

for all $x \in X$. By (2.12), $\{2^{-n}f_a(2^nx)\}$ is a Cauchy sequence in Y and since Y is a Banach space, there exists a mapping $A: X \longrightarrow Y$ such that

$$A(x) = \lim_{n \to \infty} 2^{-n} f_a(2^n x)$$

for all $x \in X$. Moreover, by (2.12), we have

(2.13)
$$\|A(x) - f_a(x)\|$$

$$\leq \frac{1}{12|\lambda+1|} \sum_{n=0}^{\infty} 2^{-n} [\phi(2^n x, 2^{n+1} x) + 2\phi(2^n x, 2^n x) + 2\phi(0, 2^n x)]$$

for all $x \in X$. By (2.5), we have

(2.14)
$$\|f_a(2x+y) + f_a(2x-y) + G_{f_a}(x,y) - 2f_a(x+y) - 2f_a(x-y) - 2f_a(x-y) + 2f_a(2x) + 4f_a(x)\| \le \frac{4}{3}\phi(x,y) + \frac{1}{6}\phi(2x,2y)$$

for all $x, y \in X$. Replacing x and y by $2^n x$ and $2^n y$ in (2.14), respectively and deviding (2.5) by 2^n , we have

$$\begin{aligned} \|2^{-n}f_a(2^n(2x+y)) + 2^{-n}f_a(2^n(2x-y)) + 2^{-n}G_{f_a}(2^nx, 2^ny) \\ &- 2 \cdot 2^{-n}f_a(2^n(x+y)) - 2 \cdot 2^{-n}f_a(2^n(x-y)) - 2 \cdot 2^{-n}f_a(2^{n+1}x) \\ &+ 4 \cdot 2^{-n}f_a(2^nx)\| \le \frac{4}{3} \cdot 2^{-n}\phi(2^nx, 2^ny) + \frac{1}{6} \cdot 2^{-n}\phi(2^{n+1}x, 2^{n+1}y) \end{aligned}$$

for all $x, y \in X$. Letting $n \to \infty$ in the last inequality, we have

(2.15)
$$A(2x+y) + A(2x-y) + \lim_{n \to \infty} 2^{-n} G_{f_a}(2^n x, 2^n y) - 2A(x+y) - 2A(x-y) - 2A(2x) + 4A(x) = 0$$

for all $x, y \in X$ and since F is continuous,

$$\lim_{n \to \infty} 2^{-n} G_{f_a}(2^n x, 2^n y)$$

=
$$\lim_{n \to \infty} F(2^{-n} f_a(2^n \sigma_1(x, y)), 2^{-n} f_a(2^n \sigma_2(x, y)), \dots, 2^{-n} f_a(2^n \sigma_l(x, y)))$$

=
$$G_A(x, y)$$

for all $x, y \in X$. Hence by (2.15), we have

(2.16)
$$A(2x+y) + A(2x-y) + G_A(x,y) = 2A(x+y) + 2A(x-y) + 2A(2x) - 4A(x)$$

for all $x, y \in X$. Relpacing x by $2^n x$ in (2.11) and deviding (2.11) by 2^n , we have

$$\begin{aligned} &\|2^{-n-1}f_a(2^n \cdot 2x) - 2^{-n}f_a(2^n x)\| \\ &\leq \frac{2^{-n}}{12|\lambda+1|} [\phi(2^n x, 2^{n+1} x) + 2\phi(2^n x, 2^n x) + 2\phi(0, 2^n x)] \end{aligned}$$

for all $x\in X$ and letting $n\to\infty$ in the above inequality, we have

for all $x, y \in X$. By (2.16) and (2.17), A satisfies (2.1). By Condition $\mathbf{P_1}$, A is an additive mapping .

