Examining the Distinct Characteristics of *f-alpha* Flexible Q-Fuzzy Subgroups and *f-alpha* Flexible Normal Q-Fuzzy Subgroups

Geethalakshmi Manickam¹, Israr Ahmad², Gopal Thangavel³, Kulandaivel Maruthamuthu Paramasivam⁴, Balakrishnan Somasundaram⁵

¹University of Technology and Applied Sciences - Nizwa, Sultanate of Oman. <u>geetha.lakshmi@utas.edu.om</u>

² University of Technology and Applied Sciences - Nizwa, Sultanate of Oman. <u>israr.ahmed@utas.edu.om</u>

³ University of Technology and Applied Sciences - Nizwa, Sultanate of Oman. gopal.thangavel@utas.edu.om

⁴ University of Technology and Applied Sciences – Al Mussanah, Sultanate of Oman. <u>mpkoman@gmail.com</u> (Corresponding Author)

⁵ University of Technology and Applied Sciences - Nizwa, Sultanate of Oman. <u>bala.krish@utas.edu.om</u>

Abstract

This paper introduces the concepts Q-fuzzy subsets and Q-fuzzy subgroups and establishes essential properties related to these two notions. This study aims to present and investigate new ideas of fuzzy subsets and fuzzy subsets that are $(f - \alpha)$ -flexible. We define $(f - \alpha)$ -Q-fuzzy subgroups, $(f - \alpha)$ -flexible Q-fuzzy subgroups and $(f - \alpha)$ -flexible normal Q-fuzzy subgroups based on these definitions. We investigate and analyze fundamental characteristics while incorporating new discoveries into the research on these topics.

Keywords: Fuzzy subset, $(f - \alpha)$ -flexible fuzzy subset, $(f - \alpha)$ -flexible Q-fuzzy subset, $(f - \alpha)$ -flexible Q-fuzzy subgroup, $(f - \alpha)$ -flexible Q-fuzzy normal subgroups.

2020 Mathematics Subject Classification: 03E72

1. Introduction

The concept of fuzzy sets was first introduced by Zadeh in 1965. Following this, Rosenfeld in 1971 advanced the idea of fuzzy subgroups, marking the initial fuzzification of algebraic structures. This development inspired many mathematicians to explore various fuzzy algebraic structures, including fuzzy ideals in rings and semi-rings. Zadeh further expanded the theory in 1975 with the introduction of interval-valued fuzzy sets, where the values represent ranges rather than precise points. This concept was subsequently generalized by Anthony and Sherwood in 1979, leading to their definition of fuzzy normal subgroups. Additionally, Mukherjee and Bhattacharya (1986) investigated fuzzy cosets and normal fuzzy groupings.

Murali and Makamba (2006) introduced the concept of fuzzy subgroups in abelian groups by analyzing the number of fuzzy subgroups in an abelian group of order pⁿq where p, n, q are positive integers. In contrast, Solairaju and Nagarajan (2011) explored higher Q-fuzzy orders and Q-fuzzy subgroups. This study builds on findings from the works of Sarangapani and Muruganantham (2016) and Geethalakshmi Manickam and Solairaju. The aim of this work is to introduce the concepts of $(f - \alpha)$ -Q-fuzzy subsets and $(f - \alpha)$ -Q-fuzzy subgroups and to establish some basic algebraic properties associated with these concepts. We introduce the concepts of $(f - \alpha)$ -flexible Q-fuzzy subgroups and explore some of their essential properties through discussion and derivation.

2. Preliminaries and Definitions

The fundamental definitions and results are now outlined within the framework of a $(f - \alpha)$ -flexible Q-fuzzy subgroups.

Definition 2.1: Let M_{α} be a set. A mapping $\mu_{\alpha}: M_{\alpha} \rightarrow [0,1]$ is referred to as a fuzzy subset of M_{α} .

Definition 2.2: Let M_{α} be any subgroup. A mapping $\Omega_{\alpha}^{f}: M_{\alpha} \to [0,1]$ is considered a $(f - \alpha)$ -fuzzy subgroup on M_{α} if it satisfies the following conditions:

i)
$$\Omega_{\alpha}^{f}(m_{\alpha}n_{\alpha}) \leq \max{\{\Omega_{\alpha}^{f}(m_{\alpha}), \Omega_{\alpha}^{f}(n_{\alpha})\}}$$

ii) $\Omega_{\alpha}^{f}(\mathbf{m}_{\alpha}^{-1}) \leq \Omega_{\alpha}^{f}(\mathbf{m}_{\alpha})$ for all $\mathbf{m}_{\alpha}, \mathbf{n}_{\alpha} \in M_{\alpha}$ and for any α in M_{α} .

