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GENERALIZED ADDITIVE-CUBIC FUCNTIONAL EQUATION
AND ITS STABILITY

CHANG IL KIM

ABSTRACT. In this paper, we establish some stability results for the following
additive-cubic functional equation with an extra term G ¢

FQz+y)+ f(2x —y) + Gy(x,y) = 2f(z +y) + 2f(xz — y) + 2f(2x) — 4f(x).

in Banach spaces, where G is a functional operator of f. Using these, we give
new additive-cubic functional equations and prove their stability.

1. INTRODUCTION

In 1940, Ulam [12] raised the following question concerning the stability of group

homomorphisms: “Under what conditions does there is an additive mapping near
an approximately additive mapping between a group and a metric group 7 ”
In the next year, Hyers [5] gave a partial solution of Ulam’s problem for the case of
additive mappings. Hyers ’s result, using unbounded Cauchy different, was gener-
alized for additive mappings in [1] and for a linera mapping in [11]. Some stability
results for additive, quardartic and mixed additve-cubic functional equations were
investigated ([2], 3], [4], [6], [7], [8], [9], [10]).

The generalized Hyers—Ulam stability for the mixed additive-cubic functional
equation

(1.1) fQRx+y)+ f2r —y) =2f(x +y) +2f(x —y) +2f(2x) — 4f(z)

in quasi-Banach spaces has been investigated by Najati and Eskandani [8]. Func-
tional equation (1.1) is called an additive-cubic functional equation, since the func-
tion f(x) = ax® + bx is its solution. Every solution of this mixed additive-cubic
functional equation is said to be an additive-cubic mapping.

In this paper, we are interested in what kind of a term G¢(z,y) can be added
to (1.1) while the solution of the new functional equation is also an additive-cubic
funtional equation and the generalized Hyers-Ulam stability for it still holds, where
Gy(z,y) is a functional operator depending on the variables z,y, and function f.
The new functional equation can be written as

(1.2) fQRz+y)+fQ2z—y)+Gy(z,y) = 2f(x+y) +2f(z —y) + 2/ (2z) — 4f ().

We give some new functional equations in section 3 as examples of our results and
prove the generalized Hyers-Ulam stability for these.
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2. THE GENERALIZED HYERS-ULAM STABILITY FOR (1.2)

Let X be a real normed linear space and Y a real Banach space. For given [ € N
and any ¢ € {1,2,---,1}, let 0; : X Xx X — X be a binary operation such that

g (T.’ﬂ, ry) =To; ((t, y)

for all z,y € X and all € R. Also let F : Y' — Y be a linear, continuous
function. For a map f: X — Y, define

Gf(l‘,y) = F(f(ol(x,y)),f(crg(x,y)), ) f(O'l(I,y)))

Throughout this section we always assume that G'; satisfies the following two con-
ditions unless a specific expression for G is given.

Condition P;: Suppose that f: X — Y is a mapping satisfying f(2x) = 2f(x)
and

(2.1) fRz+y) + fQ2r —y) + Gy(z,y) =2f(z +y) +2f(x —y)
for all z,y € X. Then f is an additive mapping.

Condition Ps: Suppose that f: X — Y is a mapping satisfying f(2z) = 8f(x)
and

(22)  fx+y)+ f2x—y)+Gyz,y) =2f(x +y) + 2f(x —y) + 12f(2)
for all x,y € X. Then f is a cubic mapping.

Forany f: X — Y, let

4 1 1 1
fol@) = 37(@) = 25 (20), (&) = ~5 (@) + £ /(22)
Now, we prove the following main theorem.

Theorem 2.1. Let Gy be a functional operator satisfying Condition P; and
Condition Ps. Further, suppose that there is a real number A\(A # —1) such that

(2.3) Gi(z,22) + 2G(z,2) — 2G(0, z) = A[t(4z) — 10t(2x) + 16t(z)]

for all x € X and all mapping t : X — Y. Let ¢ : X?> — [0,00) be a function
such that

(2.4) > 272", 2My) < o0
n=0

forallz,y € X. Let f : X — Y be a mapping such that f(0) =0 and
1f(2z +y) + f(2z —y) + Gs(z,y)
—2f(z+y) —2f(z —y) — 2f(22) + 4f(2)|| < é(z,y)

for all x,y € X. Then there exists an unique additive-cubic mapping F : X — Y
such that

(2.5)

[Fa(2) = fa(@)]]

(26) 1 i —n n n+1 n " "
= m;:%? [p(2"z, 2" ) + 2¢(2"2, 2" x) 4+ 2¢(0, 2™x)]
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and