By (2.3), (2.8), (2.9), and (2.10), we have

(2.18)
$$||8^{-1}f_c(2x) - f_c(x)|| \le \frac{1}{48|\lambda+1|} [\phi(x,2x) + 2\phi(x,x) + 2\phi(0,x)]$$

for all $x \in X$. By (2.18), for $m, n \in \mathbb{N} \cup \{0\}$ with $0 \le m < n$, we have

(2.19)
$$\begin{aligned} \|2^{-3n}f_c(2^nx) - 2^{-3m}f_c(2^mx)\| \\ &= 2^{-3m} \|2^{-3(n-m)}f_c(2^{n-m} \cdot 2^mx) - f_c(2^mx)\| \\ &\leq \frac{1}{48|\lambda+1|} \sum_{k=m}^{n-1} 2^{-3k} [\phi(2^kx, 2^{k+1}x) + 2\phi(2^kx, 2^kx) + 2\phi(0, 2^kx)] \end{aligned}$$

for all $x \in X$. By (2.19), $\{2^{-3n}f_c(2^nx)\}$ is a Cauchy sequence in Y and since Y is a Banach space, there exists a mapping $C: X \longrightarrow Y$ such that

$$C(x) = \lim_{n \to \infty} 2^{-3n} h(2^n x)$$

for all $x \in X$. Moreover, by (2.19), we have

(2.20)
$$\|C(x) - f_c(x)\|$$

$$\leq \frac{1}{48|\lambda+1|} \sum_{n=0}^{\infty} 2^{-3n} [\phi(2^n x, 2^{n+1} x) + 2\phi(2^n x, 2^n x) + 2\phi(0, 2^n x)]$$

for all $x \in X$. By (2.5), we have

(2.21)
$$\|f_c(2x+y) + f_c(2x-y) + G_{f_c}(x,y) - 2f_c(x+y) - 2f_c(x-y) - 2f_c(2x) + 4f_c(x)\| \le \frac{1}{3}\phi(x,y) + \frac{1}{6}\phi(2x,2y)$$

for all $x, y \in X$. Replacing x and y by $2^n x$ and $2^n y$ in (2.21), respectively and deviding (2.21) by 2^{3n} , we have

$$\begin{split} \|2^{-3n}f_c(2^n(2x+y)) + 2^{-3n}f_c(2^n(2x-y)) + 2^{-3n}G_{f_c}(2^nx,2^ny) \\ &- 2\cdot 2^{-3n}f_c(2^n(x+y)) - 2\cdot 2^{-3n}f_c(2^n(x-y)) - 2\cdot 2^{-n}f_c(2^{n+1}x) \\ &+ 4\cdot 2^{-3n}f_c(2^nx)\| \le \frac{1}{3}\cdot 2^{-3n}\phi(2^nx,2^ny) + \frac{1}{6}\cdot 2^{-3n}\phi(2^{n+1}x,2^{n+1}y) \end{split}$$

for all $x, y \in X$. Letting $n \to \infty$ in the last inequality, we have

(2.22)
$$C(2x+y) + C(2x-y) + \lim_{n \to \infty} 2^{-3n} G_{f_c}(2^n x, 2^n y) - 2C(x+y) - 2C(x-y) - 2C(2x) + 4C(x) = 0$$

for all $x, y \in X$ and since F is continuous,

$$\lim_{n \to \infty} 2^{-3n} G_{f_c}(2^n x, 2^n y)$$

=
$$\lim_{n \to \infty} F(2^{-3n} h(2^n \sigma_1(x, y)), 2^{-3n} h(2^n \sigma_2(x, y)), \dots, 2^{-3n} h(2^n \sigma_l(x, y)))$$

=
$$G_C(x, y)$$

for all $x, y \in X$. Hence by (2.22), we have

$$(2.23) \quad C(2x+y) + C(2x-y) + G_C(x,y) = 2C(x+y) + 2C(x-y) + 2C(2x) - 4C(x)$$

for all $x, y \in X$. Relpacing x by $2^n x$ in (2.18) and deviding (2.18) by 2^{3n} , we have

$$\begin{aligned} &\|2^{-3} \cdot 2^{-3n} f_c(2^n \cdot 2x) - 2^{-3n} f_c(2^n x)\| \\ &\leq \frac{2^{-3n}}{48|\lambda+1|} [\phi(2^n x, 2^{n+1} x) + 2\phi(2^n x, 2^n x) + 2\phi(0, 2^n x)] \end{aligned}$$

for all $x \in X$ and letting $n \to \infty$ in the above inequality, we have

for all $x, y \in X$. By (2.23) and (2.24), C satisifies (2.2). By Condition \mathbf{P}_2 , C is a cubic mapping.