Definition 2.3: For any Q-fuzzy subset Z_{α} in M_{α} and $k \in [0,1]$, the set

 $U(Z_{\alpha}, \mathbf{k}) = \{ m_{\alpha} \in M_{\alpha} \mid Z_{\alpha}(m_{\alpha}, q_{rl}) \ge \mathbf{k} \text{ for all } q_{rl} \in \mathbf{Q} \}$ is called the cut-set of Z_{α} at \mathbf{k} . **Note 2.4:** We use $\mathbf{Q} = \{ q_{rl} \}$ throughout this article

Definition 2.5: A $(f - \alpha)$ -Q-fuzzy subset Z_{α}^{f} is termed as $(f - \alpha)$ -Q-fuzzy subgroup of M_{α} if it satisfies the following conditions:

$$((f - \alpha) - \text{QFG1}): \mathbb{Z}_{\alpha}^{f}(m_{\alpha} \ n_{\alpha}, q_{rl}) \ge \min \{\mathbb{Z}_{\alpha}^{f}(m_{\alpha}, q_{rl}), \mathbb{Z}_{\alpha}^{f}(n_{\alpha}, q_{rl})\}$$
$$((f - \alpha) - \text{QFG2}): \mathbb{Z}_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) = \mathbb{Z}_{\alpha}^{f}(m_{\alpha}, q_{rl})$$
$$((f - \alpha) - \text{QFG3}): \mathbb{Z}_{\alpha}^{f}(m_{\alpha}, q_{rl}) = 1 \text{ for all } m_{\alpha} \ , n_{\alpha} \in M_{\alpha} \text{ and } q_{rl} \in \mathbb{Q}.$$

Definition 2.6: If Ω_{α}^{f} is a $(f - \alpha)$ -fuzzy subgroup of a subgroup M_{α} with identity e_{α} , then

i) $\Omega_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) = \Omega_{\alpha}^{f}(m_{\alpha}, q_{rl})$ ii) $\Omega_{\alpha}^{f}(e_{\alpha}, q_{rl}) \leq \Omega_{\alpha}^{f}(m_{\alpha}, q_{rl}) \text{ for all } m_{\alpha} \in M_{\alpha}.$

Definition 2.7: Let Ω^f_{α} be a $(f - \alpha)$ -Q-fuzzy subgroup of M_{α} . Then Ω^f_{α} is called a $(f - \alpha)$ -

normal Q-fuzzy subgroup of M_{α} if Ω_{α}^{f} $(m_{\alpha}, n_{\alpha}, q_{rl}) = \Omega_{\alpha}^{f}$ $(n_{\alpha}, m_{\alpha}, q_{rl})$ for all $m_{\alpha}, n_{\alpha} \in M_{\alpha}$.

Definition 2.8: A T - nrm is a function that maps pairs of numbers from the unit interval to the unit interval, defined as $T - nrm:[0,1] \times [0,1] \rightarrow [0,1]$. The following four conditions are satisfied for all $\gamma_1, \gamma_2, \gamma_3$ and $\gamma_4 \in [0,1]$.

- i. $T - nrm(\gamma_1, \gamma_2) = T - nrm(\gamma_2, \gamma_1)$
- $T nrm(\gamma_1, T nrm(\gamma_2, \gamma_3)) = T nrm(T nrm(\gamma_1, \gamma_2), \gamma_3)$ ii.
- $T nrm(\gamma_1, 1) = T nrm(1, \gamma_1) = 1$ iii.
- If $\gamma_1 \leq \gamma_3$ and $\gamma_2 \leq \gamma_4$, then $T nrm(\gamma_1, \gamma_2) \leq T nrm(\gamma_3, \gamma_4)$. iv.

Note: The T - nrm is a minimum-based norm.

Definition 2.9: Let M_{α} be a set. A mapping $\Omega_{\alpha}^{f}: M_{\alpha} \times Q \rightarrow Q^{sub*}([0,1])$ is referred to as a $(f - \alpha)$ - flexible Q-fuzzy subset of M_{α} , where $Q^{sub*}([0,1])$ denotes the collection of all non-empty subsets of the interval [0,1].

Definition 2.10: Let M_{α} be a non-empty set and let Ω_{α}^{f} and δ_{α}^{f} be two $(f - \alpha)$ flexible Q-fuzzy subsets of M_{α} . The intersection of Ω_{α}^{f} and δ_{α}^{f} denoted by $\Omega_{\alpha}^{f} \cap \delta_{\alpha}^{f}$ and is defined by $\Omega_{\alpha}^{f} \cap \delta_{\alpha}^{f} = \{ \min \{ m_{\alpha}, n_{\alpha} \} / m_{\alpha} \Box \Omega_{\alpha}^{f}(M_{\alpha}), n_{\alpha} \Box \Box \delta_{\alpha}^{f} \Box (M_{\alpha}) \} \text{ for all } m_{\alpha} \in M_{\alpha}.$ Similarly, the union of Ω_{α}^{f} and δ_{α}^{f} is denoted by $(\Omega_{\alpha}^{f} \Box \delta_{\alpha}^{f})$ is defined by