IIF() fe(@)]

(2.7) g 2731 ntl N on .
- 48|>\+ 1| & Z 2", 2" ) 4 2¢(2"x, 2"x) + 2¢(0, 2" z)]

forallx € X.
Proof. By (2.5), we have
(2.8) 1f (@) + f(=2) = G;(0,2)|| < ¢(0,),

(2.9) 1f(3x) = 4f(2x) + 5f () + Gz, 2)|| < ¢(x, 2),

and

(2.10)  [If(4z) = 2f(3z) — 2f(22) — 2f(—=x) + 4f (2) + G (x, 22)[| < P(x, 22)
for all x € X. By (2.3), (2.8), (2.9), and (2.10), we have

—1 1
(2.11) 127" fa(22) = fa(@)| < Tor7y[9(@,22) + 20(2, @) + 26(0, 7))

for all x € X. By (2.11), for m,n € NU {0} with 0 < m < n, we have
127" fa(2"2) = 27" fa (2" )|

—9—m 2—(7L—m)fa gn—m _gm.,.\ _ fa oM 4
(2.12) | ( ) = fa(2"2)]|

1 K —k k.. ok+1 k.. ok k
P —
< i k:Em2 [@(2%, 2% ) + 2¢(2%x, 2%x) + 2¢(0, 2%x)]

for all z € X. By (2.12), {27 f,(2"z)} is a Cauchy sequence in Y and since Y is
a Banach space, there exists a mapping A : X — Y such that

Ax) = nhﬁngo 27" (2" x)
for all z € X . Moreover, by (2.12), we have

[A(z) = fa(2)]|

(213) 1 - —-n n n+1 n n n
= mnz::oQ [p(2"x, 2" ) 4 2¢(27 2, 2" x) + 2¢(0,2"x)]

for all x € X. By (2.5), we have
Hfa(2£€ + y) + fa(Q:L' - y) + Gfa(xay) - Qfa(x + y) - 2fa(x - y)
~2£,(22) + 4fa @) < 50(r,) + 6(22,2)

for all z,y € X. Replacing z and y by 2"z and 2"y in (2.14), respectively and
deviding (2.5) by 2", we have

127" fa (2" (22 +y)) + 27" (2" (22 — y)) + 27" G, (2"2, 2"y)
=2:27"fo(2"(x +y)) — 2- 27" fa(2M(x — ) — 227" fu (2" a)

4 1
+4. 2fnfa(2nx)” < g . 27n¢(2nl,, Qny) + 6 . 2fn¢(2n+lx, 2n+1y)

(2.14)
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for all z,y € X. Letting n — oo in the last inequality, we have

AQx+y)+ A2z —y) + lim 27"Gy, (2"2,2"y)

(2.15) 100
—2A(z +y) — 2A(x — y) — 2A(2x) + 4A(z) =0

for all z,y € X and since F' is continuous,
nl;rrgo 27"Gy, (2", 2"y)

= lim P (201 (2,9)), 27 fu(20a 1) 27 ful2 1 (.9)

= Ga(z,y)
for all z,y € X. Hence by (2.15), we have
(2.16) A2z +y)+AQ2z—y)+Ga(z,y) = 2A(z+y) +2A(x —y) + 2A(22) — 4A(x)
for all z,y € X. Relpacing = by 2"z in (2.11) and deviding (2.11) by 2", we have

127" fa(2 - 22) — 27" fo(2"2) |

9—n
< ———[p(2"x, 2" 2¢(2"x, 2" 2¢(0,2™
< g 2 ) + 20(2°. 2°5) + 20(0.270)
for all x € X and letting n — oo in the above inequality, we have
(2.17) A(2z) = 2A(x)

for all x,y € X. By (2.16) and (2.17), A satisfies (2.1). By Condition P, A is
an additive mapping .

By (2.3), (2.8), (2.9), and (2.10), we have
Q18) S A20) — @) < gy 9o 20) + 20(e.2) + 26(0,2)

for all x € X. By (2.18), for m,n € NU {0} with 0 < m < n, we have
270 (2) — 277 fo(27)|
= g g £ (7 g — (27|

(2.19) , .
G 273k p(2F g, 2R T 20 (282, 2F 26(0, 2%
_48‘“”;” [6(2"2, 2" 7) + 26(2"x, 2°2) + 20(0, 2"2)]

for all z € X. By (2.19), {273"f.(2"x)} is a Cauchy sequence in Y and since Y is
a Banach space, there exists a mapping C' : X — Y such that