Let F = A + C. Then F is an additive-cubic mapping, $F_a = A$, and $F_c = C$. By (2.13) and (2.20), we have (2.6) and (2.7).

For the uniqueness of F, let H be another additive-cubic mapping with (2.6) and (2.7). Then F_a and H_a are additive mappings and hence

$$||F_a(x) - H_a(x)|| = 2^{-k} ||F_a(2^k x) - H_a(2^k x)||$$

$$\leq \frac{1}{6|\lambda + 1|} \sum_{n=k}^{\infty} 2^{-n} [\phi(2^n x, 2^{n+1} x) + 2\phi(2^n x, 2^n x) + 2\phi(0, 2^n x)]$$

for all $x \in X$. Hence, letting $k \to \infty$ in the above inequality, we have $F_a = H_a$ and similarly, we have $F_c = H_c$. Thus F = H.

Similarly, we have the following theorem:

Theorem 2.2. Let G_t be a functional operator satisfying Condition P_1 , Condition P_2 , and

(2.25)
$$G_t(x,0) = -G_t(0,x).$$

for all $x \in X$ and all mapping $t : X \longrightarrow Y$. Further, suppose that there are real numbers $\lambda, \delta(\lambda \neq -1)$ such that

(2.26)
$$G_t(x,2x) + 2G_t(x,x) - 2G_t(0,x) = \lambda[t(4x) - 10t(2x) + 16t(x)] + \delta[f(x) + f(-x)]$$

for all $x \in X$ and all mapping $t : X \longrightarrow Y$. Let $\phi : X^2 \longrightarrow [0, \infty)$ be a function with (2.4). Let $f : X \longrightarrow Y$ be a mapping with f(0) = 0 and (2.5). Then there exists an unique additive-cubic mapping $F : X \longrightarrow Y$ such that

$$\|F_a(x) - f_a(x)\| \le \frac{1}{12|\lambda + 1|} \sum_{n=0}^{\infty} 2^{-n} [\phi(2^n x, 2^{n+1} x) + 2\phi(2^n x, 2^n x) + |\delta|\phi(2^n x, 0) + (2 + |\delta|)\phi(0, 2^n x)]$$

and

6

$$||F_c(x) - f_c(x)|| \le \frac{1}{48|\lambda + 1|} \sum_{n=0}^{\infty} 2^{-3n} [\phi(2^n x, 2^{n+1} x) + 2\phi(2^n x, 2^n x) + |\delta|\phi(2^n x, 0) + (2 + |\delta|)\phi(0, 2^n x)]$$

for all $x \in X$.

Proof. By (2.8) and (2.25), we have

$$||f(x) + f(-x)|| \le \phi(x,0) + \phi(0,x)$$

for all $x \in X$, because $||G_f(x,0)|| \le \phi(x,0)$ and $G_f(x,0) = -G_f(0,x)$. Similar to the proof of Theorem 2.1, we have

$$\begin{aligned} &\|(1+\lambda)[f(4x) - 10f(2x) + 16f(x)]\|\\ &\leq \phi(x,2x) + 2\phi(x,x) + 2\phi(0,x) + |\delta| \|f(x) + f(-x)\|\\ &\leq \phi(x,2x) + 2\phi(x,x) + |\delta|\phi(x,0) + (2+|\delta|)\phi(0,x) \end{aligned}$$

for all $x \in X$ and so we get

$$\|2^{-1}f_a(2x) - f_a(x)\| \le \frac{1}{12|\lambda+1|} [\phi(x,2x) + 2\phi(x,x) + |\delta|\phi(x,0) + (2+|\delta|)\phi(0,x)]$$

for all $x \in X$. The rest of this proof is similar to the proof of Theorem 2.1. \Box

3. Applications

In this section, using Theorem 2.1 and Theorem 2.2, we will prove the generalized Hyers-Ulam stability for some additive-cubic functional equations.