 $\Omega_{\alpha}^{f} \cup \delta_{\alpha}^{f} = \{ \max \{ m_{\alpha}, n_{\alpha} \} / m_{\alpha} \Box \Omega_{\alpha}^{f} (M_{\alpha}), n_{\alpha} \Box \Box \delta_{\alpha}^{f} \Box (M_{\alpha}) \} \text{ for all } m_{\alpha} \in M_{\alpha}.$

Definition 2.10: Let M_{α} be a non-empty set. Let Ω_{α}^{f} and δ_{α}^{f} be two Q-fuzzy subsets of M_{α} . Then for all $m_{\alpha} \in M_{\alpha}$ and $q_{rl} \square Q$, the following statements hold true:

- $\Omega_{\alpha}^{f} \subseteq \delta_{\alpha}^{f} \Leftrightarrow \Omega_{\alpha}^{f} (m_{\alpha}, q_{rl}) \leq \delta_{\alpha}^{f} (m_{\alpha}, q_{rl})$ $\Omega_{\alpha}^{f} = \delta_{\alpha}^{f} \Leftrightarrow \Omega_{\alpha}^{f} (m_{\alpha}, q_{rl}) = \delta_{\alpha}^{f} (m_{\alpha}, q_{rl})$ i)
- ii)

Definition 2.11:

If Ω_{α} is a $(f - \alpha)$ -Q fuzzy subgroup of G_r , then Com (Ω_{α}^f) represents the complement of a $(f - \alpha)$ -Q-fuzzy subgroup of Ω_{α}^{f} and is defined as Com{ $\{\Omega_{\alpha}^{f}(m_{\alpha}, q_{rl})\}=1-\{\Omega_{\alpha}^{f}(m_{\alpha}, q_{rl})\}$, for all $m_{\alpha} \in M_{\alpha}$ and $q_{rl} \Box Q$.

Definition 2.12: Let M_{α} be a groupoid, meaning it is a set closed under a binary operation (multiplication). A mapping is termed a $(f - \alpha)$ -Q-fuzzy groupoid if it satisfies the following conditions:

(i) inf
$$\Omega_{\alpha}^{f}(m_{\alpha}, n_{\alpha}, q_{rl}) \geq T - nrm \Box \{ (\inf \Omega^{f}(m_{\alpha}, q_{rl}), \inf \Omega^{f}(n_{\alpha}, q_{rl})), \alpha \}$$

(ii) $\sup \Omega_{\alpha}^{f}(m_{\alpha}, n_{\alpha}, q_{rl}) \geq T - nrm \Box \Box \{ (\sup \Omega^{f}(m_{\alpha}, q_{rl}), \sup \Omega^{f}(n_{\alpha}, q_{rl})), \alpha \}$
for all $m_{\alpha}, n_{\alpha} \in M_{\alpha}$ and $q_{rl} \Box Q$.

Definition 2.12: Let M_{α} be a group. A mapping $\Omega_{\alpha}^{f}: M_{\alpha} \times Q \to Q^{sub*}([0,1])$ is called a $(f - \alpha)$ -flexible Q-fuzzy subgroup on M_{α} if it satisfies the following conditions:

(i)
$$\inf \Omega^f_{\alpha}(m_{\alpha}n_{\alpha}, q_{rl}) \ge T - nrm \{ (\inf \Omega^f(m_{\alpha}, q_{rl}), \inf \Omega^f(n_{\alpha}, q_{rl})), \alpha \}$$

(ii) $\sup \Omega_{\alpha}^{f}(m_{\alpha}n_{\alpha}, q_{rl}) \geq T - nrm \{ (\sup \Omega^{f}(m_{\alpha}, q_{rl}), \sup \Omega_{\alpha}^{f}(n_{\alpha}, q_{rl})), \alpha \}$

(iii)
$$\inf \Omega^f_{\alpha}(m_{\alpha}^{-1}, q_{rl}) \ge \inf \Omega^f_{\alpha}(m_{\alpha}, q_{rl})$$

(iv) $\sup \Omega_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) \ge \sup \Omega_{\alpha}^{f}(m_{\alpha}, q_{rl})$ for all m_{α} , $n_{\alpha} \in M_{\alpha}$ and $q_{rl} \in \mathbb{Q}$.

Example 2.13: Let $G_r = \{e_{\alpha}, p_{\alpha}, z_{\alpha}, r_{\alpha}\}$ be a Klein's four-group. The multiplication operation in the group G_r is defined as follows:

٠	e _α	p_{lpha}	Zα	r_{α}
eα	e_{α}	e_{α}	e _α	e_{α}
p_{lpha}	p_{lpha}	p_{lpha}	p_{lpha}	p_{lpha}
Zα	e_{α}	e_{α}	e _α	Z_{α}
r_{α}	p_{lpha}	p_{lpha}	p_{lpha}	eα

Then (G_r, \cdot) is a group. Define a flexible fuzzy subset $\mu_{\alpha}: G_r \to Q^{sub*}([0,1])$ as follows:

 $\mu_{\alpha}(e) = 0.75$, $\mu_{\alpha}(p) = 0.25$, $\mu_{\alpha}(z) = 0.0.25$, $\mu_{\alpha}(r) = 0.75$. With these assignments, μ_{α} qualifies as a flexible fuzzy subgroup of G_{r} .