I T —3n n
C(z) = nlgI;OQ h(2"x)

for all x € X . Moreover, by (2.19), we have

IC(@) = fe(@)]
(2.20) 1 o o304 (o, on o .
< m;g 3n(p(2mx, 2" a) + 20(2"x, 2™2) + 26(0, 2"x)]

for all x € X. By (2.5), we have
||fc(2$ + y) + fc(zr -y

—2fe(22) + 4f.(2)] <

+ ch({L‘,y) - 2fc($ + y) - 2fc(x - y)

220 B(r.y) + 56(20,29)

Wl =~
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for all z,y € X. Replacing x and y by 2"z and 2"y in (2.21), respectively and
deviding (2.21) by 237, we have

12727 fe(2" (22 + y)) + 27" fu(27 (22 — ) + 277" G p, (2", 2"y)
—2:27" fo (2@ +y)) = 2- 27" fo(2"(x — ) = 2- 27" fu(2" T )
+4-273"f (2"2)|| < % 278 (2" 2, 2"y) + % 2782 g, 2y
for all z,y € X. Letting n — oo in the last inequality, we have
C(2z +y) + C(2z —y) + lim 27°"Gy (2", 2"y)
(2.22) n—»00
—2C(x+y) —2C(x —y) —2C(2z) +4C(x) =0
for all z,y € X and since F' is continuous,
lim 273Gy, (2™, 2™y)
= lim P27 h(2 0 (2,)). 277 h(2 a0, )). - 2 (2 (2. )))
= Ge(z,y)
for all z,y € X. Hence by (2.22), we have
(2.23) C(2z+y)+C(2x—y)+Ge(x,y) = 2C(x+y) +2C(x —y) +2C(2x) —4C(x)
for all 2,y € X. Relpacing by 2"z in (2.18) and deviding (2.18) by 23", we have

2732790 £ (2" - 2) — 2700 £ (2")|
27377,
< [p(2"m, 2" 2¢(2"x, 2" 2¢(0,2"
< P02 2 ) + 202", ') +20(0, ')
for all x € X and letting n — oo in the above inequality, we have

(2.24) C(2z) = 8C(x)

for all z,y € X. By (2.23) and (2.24), C satisifes (2.2). By Condition P3, C'is a
cubic mapping.

Let F = A+ C. Then F is an additive-cubic mapping, F, = A, and F. = C. By
(2.13) and (2.20), we have (2.6) and (2.7).

For the uniqueness of F', let H be another additive-cubic mapping with (2.6)
and (2.7). Then F, and H, are additive mappings and hence

HFa(x) - Ha(x)” = 2_kHFa(2kx) _ Ha(2k$)||
1 N e e oo :
= m;ﬁ [6(2"z, 2" 7) + 26(2" 2, 2"x) + 26(0, 2" )]

for all z € X. Hence, letting £ — oo in the above inequality, we have F, = H, and
similarly, we have F, = H.. Thus F = H. (I

Similarly, we have the following theorem:

Theorem 2.2. Let Gy be a functional operator satisfying Condition Py,
Condition Ps, and

(2.25) Gi(2,0) = —G4(0, z).
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for oll x € X and all mapping t : X — Y. Further, suppose that there are real
numbers A\, 6 (A # —1) such that

Gi(x,2x) + 2G¢(z, x) — 2G¢(0, 2)
= At(4z) — 10¢(2z) + 16t(x)] + O[f (z) + f(—=)]

for all x € X and all mappingt: X — Y. Let ¢ : X? — [0,00) be a function with
(2.4). Let f: X — Y be a mapping with f(0) =0 and (2.5). Then there exists
an unique additive-cubic mapping F' : X — Y such that

1 - —n n n
||Fa(l’) - fa(I)H < m;2 [¢(2 x,2 +11‘)

+26(27, 272) + |8]6(272, 0) + (2 + |8])(0, 27 )]

(2.26)

and

Sn n+1
|1Fe(w) = fela)] < 48|A+1‘ 22 2"z, 2"* )

+20(2"x, 2"z) + [0]6(2", 0) + (2 +16)#(0,2"x)]
forallx € X.
Proof. By (2.8) and (2.25), we have

£ () + f(=z)]| < &(z,0) + ¢(0,2)

for all x € X, because ||G(z,0)|| < ¢(z,0) and G(z,0) = —G;(0,z). Similar to
the proof of Theorem 2.1, we have

(1 +X)[f(4x) — 10f(22) + 16f (2)]|
< ¢(z,22) +2¢(z, ) + 26(0, ) + |0][|f (=) + f (=)
< ¢(x,22) + 2¢(x, ) + [6]d(2,0) + (2 + 0])¢(0, )

for all x € X and so we get

_ 1
127" fa(22) = fa(@)]| < m[(ﬁ(% 2z) + 2¢(z, x) + [6]¢(x,0) + (2 + |0])$(0, )]
for all x € X. The rest of this proof is similar to the proof of Theorem 2.1. O

3. APPLICATIONS

In this section, using Theorem 2.1 and Theorem 2.2, we will prove the generalized
Hyers-Ulam stability for some additive-cubic functional equations.
First, we consider the following functional equation :

(3.1) fRx+y)+ f2r —y) — f(4z) = 2f(x +y) + 2f(z —y) — 8f(22) + 12f ().

