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ABSTRACT 

Monitoring earth vital signs is necessary to assess earth health and ensure human safety. The current 

system uses the Multinomial Naïve Bayes algorithm to detect Earth's vital signals, such as earthquakes, 

cyclones, floods, and wildfires, through image analysis. The algorithm's premise of feature 

independence may limit its capacity to capture complex image dataset relationships, despite its 

simplicity. These systems may suffer with environmental change. Earth monitoring uses the Naive 

Bayes model to analyze earthquake, cyclone, flood, and wildfire data. However, the Naive Bayes 

model's assumption of feature independence may limit its ability to capture complicated interactions in 

Earth's diverse and dynamic vital sign datasets. CNN using VGG16 and Random Forest is proposed. 

The CNN-based VGG model extracts features from the input image, preprocesses, trains, and tests the 

data, while the Random Forest method predicts accuracy and labels. Earth vital signs offers real-time 

monitoring, predictive analytics, and accuracy. Flexible tool for environmental surveillance and early 

warning systems for environmental risks and natural disasters. 

Keywords: Earth Vital Signs Monitoring, Environmental Surveillance, Natural Disaster Prediction, 

CNN-VGG16 Feature Extraction, Random Forest Classification. 

1. INTRODUCTION 

1.1 Overview 

Monitoring the Earth's vital signs, encompassing seismic activities, cyclones, floods, and wildfires, has 

become increasingly critical for disaster preparedness and response. Leveraging ensemble learning 

models in this context provides a comprehensive and sophisticated approach to understanding and 

predicting these dynamic phenomena. Ensemble learning involves the integration of predictions from 

multiple models, offering improved accuracy and robustness. In the case of earthquakes, ensemble 

models can analyze seismic data from various sources to enhance early detection and prediction 

capabilities. This is crucial for minimizing the impact on communities and infrastructure. For cyclones 

and hurricanes, ensemble learning excels in analyzing diverse climate and atmospheric data. By 

combining predictions from models specialized in different aspects of storm behavior, ensemble models 

provide more accurate forecasts of the storm's path, intensity, and potential impact areas. In flood 

monitoring, ensemble learning processes information from sources such as rainfall data, river gauges, 

and topographical information. The diversity of models within the ensemble allows for a more nuanced 

understanding of complex hydrological processes, aiding in timely flood predictions and risk 

assessments. Ensemble learning is also valuable in monitoring and predicting wildfires. By analyzing 

data from satellites, weather patterns, and historical fire incidents, ensemble models can provide more 

accurate predictions of wildfire occurrence, spread, and potential areas at risk. The adaptability and 

real-time processing capabilities of ensemble learning models contribute to effective disaster 

management. These models can quickly adjust to new data, making them suitable for monitoring the 

evolving nature of natural disasters. Additionally, ensemble learning helps in assessing uncertainties 

associated with predictions, aiding decision-makers in making informed choices in the face of potential 
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disasters. In summary, applying ensemble learning models to monitor Earth's vital signs related to 

earthquakes, cyclones, floods, and wildfires enhances prediction accuracy, adaptability, and resilience. 

This technological approach plays a crucial role in advancing our capability to respond effectively to 

natural disasters and mitigate their impact on both human and environmental systems. 

1.2 Problem Statement 

Monitoring the Earth's vital signs, including seismic activities, cyclones, floods, and wildfires, poses 

various challenges that can be addressed through the application of ensemble learning models. One 

major problem lies in the complexity of the data associated with these natural phenomena. Traditional 

methods struggle to capture the intricate patterns and correlations within large and diverse datasets 

generated by seismic sensors, meteorological instruments, and satellite imagery. Ensemble learning, 

with its ability to handle multiple models and diverse data sources, addresses this challenge by providing 

a more comprehensive analysis of the intricate interactions among Earth's vital signs.Another 

significant problem pertains to the dynamic and evolving nature of these natural disasters. Earthquakes, 

cyclones, floods, and wildfires exhibit varying patterns over time, and traditional models may struggle 

to adapt swiftly to changing conditions. Ensemble learning models, designed to be adaptable and 

responsive, offer a solution by continuously updating predictions based on real-time data. This enhances 

the accuracy of early warnings and predictions, crucial for effective disaster preparedness and 

response.Uncertainty in predictions is a persistent challenge in monitoring Earth's vital signs. Ensemble 

learning models, by providing estimates of uncertainty through the combination of multiple predictions, 

contribute to better risk assessment. Understanding the confidence levels associated with predictions is 

vital for decision-makers, allowing them to make informed choices regarding evacuation plans, resource 

allocation, and disaster response strategies.Data integration and feature selection pose additional 

challenges in the monitoring of Earth's vital signs. Ensemble learning addresses these issues by 

efficiently combining predictions from models that specialize in different aspects of the data. This not 

only aids in identifying crucial features contributing to each type of natural disaster but also ensures a 

more robust and accurate overall prediction.In summary, the application of ensemble learning models 

to monitor Earth's vital signs tackles key challenges related to data complexity, dynamic patterns, 

uncertainty, and efficient feature selection. By doing so, it significantly enhances our ability to 

understand, predict, and respond to seismic activities, cyclones, floods, and wildfires, ultimately 

contributing to more effective disaster management and environmental stewardship. 