Note 2.14: In definition *, if $\Omega_{\alpha}^{f}: M_{\alpha} \times Q \to Q^{sub*}([0,1])$, then $\Omega_{\alpha}^{f}(m_{\alpha}, q_{rl})$ for all $m \in M_{\alpha}$ are real values in [0,1] and it holds that inf $(\Omega_{\alpha}^{f}(m_{\alpha}, q_{rl})) = \sup(\Omega_{\alpha}^{f}(m_{\alpha}, q_{rl})) = \Omega_{\alpha}^{f}(m_{\alpha}, q_{rl})$ for all $m \in M_{\alpha}$ and $q_{rl} \in Q$. Consequently, definition * reduces to Rosenfeld's definition of a fuzzy subgroup. Therefore, $(f - \alpha)$ -flexible Q-fuzzy subgroup is a generalization of Rosenfeld's fuzzy group.

3. Properties of $(f - \alpha)$ -Flexible Q-Fuzzy Subgroups

Definition 3.1: Let G_r and Q be two non-empty subsets and for any $\alpha \in [0,1]$. Then, a mapping

$$\begin{split} \Omega_{\alpha}^{f} &: G_{\rm r} \times Q \to [0,1] \text{ is called a } (f - \alpha) \text{-flexible Q-fuzzy set of } G_{\rm r} \text{ , with respect to the fuzzy subset} \\ \Omega_{\alpha}^{f}, \text{ if } \Omega_{\alpha}^{f} (m_{\alpha}, q_{rl}) = T - nrm \{ \Omega^{f} (m_{\alpha}, q_{rl}), \alpha \} \text{ for } m_{\alpha} \in G_{\rm r} \text{ and } q_{rl} \in Q. \end{split}$$

Remark 3.2: Obviously if $\alpha = 1$, then $\Omega_{\alpha}^{f}(m_{\alpha}, q_{rl}) = (\Omega^{f})^{\alpha}(m_{\alpha}, q_{rl}) = (\Omega^{f})^{1}(m_{\alpha}, q_{rl}) = \Omega^{f}(m_{\alpha}, q_{rl})$ and if $\alpha = 0$, then $\Omega_{\alpha}^{f}(m_{\alpha}, q_{rl}) = (\Omega^{f})^{\alpha}(m_{\alpha}, q_{rl}) = (\Omega^{f})^{0}(m_{\alpha}, q_{rl}) = 0$. **Theorem 3.3:** Every $(f - \alpha)$ -Q-fuzzy subgroup of a group M_{α} is $(f - \alpha)$ -Q fuzzy subgroup of M_{α} . **Proof:** Suppose Ω^{f} be a $(f - \alpha)$ -Q-fuzzy subgroup of a group M

Proof: Suppose
$$\Omega_{\alpha}^{f}$$
 be a $(f - \alpha)$ - Q-fuzzy subgroup of a group M_{α} .
Let m_{α}, n_{α} be any two elements in a subgroup M_{α} .
Then, $\Omega_{\alpha}^{f}(m_{\alpha}, q_{rl}) = T - nrm \{ \Omega^{f}(m_{\alpha}n_{\alpha}, q_{rl}), \alpha \}$
 $\geq T - nrm \{ T - nrm\{\Omega^{f}(m_{\alpha}, q_{rl}), \alpha \}, T - nrm\{\Omega^{f}(m_{\alpha}, q_{rl})\}, \alpha \}$
 $= T - nrm\{(\Omega_{\alpha}^{f}(m_{\alpha}, q_{rl}), \Omega_{\alpha}^{f}(m_{\alpha}, q_{rl}))^{\alpha}\}, \alpha \}$
 $= T - nrm\{(\Omega_{\alpha}^{f}(m_{\alpha}, q_{rl}), \Omega_{\alpha}^{f}(m_{\alpha}, q_{rl}))^{\alpha}\}, \alpha \}$
 $\Omega_{\alpha}^{f}(m_{\alpha}, q_{rl}) \geq T - nrm\{(\Omega_{\alpha}^{f}(m_{\alpha}, q_{rl}), \Omega_{\alpha}^{f}(n_{\alpha}, q_{rl})), \alpha \}$ and
 $\Omega_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) = T - nrm\{\Omega^{f}(m_{\alpha}^{-1}, q_{rl}), \alpha \}$

Therefore $\Omega_{\alpha}^{f}(\mathbf{m}_{\alpha}^{-1}, q_{rl}) \geq \Omega_{\alpha}^{f}(\mathbf{m}_{\alpha}, q_{rl})$. Thus, Ω_{α}^{f} is a $(f - \alpha)$ - Q fuzzy subgroup of M_{α} .