First, we consider the following functional equation :

$$(3.1) \quad f(2x+y) + f(2x-y) - f(4x) = 2f(x+y) + 2f(x-y) - 8f(2x) + 12f(x).$$

Theorem 3.1. Let $\phi: X^2 \longrightarrow [0, \infty)$ be a function with (2.4). Let $f: X \longrightarrow Y$ be a mapping such that f(0) = 0 and

(3.2)
$$\|f(2x+y) + f(2x-y) - f(4x) - 2f(x+y) - 2f(x-y) + 8f(2x) - 12f(x)\| \le \phi(x,y)$$

for all $x, y \in X$. Then there exists an unique additive-cubic mapping $F: X \longrightarrow Y$ such that

(3.3)
$$||F_a(x) - f_a(x)|| \le \frac{1}{24} \sum_{n=0}^{\infty} 2^{-n} [\phi(2^n x, 2^{n+1} x) + 2\phi(2^n x, 2^n x) + 2\phi(0, 2^n x)]$$

and

(3.4)
$$||F_c(x) - f_c(x)|| \le \frac{1}{96} \sum_{n=0}^{\infty} 2^{-3n} [\phi(2^n x, 2^{n+1} x) + 2\phi(2^n x, 2^n x) + 2\phi(0, 2^n x)]$$

for all $x \in X$.

Proof. Let $G_f(x, y) = -f(4x) + 10f(2x) - 16f(x)$. Then f satisfies (2.5) and $G_t(x, 2x) + 2G_t(x, x) - 2G_t(0, x) = -3[t(4x) - 10t(2x) + 16t(x)]$

for all $x \in X$ and all mapping $t : X \longrightarrow Y$. If $t : X \longrightarrow Y$ is a mapping with t(2x) = 2t(x) for all $x \in X$ and (2.1), then $G_t(x, y) = 0$ for all $x, y \in X$ and so t is an additive mapping. Hence G_t satisfies **Condition P**₁ and similarly G_t satisfies **Condition P**₂. By Theorem 2.1, there is an unique additive-cubic mapping $F : X \longrightarrow Y$ with (3.3) and (3.4). \Box

Using the above theorem, we have the following corollaries:

Corollary 3.2. Let $f : X \longrightarrow Y$ be a mapping. Then f satisfies (3.1) if and only if f is an additive-cubic mapping.

Ostadbashi and Kazemzadeh $\left[9\right]$ investigated the following additive-cubic functinal equation :

(3.5)
$$\begin{aligned} f(2x+y) + f(2x-y) - f(4x) \\ &= 2f(x+y) + 2f(x-y) - 8f(2x) + 10f(x) - 2f(-x). \end{aligned}$$

Corollary 3.3. Let $\phi : X^2 \longrightarrow [0, \infty)$ be a function with (2.4). Let $f : X \longrightarrow Y$ be a mapping such that f(0) = 0 and

(3.6)
$$\|f(2x+y) + f(2x-y) - f(4x) - 2f(x+y) - 2f(x-y) + 8f(2x) - 10f(x) + 2f(-x)\| \le \phi(x,y)$$

for all $x, y \in X$. Then there exists an unique additive-cubic mapping $F: X \longrightarrow Y$ such that

$$(3.7) ||F_a(x) - f_a(x)|| \le \frac{1}{24} \sum_{n=0}^{\infty} 2^{-n} [\phi_1(2^n x, 2^{n+1} x) + 2\phi_1(2^n x, 2^n x) + 2\phi_1(0, 2^n x)]$$

and

$$(3.8) ||F_c(x) - f_c(x)|| \le \frac{1}{96} \sum_{n=0}^{\infty} 2^{-3n} [\phi_1(2^n x, 2^{n+1} x) + 2\phi_1(2^n x, 2^n x) + 2\phi_1(0, 2^n x)]$$

for all $x \in X$, where $\phi_1(x, y) = \phi(x, y) + \phi(0, x)$.

Proof. By (3.6), we have

$$||f(x) + f(-x)|| \le \phi(0, x)$$

for all $x \in X$ and hence we have

$$\begin{split} \|f(2x+y) + f(2x-y) - f(4x) - 2f(x+y) - 2f(x-y) \\ &+ 8f(2x) - 12f(x)\| \le \phi(x,y) + \phi(0,x) = \phi_1(x,y) \end{split}$$

for all $x, y \in X$. By Theorem 3.3, we have the results.