1.3  Research Motivation 

The motivation for researching the monitoring of Earth's vital signs, encompassing seismic activities, 

cyclones, floods, and wildfires, through the lens of ensemble learning models stems from the critical 

need for more accurate, adaptive, and timely predictions in the face of escalating environmental 

challenges. Traditional methods often struggle to capture the intricate patterns and interactions within 

the vast and dynamic datasets associated with these natural phenomena. Ensemble learning, with its 

ability to integrate diverse models and data sources, offers a promising solution to enhance the precision 

of predictions and improve our understanding of the complex relationships between different vital signs. 

The dynamic and evolving nature of natural disasters poses a significant motivation for exploring 

ensemble learning. Earthquakes, cyclones, floods, and wildfires exhibit temporal variations and can 

rapidly change in intensity and behavior. Ensemble learning models, designed for adaptability, can 

continuously learn from new data, providing real-time insights that are crucial for effective disaster 

preparedness and response. The motivation here lies in developing systems that can rapidly adjust 

predictions to changing conditions, ensuring that the monitoring frameworks remain robust and reliable 

over time. 
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Furthermore, the motivation extends to addressing the inherent uncertainty associated with predictions 

in the realm of Earth's vital signs. Ensemble learning models inherently provide estimates of uncertainty 

by combining predictions from multiple models. This aspect is crucial for decision-makers, enabling 

them to assess the reliability of predictions and make informed choices regarding resource allocation, 

evacuation plans, and disaster response strategies. 

Data integration and efficient feature selection represent additional motivations for employing ensemble 

learning models. The ability of these models to handle diverse data sources and select relevant features 

ensures a more comprehensive understanding of the factors contributing to each type of natural disaster. 

This not only enhances the accuracy of predictions but also provides valuable insights into the 

underlying processes driving Earth's vital signs. 

In essence, the research motivation lies in the quest for more effective, adaptable, and reliable tools to 

monitor Earth's vital signs. Ensemble learning models present a promising avenue for advancing our 

capabilities in understanding, predicting, and responding to seismic activities, cyclones, floods, and 

wildfires. By addressing the complexities associated with these vital signs, researchers aim to contribute 

to the development of innovative solutions that can mitigate the impact of natural disasters and foster 

sustainable environmental practices. 

2 LITERATURE SURVEY 

Many works have been done to examine the use of LULC analysis on remotely sensed records. From 

1986 to 2001 in Pallisa District, Uganda, Otukei and Blaschke [3] carried out land cover mapping and 

land cover assessing using DTs, SVMs and MLCs. They explored the use of knowledge mining to find 

the required classification bands and thresholds for decision. The analysis assessed the efficiency of the 

classification models, claiming that land cover elements occur at an unpredictable pace. According to 

desired classes, a few image classification models are available for segmenting a multi-dimensional 

component space into homogenous regions and labelling segments. Parametric classifiers accept a 

normally distributed dataset and statistical parameters acquired properly from training data. The most 

broadly utilized parametric classifier is the maximum-likelihood classifier (MLC), which makes 

decision surfaces dependent on the mean and covariance of each class. MLC [11] was first applied to 

IRS LISS-III images between 2001 and 2011 and classified into eight classes. Additionally, the study 

used a unique methodological framework for post-classification adjustments. It considerably increased 

total classification accuracy from 67.84% to 82.75% in 2001 and from 71.93% to 87.43% in 2011.  

Islam et al. [1] used Landsat TM and Landsat 8 OLI/TIRS images to examine land use changes in 

Chunati Wildlife Sanctuary (CWS) from 2005 to 2015. ArcGIS and ERDAS imagine were used for land 

use change assessment. To derive supervised land use categorization, the maximum likelihood 

classification technique was applied. It was discovered that around 256 ha of the degraded forest area 

has increased over ten years (2005–2015), with an annual rate of change of 25.56%. Non-parametric 

classifiers do not accept a particular information appropriation to isolate a multi-dimensional feature 

space into classes. Most normally utilized non-parametric classifiers incorporate decision trees [4], 

support vector machines (SVM) [12] and expert systems. ML algorithms have been utilized according 

to pixel classifiers in remote sensing image analysis [6]. 