Remark 3.4: A $(f - \alpha)$ - Q- fuzzy subgroup of M_{α} is not necessarily a Q-fuzzy subgroup of a group M_{α} .

Example 3.5: Consider the four Klein's group $G_r = \{p_\alpha, k_\alpha, r_\alpha, e_\alpha\}$ where $p_\alpha k_\alpha = q_\alpha k_\alpha = r_\alpha$ and $p_\alpha^2 = k_\alpha^2 = r_\alpha^2 = e_\alpha$ and a non-empty set $Q = \{q_{rl}\}$.

A Q-fuzzy subset Ω^f_{α} of a group G_r is defined as

 $=\Omega_{\alpha}^{J}(m_{\alpha},q_{rl})$

$$(m_{\alpha}, q_{rl}) = \begin{cases} 0.05 & if \ m_{\alpha} = e_{\alpha} \\ 0.08 & if \ m_{\alpha} = p_{\alpha} \ or \ m_{\alpha} = k_{\alpha} \\ 0.06 & if \ m_{\alpha} = r_{\alpha} \end{cases}$$

It is clear that the Q- fuzzy subset Ω_{α}^{f} is not a Q-fuzzy subgroup of a group G_{r} since first part of definition fails to hold as $\Omega_{\alpha}^{f}(r_{\alpha}, q_{rl}) < T - nrm\{(\Omega^{f}(p_{\alpha}, q_{rl}), \Omega^{f}(k_{\alpha}, q_{rl})), \alpha\}$

However, it can be demonstrated that Ω_{α}^{f} is a $(f - \alpha)$ - Q-fuzzy subgroups of a group G_{r} . If we set $\alpha = 0.03$, we find that $\Omega_{\alpha}^{f}(r_{\alpha}, q_{rl}) > \alpha$ for all elements in the group G_{r} and for all q_{rl} in Q. This indicates that $\Omega_{\alpha}^{f}(m_{\alpha}, q_{rl}) = T - nrm \{ \Omega^{f}(m_{\alpha}, q_{\alpha}) \}$

 q_{rl} , α }= α , for all $m_{\alpha} \in G_r$ and $q_{rl} \square Q$. Which fulfills the first condition of the definition of $(f - \alpha)$ -Q-fuzzy subgroups:

$$\Omega_{\alpha}^{f}(m_{\alpha}n_{\alpha},q_{rl}) \geq T - nrm \{ (\Omega^{f}(m_{\alpha},q_{rl}), \Omega^{f}(n_{\alpha},q_{rl})), \alpha \}$$

Furthermore, for the second condition of the definition, since $p_{\alpha}^{-1} = p_{\alpha}$, $k_{\alpha}^{-1} = k_{\alpha}$ and $r_{\alpha}^{-1} = r_{\alpha}$ it follows that $\Omega_{\alpha}^{f}(\mathbf{m}_{\alpha}^{-1}, q_{rl}) \geq \Omega_{\alpha}^{f}(\mathbf{m}_{\alpha}, q_{rl})$.

Therefore, Ω_{α}^{f} is an $(f - \alpha)$ -Q-fuzzy subgroup of the group G_{r} , denoted as Ω_{α}^{f} .

Theorem 3.6: A $(f - \alpha)$ -flexible Q-fuzzy subset Ω_{α}^{f} of a group M_{α} is considered a $(f - \alpha)$ -flexible Q-fuzzy subgroup if and only if the following conditions are met.

(i) $\inf \Omega^f_{\alpha}(m_{\alpha}n_{\alpha}^{-1}, q_{rl}) \ge T - nrm \{ (\inf \Omega^f(m_{\alpha}, q_{rl}), \inf \Omega^f(n_{\alpha}, q_{rl})), \alpha \}$

(ii)
$$\sup \Omega_{\alpha}^{f}(m_{\alpha}n_{\alpha}^{-1},q_{rl}) \geq T - nrm \{(\sup \Omega^{f}(m_{\alpha},q_{rl}),\sup \Omega^{f}(n_{\alpha},q_{rl})), \alpha \}$$
for all m_{α} , $n_{\alpha} \in M_{\alpha}$ and $q_{rl} \Box Q$.