Theorem 3.1. Let ¢ : X2 — [0,00) be a function with (2.4). Let f: X — Y be
a mapping such that f(0) =0 and

1f2z +y) + f(2r —y) — f(4z) = 2f(z +y) — 2f(z — y)
+8f(2z) — 12f(x)|| < ¢(=,y)

for all x,y € X. Then there exists an unique additive-cubic mapping F : X — Y
such that

(33) 1Fa(@) ~ o) < 5 32 lo(2"a, 2 ) + 202, 2'5) + 26(0.2'5)

(3.2)
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and
(3.4) ||F.(z) = fo(x)]| < % Z 273 (20, 27 ) + 2¢(2"x, 2 ) + 2¢(0, 27 )]
forallx € X.

Proof. Let Gy(z,y) = —f(4x) + 10f(2x) — 16 f(x). Then f satisfies (2.5) and
Gi(x,2x) 4+ 2Ge(x, x) — 2G+(0, ) = —3[t(4x) — 10t(2z) + 16t(x)]

for all x € X and all mapping ¢t : X — Y. If ¢t : X — Y is a mapping with
t(2z) = 2t(x) for all x € X and (2.1), then G¢(z,y) = 0 for all z,y € X and
so t is an additive mapping. Hence G; satifies Condition P; and similarly G,
satifies Condition P3. By Theroem 2.1, there is an unique additive-cubic mapping
F: X — Y with (3.3) and (3.4). (]

Using the above theorem, we have the following corollaries:

Corollary 3.2. Let f: X — Y be a mapping. Then [ satisfies (3.1) if and only
if [ is an additive-cubic mapping.

Ostadbashi and Kazemzadeh [9] investigated the following additive-cubic functi-
nal equation :

[z +y) + f(22 —y) — f(4x)
=2f(z+y)+2f(x—y) —8f(2z) +10f(z) — 2f(—=).
Corollary 3.3. Let ¢ : X2 — [0,00) be a function with (2.4). Let f : X — Y
be a mapping such that f(0) =0 and
If 2z +y) + f(2z —y) — f(dz) = 2f(x +y) — 2f(z —y)
+8f(2x) = 10f () + 2f(—=)|| < é(x,y)

for all x,y € X. Then there exists an unique additive-cubic mapping F : X — Y
such that

(3.5)

(3.6)

B.7) [IFa(x) = fa(x)ll < %Z "1 (2", 2" ) + 201 (2", 2"2) + 261 (0, 2"2))]

and
(89) 1F-e) = o) < g 327 60(20,2"4 ) +260(210,2'0) 2000, 2")

for all x € X, where ¢1(x,y) = ¢(x,y) + ¢(0,x).
Proof. By (3.6), we have
1f (@) + f(==)|| < ¢(0,x)
for all x € X and hence we have
1f Rz +y) + f(2z —y) — f(dz) = 2f(x +y) — 2f(z —y)
+8f(22) — 12f(2)|| < ¢(x,y) + ¢(0,2) = ¢1(x,y)
for all z,y € X. By Theorem 3.3, we have the results. [
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Finally, we consider the following new functional equation :
fRr+y)+ f2r—y) = 2f(x+y) +3f(z —y) = 5f(y —x)

—10(z) + 14f(y) — 2f(2y) = 0.

Lemma 3.4. Let Gy be a functional operator such that

(3.10) G(2,y) = —Grly )

for all mapping f : X — Y and all x,y € X. Then Condition P; and
Condition Ps hold.