Finally, we consider the following new functional equation :

(3.9)
$$\begin{aligned} f(2x+y) + f(2x-y) - 2f(x+y) + 3f(x-y) - 5f(y-x) \\ - 10(x) + 14f(y) - 2f(2y) &= 0. \end{aligned}$$

Lemma 3.4. Let G_f be a functional operator such that

$$(3.10) G_f(x,y) = -G_f(y,x)$$

for all mapping $f : X \longrightarrow Y$ and all $x, y \in X$. Then Condition \mathbf{P}_1 and Condition P_2 hold.

Proof. Suppose that $f: X \longrightarrow Y$ is a mapping with f(2x) = 2f(x) and (2.1). Letting y = 0 in (2.1), we have (0.44)

$$(3.11) G_f(x,0) = 0$$

for all $x \in X$ and by (3.10) and (3.11), we get

for all $x \in X$. Hence

$$G_f(x,0) = -G_f(0,x) = -[f(x) + f(-x)] = 0$$

(3.12)f(-x) = -f(x)for all $x \in X$. Interchaging x and y in (2.1), by (3.12), we have (3.13) $f(x+2y) - f(x-2y) + G_f(y,x) = 2f(x+y) - 2f(x-y)$ for all $x, y \in X$ and by (2.1), (3.10), and (3.13), we have (3.14)f(2x + y) + f(2x - y) + f(x + 2y) - f(x - 2y) = 4f(x + y)for all $x, y \in X$. Letting y = -y in (3.14), we have (3.15)f(2x+y) + f(2x-y) + f(x-2y) - f(x+2y) = 4f(x-y)for all $x, y \in X$. By (3.14) and (3.15), we have (3.16)f(x+y) + f(x-y) = f(x+2y) + f(x-2y)for all $x, y \in X$. Letting x = x + y in (3.16), we get

(3.17)
$$f(x+2y) + f(x) = f(x+3y) + f(x-y)$$

for all $x, y \in X$ and letting x = 2x in (3.16), we get

(3.18)
$$f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y)$$

for all $x, y \in X$. Letting y = x + y in (3.18), we get

(3.19)
$$f(3x+y) + f(x-y) = 2f(2x+y) - 2f(y)$$

for all
$$x, y \in X$$
 and interchaging x and y in (3.19), we have
(3.20)
$$f(x+3y) - f(x-y) = 2f(x+2y) - 2f(x)$$

(3.20)
$$f(x+3y) - f(x-y) = 2f(x+2y) - 2f(x)$$

for all $x \in Y$. By (2.17) and (2.20), we have

for all
$$x, y \in X$$
. By (3.17) and (3.20), we have

(3.21)
$$f(x+2y) - 3f(x) + 2f(x-y) = 0$$

for all $x, y \in X$. Letting $x = x - y$ in (3.21), we get

(3.22)
$$f(x+y) - 3f(x-y) + 2f(x-2y)$$

(3.22)
$$f(x+y) - 3f(x-y) + 2f(x-2y) = 0$$

for all
$$x, y \in X$$
 and letting $y = -y$ in (3.22), we get

(3.23)
$$f(x-y) - 3f(x+y) + 2f(x+2y) = 0$$

for all $x, y \in X$. By (3.21) and (3.23), we have

$$f(x+y) + f(x-y) - 2f(x) = 0$$

for all $x, y \in X$ and hence f is an additive mapping. Thus **Condition** P₁ holds.