Proof: Initially, let Ω_{α}^{f} be a $(f - \alpha)$ -flexible Q-fuzzy subgroup of M_{α} , and let m_{α} and n_{α} be elements of M_{α} . Then

 $\inf \Omega_{\alpha}^{f}(m_{\alpha} n_{\alpha}^{-1}, q_{rl}) \geq T - nrm \{ (\inf \Omega^{f}(m_{\alpha}, q_{rl}), \inf \Omega^{f}(n_{\alpha}^{-1}, q_{rl})), \alpha \}$ = $T - nrm \{ (\inf \Omega^{f}(m_{\alpha}, q_{rl}), \inf \Omega^{f}(n_{\alpha}, q_{rl})), \alpha \}$ and

 $\sup \Omega_{\alpha}^{f}(m_{\alpha}n_{\alpha}^{-1}, q_{rl}) \geq T - nrm \{ (\sup \Omega^{f}(m_{\alpha}, q_{rl}), \sup \Omega^{f}(n_{\alpha}, q_{rl})), \alpha \}$ = $T - nrm \{ (\sup \Omega^{f}(m_{\alpha}, q_{rl}) \sup \Omega^{f}(n_{\alpha}, q_{rl})), \alpha \}.$

Conversely, if Ω_{α}^{f} is a $(f - \alpha)$ -flexible Q-fuzzy subset of M_{α} and the given conditions are satisfied, then it follows that

$$\inf \Omega_{\alpha}^{f}(e_{\alpha}, q_{rl}) = \inf \Omega_{\alpha}^{f}(e_{\alpha} m_{\alpha}^{-1}, q_{rl}) \ge T - nrm \{(\inf \Omega^{f}(e_{\alpha}, q_{rl}), \inf \Omega^{f}(m_{\alpha}, q_{rl})), \alpha\} \\ = \inf \Omega^{f}(m_{\alpha}, q_{rl}) - \dots - (1)$$

$$\sup \Omega_{\alpha}^{f} (e_{\alpha}, q_{rl}) = \sup \Omega_{\alpha}^{f} (e_{\alpha} m_{\alpha}^{-1}, q_{rl}) \ge T - nrm \{ (\sup \Omega^{f} (e_{\alpha}, q_{rl}), \sup \Omega^{f} (m_{\alpha}, q_{rl})), \alpha \}$$
$$= \sup \Omega^{f} (m_{\alpha}, q_{rl}) - \dots - (2) \text{ for all } m_{\alpha} \in M_{\alpha}.$$

This implies that

 $\inf \Omega_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) = \inf \Omega_{\alpha}^{f}(e_{\alpha}m_{\alpha}^{-1}, q_{rl}) \ge T - nrm \{(\inf \Omega^{f}(e_{\alpha}, q_{rl}), \inf \Omega^{f}(m_{\alpha}, q_{rl})), \alpha\}$ by using (1)

and $\sup \Omega_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) = \sup \Omega_{\alpha}^{f}(e_{\alpha}m_{\alpha}^{-1}, q_{rl}) \ge T - nrm \{(\sup \Omega^{f}(e_{\alpha}, q_{rl}), \sup \Omega^{f}(m_{\alpha}, q_{rl})), \alpha\}$ by using (2).

Once again, we even prove that

$$\inf \Omega_{\alpha}^{f} (m_{\alpha} n_{\alpha}, q_{rl}) \geq T - nrm \{ (\inf \Omega^{f} (m_{\alpha}, q_{rl}), \inf \Omega^{f} (n_{\alpha}^{-1}, q_{rl})), \alpha \}$$
$$\geq T - nrm \{ (\inf \Omega^{f} (m_{\alpha}, q_{rl}), \inf \Omega^{f} (n_{\alpha}, q_{rl})), \alpha \}.$$

and sup Ω_{α}^{f} $(m_{\alpha}n_{\alpha}, q_{rl}) \ge T - nrm \{(\sup \Omega^{f} (m_{\alpha}, q_{rl}), \sup \Omega^{f} (n_{\alpha}^{-1}, q_{rl})), \alpha\}$ 2523 Geethalakshmi Manickam et al 2518-2529

$$\geq T - nrm \{ (\sup \Omega^f (m_\alpha, q_{rl}), \sup \Omega^f (n_\alpha, q_{rl})), \alpha \}.$$

Therefore, Ω_{α}^{f} is a $(f - \alpha)$ -flexible Q-fuzzy group of M_{α} .

Theorem 3.8: If Ω_{α}^{f} is a $(f - \alpha)$ -flexible Q-fuzzy groupoid of an infinite group M_{α} , then Ω_{α}^{f} is a $(f - \alpha)$ -flexible Q-fuzzy group of M_{α} .

Proof: Let $m \in M_{\alpha}$. Since M_{α} is finite, m_{α} has a finite order, say p. Therefore, $m_{\alpha}^{p} = e_{\alpha}$, where e_{α} is the identity element of M_{α} .

Thus, m_{α}^{-1} is equivalent to m_{α}^{p-1} in the context of $(f - \alpha)$ -flexible Q-fuzzy groupoids.