(3.9)

Proof. Suppose that f : X — Y is a mapping with f(2z) = 2f(z) and (2.1).
Letting y = 0 in (2.1), we have

(3.11) Gy(z,0)=0
for all z € X and by (3.10) and (3.11), we get
Gy(2,0) = =G£(0,2) = =[f(z) + f(—x)] = 0
for all x € X. Hence
(3.12) f(=z) =—f(z)
for all z € X. Interchaging « and y in (2.1), by (3.12), we have
(3.13) fle+2y) = fle—2y) + Gy, 2) = 2f(x +y) - 2f(x —y)
for all z,y € X and by (2.1), (3.10), and (3.13), we have
(3.14) fQr+y)+ f2r—y)+ flz+2y) — f(z - 2y) = 4f(z +y)
for all z,y € X. Letting y = —y in (3.14), we have
(3.15) fx+y)+ f2r —y)+ f(z —2y) — f(z 4+ 2y) = 4f(z —y)
for all z,y € X. By (3.14) and (3.15), we have
(3.16) f@ty)+fl@—y)=fle+2y) + f(z - 2y)
for all z,y € X. Letting x = = + y in (3.16), we get
(3.17) flz+2y) + f(x) = f(z+3y) + flz —v)
for all z,y € X and letting = 2z in (3.16), we get
(3.18) fRe+y)+ f2r—y) =2f(x+y) +2f(z —y)
for all z,y € X. Letting y = 4+ y in (3.18), we get
(3.19) fBr+y)+ flx—y) =2f(2x+y) —2f(y)
for all z,y € X and interchaging x and y in (3.19), we have
(3.20) fla+3y) = fle—y)=2f(z+2y) — 2f(x)
for all z,y € X. By (3.17) and (3.20), we have
(3.21) flx+2y)—3f(x)+2f(x—y)=0
for all z,y € X. Letting x = x — y in (3.21), we get
(3.22) fle+y)=3f(x—y)+2f(x-2y) =0
for all z,y € X and letting y = —y in (3.22), we get
(3.23) flx—y)=3f(x+y)+2f(x+2y)=0
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for all z,y € X. By (3.21) and (3.23), we have
fle+y) + fl@e—y) —2f(z) =
for all z,y € X and hence f is an additive mapping. Thus Condition P; holds.

(2) Suppose that f : X — Y is a mapping with f(2z) = 8f(x) and (2.2).
Similar to (1), we have

for all z,y € X. Interchaging  and y in (2.2), we have
(324)  fle+2y) — flz—2y) + Gy, x) =2f(z +y) — 2f(z —y) + 12f(y)
for all x,y € X and by (2.2), (3.10), and (3.24), we have
(3.25) f(2zx4y)+f(2x—y)+ flx+2y) — flx—2y) = 4f (z +y) +12f(z) + 12f(y)
for all z,y € X. Letting y = —y in (3.25), we have
(3.26) f(2z+y)+f(2z—y)+ flx—2y) — flz+2y) = 4f(z —y) +12f(x) —12f(y)
for all z,y € X. By (3.25) and (3.26), we have
fRx+y) + fQRr—y) =2f(z+y) +2f(x —y) + 12/ (z)
for all z,y € X and hence f is a cubic mapping. Thus Condition P5 holds. O

Using Lemma 3.4, we investigate solutions and the generalized Hyers-Ulam sta-
bility for (3.9).

Theorem 3.5. Let ¢ : X2 — [0,00) be a function with (2.4). Let f: X — Y be
a mapping such that f(0) =0 and

1f 2z +y) + [z —y) = 2f(z +y) +3f(z —y) = 5f(y — x)

—10(z) + 14f(y) — 2/ 2y)l| < o(z,y)

for all x,y € X. Then there exists an unique additive-cubic mapping F : X — Y

(3.27)

such that
’fl n+1 n n
(3.28) 1Fa(z) = fa(@)ll < ﬁ ZQ 272, 2" ) + 2¢(2"w, 2" )
+5¢(2"x,0) + 76(0,2"z)]
and
(3.29) 1Fe(z) = fe(@)] < % ;2‘3” [p(2"z, 2" a) + 26(2"x, 2" )
+56(2"x,0) + 76(0, 2" z)]
forallz e X.

Proof. Let Gy(x,y) = 5[f(x —y) — f(y — )] = 14[f () — f(y)] + 2[f (22) — f(2y)].
Then f satisfies (2.5) and

Gi(x,2x) + 2Gi(x, ) — 2G4(0, x)
—2[t(4x) — 10t(2z) 4+ 16t(x)] — 5[f (z) + f(—=)]
for all z € X and all mapping ¢ : X — Y. Since G satifies (3.10), by Lemma 3.4,

Condition P; and Condition Pj satisfy. By Theroem 2.2, there is an unique
additive-cubic mapping F': X — Y with (3.28) and (3.29). O
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Corollary 3.6. Let f: X — Y be a mapping. Then [ satisfies (3.9) if and only
if f is an additive-cubic mapping.
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