(2) Suppose that $f: X \longrightarrow Y$ is a mapping with f(2x) = 8f(x) and (2.2). Similar to (1), we have

$$G_f(x,0) = -G_f(0,x) = 0, \ f(-x) = -f(x)$$

for all $x, y \in X$. Interchaging x and y in (2.2), we have (3.24) $f(x+2y) - f(x-2y) + G_f(y,x) = 2f(x+y) - 2f(x-y) + 12f(y)$ for all $x, y \in X$ and by (2.2), (3.10), and (3.24), we have (3.25) f(2x+y) + f(2x-y) + f(x+2y) - f(x-2y) = 4f(x+y) + 12f(x) + 12f(y)for all $x, y \in X$. Letting y = -y in (3.25), we have (3.26) f(2x+y) + f(2x-y) + f(x-2y) - f(x+2y) = 4f(x-y) + 12f(x) - 12f(y)

for all $x, y \in X$. By (3.25) and (3.26), we have

$$f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x)$$

for all $x, y \in X$ and hence f is a cubic mapping. Thus **Condition P**₂ holds. \Box

Using Lemma 3.4, we investigate solutions and the generalized Hyers-Ulam stability for (3.9).

Theorem 3.5. Let $\phi : X^2 \longrightarrow [0, \infty)$ be a function with (2.4). Let $f : X \longrightarrow Y$ be a mapping such that f(0) = 0 and

(3.27)
$$\begin{aligned} \|f(2x+y) + f(2x-y) - 2f(x+y) + 3f(x-y) - 5f(y-x) \\ -10(x) + 14f(y) - 2f(2y)\| \le \phi(x,y) \end{aligned}$$

for all $x, y \in X$. Then there exists an unique additive-cubic mapping $F: X \longrightarrow Y$ such that

(3.28)
$$\|F_a(x) - f_a(x)\| \le \frac{1}{12} \sum_{n=0}^{\infty} 2^{-n} [\phi(2^n x, 2^{n+1} x) + 2\phi(2^n x, 2^n x) + 5\phi(2^n x, 0) + 7\phi(0, 2^n x)]$$

and

(3.29)
$$\|F_c(x) - f_c(x)\| \le \frac{1}{48} \sum_{n=0}^{\infty} 2^{-3n} [\phi(2^n x, 2^{n+1} x) + 2\phi(2^n x, 2^n x) + 5\phi(2^n x, 0) + 7\phi(0, 2^n x)]$$

for all $x \in X$.

Proof. Let $G_f(x, y) = 5[f(x - y) - f(y - x)] - 14[f(x) - f(y)] + 2[f(2x) - f(2y)]$. Then f satisfies (2.5) and

$$\begin{aligned} G_t(x,2x) + 2G_t(x,x) &- 2G_t(0,x) \\ &= -2[t(4x) - 10t(2x) + 16t(x)] - 5[f(x) + f(-x)] \end{aligned}$$

for all $x \in X$ and all mapping $t : X \longrightarrow Y$. Since G_f satisfies (3.10), by Lemma 3.4, **Condition P₁** and **Condition P₂** satisfy. By Theorem 2.2, there is an unique additive-cubic mapping $F : X \longrightarrow Y$ with (3.28) and (3.29).

Corollary 3.6. Let $f : X \longrightarrow Y$ be a mapping. Then f satisfies (3.9) if and only if f is an additive-cubic mapping.

References

- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2(1950), 64-66.
- [2] L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4(2003), 1-7.
- [3] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74(1968), 305-309.
- [4] P. Găvruta, A generalization of the Hyer-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.
- [5] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27(1941), 222-224.
- [6] K. Jun, H. Kim and I. Chang, On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation, J. Comput. Anal. Appl., 7 (2005), 21-33.
- [7] D. Miheţ and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343(2008), 567-572.
- [8] A. Najati and G. Z. Eskandani, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 342(2008), 1318-1331.
- [9] S. Ostadbashi and J. Kazemzadeh, Orthogonal stability of mixed type additive and cubic functional equation, Int. J. Nonlinear. Anal. Appl., 6(2015), 35-43
- [10] C. Park, Orthogonal Stability of an Additive-Quadratic Functional Equation, Fixed Point Theory and Applications, 2011(2011), 1-11.
- [11] Th. M. Rassias, On the stability of the linear mapping in Banach sapers, Proc. Amer. Math. Soc., 72(1978), 297-300.
- [12] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Wiley, New York, 1960.

Department of Mathematics Education, Dankook University, 152, Jukjeon-ro, Sujigu, Yongin-si, Gyeonggi-do, 16890, Korea

Email address: kci206@hanmail.net