 Grippa et al. [13] describes a method for mapping urban land use at the street block level, emphasizing 

residential usage by utilizing very-high-resolution satellite images and derived land-cover maps as 

input. For the classification of street blocks, a random forest (RF) classifier is utilized, which achieves 

accuracies of 84% and 79% for five and six land-use classifications, respectively. RF classifier applied 
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over urban communities Dakar and Ouagadougou, cover more than 1,000 km2 altogether, with a spatial 

resolution of 0.5 m.  

Jamali [7] compared and contrasted eight machine learning methods for image categorization in the 

northern region of Iran developed in the Waikato environment for knowledge analysis (WEKA) and R 

programming languages. Machine learning models [14]–[16] such as RF, SVM [17], [18], decision tree, 

K-nearest-neighbors (KNN) [19], principal component analysis (PCA) [20] are successfully applied in 

many application areas. We have built up an ensemble model [21], including SVM and XGBoost [22], 

that gives better precision when contrasted with other individual machine learning models. 

3 PROPOSED SYSTEM 

3.1 Overview 

Here is the overview description of the leveraging vital signs classification for disaster management 

and environment risk assessment to safeguard ecosystem: 

⎯ Uploading Dataset: Users upload their dataset by clicking the "Upload Dataset" button. 

⎯ Upon clicking the button, a file dialog window appear, allowing users to navigate to and select 

the dataset folder containing subfolders for different classes of satellite images. Once the dataset 

is uploaded, a confirmation message  displayed on the GUI. 

⎯ Image Preprocessing: After the dataset is uploaded, the "Image preprocessing" button  clicked 

to initiate image processing. The application utilize the VGG16 model to extract features from 

the satellite images in the dataset. Extracted features be saved along with their corresponding 

labels. The dataset be split into training and testing sets for model training and evaluation. 

⎯ Training and Testing Existing Logistic Regression Model: Upon clicking the "Build & Train 

Logistic Regression Model" button, the application train a logistic regression model using the 

preprocessed dataset. The trained model be saved to a file for future use. The model's 

performance could be evaluated using metrics such as accuracy, precision, recall, and F1-score.  

The evaluation results may be displayed on the GUI, along with a confusion matrix and 

classification report. 

⎯ Training and Testing Proposed RFC Model: Clicking the "Build & Train Ensemble Learning 

Model" button may trigger the training of a Random Forest Classifier (RFC) model. The RFC 

model might be trained using the preprocessed dataset. After training, the model's performance 

may be evaluated using similar metrics as for the logistic regression model. Evaluation results, 

including accuracy, precision, recall, F1-score, confusion matrix, and classification report, may 

be displayed on the GUI. 

⎯ Models Evaluation Graphs: Upon clicking the "Performance Evaluation" button, the 

application generate comparison graphs for evaluating the performance of both models. 

⎯ Graphs display metrics such as accuracy, precision, recall, and F1-score for each model. Users 

visually compare the performance of the logistic regression and RFC models through these 

graphs. 

⎯ Test Image Prediction Using Proposed RFC Model: Users upload a test image by clicking the 

"Upload test image" button. After selecting an image, the application use the trained RFC model 

to make predictions on the uploaded image. Predicted class labels be displayed on the image or 

in a separate window, indicating the land cover changes identified by the model. 
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Figure 3.1: Block diagram of Proposed System. 

3.2 Random Forest Algorithm 

Random Forest is a popular machine learning algorithm that belongs to the supervised learning 

technique. It can be used for both Classification and Regression problems in ML. It is based on the 

concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex 

problem and to improve the performance of the model. As the name suggests, "Random Forest is a 

classifier that contains a number of decision trees on various subsets of the given dataset and takes the 

average to improve the predictive accuracy of that dataset." Instead of relying on one decision tree, the 

random forest takes the prediction from each tree and based on the majority votes of predictions, and it 

predicts the final output. The greater number of trees in the forest leads to higher accuracy and prevents 

the problem of overfitting. 

 

Fig. 3.2: Random Forest algorithm. 

Random Forest algorithm 

Step 1: In Random Forest n number of random records are taken from the data set having k number of 

records. 

Step 2: Individual decision trees are constructed for each sample. 

Step 3: Each decision tree will generate an output. 
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Step 4: Final output is considered based on Majority Voting or Averaging for Classification and 

regression respectively. 

Important Features of Random Forest 

• Diversity- Not all attributes/variables/features are considered while making an individual tree, 

each tree is different. 

• Immune to the curse of dimensionality- Since each tree does not consider all the features, the 

feature space is reduced. 

• Parallelization-Each tree is created independently out of different data and attributes. This 

means that we can make full use of the CPU to build random forests. 