Thus, it follows that $\inf \Omega_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) = \inf \Omega_{\alpha}^{f}(m_{\alpha}^{p-1}, q_{rl}) = \inf \Omega_{\alpha}^{f}(m_{\alpha}^{p-2}, q_{rl})$ $\geq T - nrm \{ (\inf \Omega^f (m_\alpha^{p-2}, q_{rl}), \Omega^f (m_\alpha, q_{rl})), \alpha \}.$

Once again, we even prove that

$$\inf \Omega^f_{\alpha} (m^{p-2}_{\alpha}, q_{rl}) = \inf \Omega^f_{\alpha} (m^{p-3}_{\alpha}, q_{rl})$$

 $\geq T - nrm \{ (\inf \Omega^f (m_\alpha^{p-3}, q_{rl}), \Omega^f (m_\alpha, q_{rl})), \alpha \}.$

Consequently, it can be deduced that

 $\inf \Omega_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) \geq T - nrm \{ (\inf \Omega^{f}(m_{\alpha}^{p-3}, q_{rl}), \Omega^{f}(m_{\alpha}, q_{rl})), \alpha \}.$ By repeatedly applying the definition of a $(f - \alpha)$ -flexible Q-fuzzy groupoid, we obtain: $\inf \Omega_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) \Box \inf \Omega_{\alpha}^{f}(m_{\alpha}, q_{rl}).$

Similarly, we have, $\sup \Omega_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) \Box \sup \Omega_{\alpha}^{f}(m_{\alpha}, q_{rl})$. Thus, Ω_{α}^{f} is a $(f - \alpha)$ -flexible Q-fuzzy subgroup of M_{α} .

Theorem 3.8: The intersection of any two $(f - \alpha)$ -flexible Q-fuzzy subgroups is also a $(f - \alpha)$ flexible Q-fuzzy subgroup of M_{α} .

Proof: Let Z_{α}^{f} and Y_{α}^{f} be two $(f - \alpha)$ -flexible Q-fuzzy subgroups of M_{α} . Consider the elements m_{α} and n_{α} are of M_{α} . Then

 $\inf \left(\mathbf{Z}_{\alpha}^{f} \Box Y_{\alpha}^{f} \right) \left(m_{\alpha} n_{\alpha}^{-1}, q_{rl} \right) = T - nrm \left\{ \left(\inf Z^{f} \left(m_{\alpha} n_{\alpha}^{-1}, q_{rl} \right), \inf Y^{f} \left(m_{\alpha} n_{\alpha}^{-1}, q_{rl} \right) \right), \alpha \right\} \\ \geq T - nrm \left\{ T - nrm \left\{ \left(\inf Z^{f} \left(m_{\alpha}, q_{rl} \right), \inf Z^{f} \left(m_{\alpha}, q_{rl} \right) \right), \alpha \right\}, \left\{ \left(\inf Y^{f} \left(n_{\alpha}, q_{rl} \right), \inf Z^{f} \left(m_{\alpha}, q_{rl} \right) \right), \alpha \right\} \right\}$ $Y^{f}(n_{\alpha}, q_{rl})), \alpha\}\}\}$

 $= T - nrm \{ (T - nrm \{ \inf Z^f (m_\alpha, q_{rl}), \inf Y^f (n_\alpha, q_{rl})), \alpha \}, T - nrm \{ (\inf Z^f (m_\alpha, q_{rl})), \alpha \} \}$ q_{rl} , inf $Y^f(n_{\alpha}, q_{rl})$, α } $= T - nrm \{ (\inf Z^f \Box Y^f (m_\alpha, q_{rl}), \inf Z^f \Box Y^f (n_\alpha, q_{rl})), \alpha \} \dots (1).$

We also establish that

 $\sup (\mathbf{Z}_{\alpha}^{f} \Box Y_{\alpha}^{f}) (m_{\alpha} n_{\alpha}^{-1}, q_{rl}) = T - nrm \{ (\sup Z^{f} (m_{\alpha} n_{\alpha}^{-1}, q_{rl}), \sup Y^{f} (m_{\alpha} n_{\alpha}^{-1}, q_{rl})), \alpha \}$ by definition $\geq T - nrm \{ T - nrm \{ \{ (\sup Z^f(m_\alpha, q_{rl}), \sup Z^f(m_\alpha, q_{rl})), \alpha \}, \{ (\sup Y^f(m_\alpha, q_{rl}), \sup Z^f(m_\alpha, q_{rl}), \max \} \}$ $Y^{f}(n_{\alpha}, q_{rl})), \alpha \} \} \}$ $= T - nrm \{ T - nrm \{ (\sup Z^f(m_\alpha, q_{rl}), \sup Y^f(m_\alpha, q_{rl})), \alpha \}, T - nrm \{ (\sup Z^f(m_\alpha, q_{rl})), \alpha \} \}$ q_{rl} , sup Y^{f} $(n_{\alpha}, q_{rl}), \alpha$ }

 $= T - nrm \{ (\sup Z^f \square Y^f (m_\alpha, q_{rl}), \sup Z^f \square Y^f (n_\alpha, q_{rl})), \alpha \} \dots (2).$ Based on results (1) and (2), it follows that the intersection $Z_{\alpha}^{f} \Box Y_{\alpha}^{f}$ is a $(f - \alpha)$ -flexible Q-fuzzy subgroup of M_{α} .