• Train-Test split- In a random forest we don’t have to segregate the data for train and test as 

there will always be 30% of the data which is not seen by the decision tree. 

• Stability- Stability arises because the result is based on majority voting/ averaging. 

Assumptions for Random Forest 

Since the random forest combines multiple trees to predict the class of the dataset, it is possible that 

some decision trees may predict the correct output, while others may not. But together, all the trees 

predict the correct output. Therefore, below are two assumptions for a better Random Forest classifier: 

• There should be some actual values in the feature variable of the dataset so that the classifier 

can predict accurate results rather than a guessed result. 

• The predictions from each tree must have very low correlations. 

Below are some points that explain why we should use the Random Forest algorithm 

• It takes less training time as compared to other algorithms. 

• It predicts output with high accuracy, even for the large dataset it runs efficiently. 

• It can also maintain accuracy when a large proportion of data is missing. 

Types of Ensembles 

Before understanding the working of the random forest, we must look into the ensemble technique. 

Ensemble simply means combining multiple models. Thus, a collection of models is used to make 

predictions rather than an individual model. Ensemble uses two types of methods: 

Bagging– It creates a different training subset from sample training data with replacement & the final 

output is based on majority voting. For example, Random Forest. Bagging, also known as Bootstrap 

Aggregation is the ensemble technique used by random forest. Bagging chooses a random sample from 

the data set. Hence each model is generated from the samples (Bootstrap Samples) provided by the 

Original Data with replacement known as row sampling. This step of row sampling with replacement 

is called bootstrap. Now each model is trained independently which generates results. The final output 

is based on majority voting after combining the results of all models. This step which involves 

combining all the results and generating output based on majority voting is known as aggregation. 
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Fig. 3.3: RF Classifier analysis. 

Boosting– It combines weak learners into strong learners by creating sequential models such that the 

final model has the highest accuracy. For example, ADA BOOST, XG BOOST. 

 
Fig. 3.4: Boosting RF Classifier. 

 

4. RESULTS AND DISCUSSION 

Figure 1: This figure showcases the graphical user interface (GUI) designed for analyzing land cover 

changes using Landsat satellite data. It includes interactive elements for data visualization and analysis. 

Figure 2: Here, the dataset uploading process is illustrated, indicating how users can import Landsat 

satellite data into the GUI for analysis. This step is crucial for accessing the dataset and preparing it for 

further processing. Figure 3: Displaying the dataset preprocessing and data splitting steps, this figure 

demonstrates the necessary transformations applied to the Landsat satellite data to enhance its quality 

and usability. Preprocessing involve normalization, feature scaling, and splitting the data into training 

and testing sets. 
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Figure 1: Displays the GUI of land cover changes with landsat satellite. 

 
Figure 2: Displays the uploading of dataset. 
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Figure 3: Displays the dataset preprocessing and data spliting. 

Figure 4: Presented here are the confusion matrices for both the Ensemble model and Logistic 

Regression model. These matrices provide insights into the performance of each model by showing the 

counts of true positive, true negative, false positive, and false negative predictions. 

Figure 5: This figure presents a performance comparison count plot, depicting various evaluation 

metrics such as accuracy, precision, recall, and F1-score for each model. The plot allows users to 

visually compare the performance of different models and select the most effective one for their 

analysis. Figure 6: Here, the proposed Ensemble model's predictions on test images are illustrated. Users 

can observe the model's classifications of land cover changes based on Landsat satellite data, providing 

valuable insights into environmental changes over time. 

 

 

Figure 4: Confusion matrix of Ensemble model. 
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Figure 4: Confusion matrix of Logistic Regression model. 

 

 

Figure 5: Performance comparison count plot of each model. 
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Figure 6: Proposed Ensemble model prediction on test images. 

 

 

Table 1: Performance comparison of quality metrics by ML models. 

 

Model 

 

Logistic regression  

 

Ensemble Classifier model 

Accuracy (%) 96 98 

Precision (%) 96 98 

Recall (%) 96 98 

F1-score (%) 96 98 

 

5. CONCLUSION 

In conclusion, the current state of monitoring Earth's vital signs relies on traditional methods that may 

lack real-time analysis and predictive capabilities. The use of the Naive Bayes model, while simple and 

efficient, may face limitations in capturing complex relationships within the diverse and dynamic 

datasets associated with seismic activities, cyclones, floods, and wildfires. To address these limitations, 

the proposed system integrates a Convolutional Neural Network (CNN) with the VGG16 model and the 

Random Forest algorithm as an ensemble learning model. This hybrid approach enhances the system's 

ability to extract features from input images and make accurate predictions for Earth's vital signs. 
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