Remark 3.9: If Ω_{α}^{f} and δ_{α}^{f} be two $(f - \alpha)$ -Q fuzzy subgroup of the group G_{r} , then $\Omega_{\alpha}^{f} \cup \delta_{\alpha}^{f}$ need not to be a $(f - \alpha)$ -flexible Q-fuzzy subgroup of a group G_r .

Theorem 3.10: The intersection of any arbitrary collection of $(f - \alpha)$ -flexible Q-fuzzy subgroups is also a $(f - \alpha)$ -flexible Q-fuzzy subgroups of M_{α} . **Proof:** This is straightforward.

Theorem 3.11: If Z_{α}^{f} is a $(f - \alpha)$ -flexible Q-fuzzy subgroup of a group M_{α} with identity element e_{α} , then

(i) inf
$$Z_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) = \inf Z_{\alpha}^{f}(m_{\alpha}, q_{rl})$$
, and $\sup Z_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) = \sup Z_{\alpha}^{f}(m_{\alpha}, q_{rl})$

(ii) inf $Z_{\alpha}^{f}(e_{\alpha}, q_{rl}) = \inf Z_{\alpha}^{f}(m_{\alpha}, q_{rl})$ and $\sup Z_{\alpha}^{f}(e_{\alpha}, q_{rl}) = \sup Z_{\alpha}^{f}(m_{\alpha}, q_{rl})$

for all $m \in M_{\alpha}$.

Proof: (i) Since Z_{α}^{f} is a $(f - \alpha)$ –flexible Q-fuzzy subgroup of the group M_{α} , it follows that $\inf Z_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) \Box \inf Z_{\alpha}^{f}(m_{\alpha}, q_{rl})$.

In the same way, it can be established that

$$\inf \mathbf{Z}_{\alpha}^{f}(m_{\alpha}, q_{rl}) = \inf \mathbf{Z}_{\alpha}^{f}((m_{\alpha}^{-1})^{-1}, q_{rl})$$
$$\Box \inf \mathbf{Z}_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}).$$

Thus, $\inf Z_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) = \inf Z_{\alpha}^{f}(m_{\alpha}, q_{rl})$. Similarly, it can be shown that sup $Z_{\alpha}^{f}(m_{\alpha}^{-1}, q_{rl}) = \sup Z_{\alpha}^{f}(m_{\alpha}, q_{rl})$

(ii) Given that Z_{α}^{f} is a $(f - \alpha)$ -flexible Q-fuzzy subgroup of the group M_{α} , it follows that

 $\inf Z_{\alpha}^{f}(e_{\alpha}, q_{rl}) = \inf Z_{\alpha}^{f}(m_{\alpha}n_{\alpha}^{-1}, q_{rl}) \geq T - nrm \{ (\inf Z^{f}(m_{\alpha}, q_{rl}), \inf Z^{f}(m_{\alpha}^{-1}, q_{rl})), \alpha \} \text{and} \sup Z_{\alpha}^{f}(e_{\alpha}, q_{rl}) = \sup Z_{\alpha}^{f}(m_{\alpha}n_{\alpha}^{-1}, q_{rl}) \geq T - nrm \{ (\sup Z^{f}(m_{\alpha}, q_{rl}), \sup Z^{f}(m_{\alpha}^{-1}, q_{rl})), \alpha \}.$

Theorem 3.12: Let Ω_{α}^{f} and δ_{α}^{f} be two $(f - \alpha)$ -flexible Q-fuzzy subgroups of $M_{\alpha_{1}}$ and $M_{\alpha_{2}}$ respectively and let f be a homomorphism from M_{α_1} to M_{α_2} . Then:

- $h(\Omega_{\alpha}^{f}, q_{rl})$ is a $(f \alpha)$ -flexible Q-fuzzy group of $M_{\alpha_{\alpha}}$.
- $h(\delta_{\alpha}^{f}, q_{rl})$ is a $(f \alpha)$ -flexible Q-fuzzy group of $M_{\alpha_{1}}$.

Proof: This is straightforward.

Remark 3.13: If Ω_{α}^{f} is a $(f - \alpha)$ -flexible Q-fuzzy group of M_{α} and S_{gr} is a subgroup of M_{α} , then the restriction of Ω_{α}^{f} to S_{gr} (denoted $\Omega_{\alpha}^{f}/S_{gr}$) is a $(f - \alpha)$ -flexible Q-fuzzy subgroup of S_{gr} .

4. Normal $(f - \alpha)$ -Flexible Q-Fuzzy Subgroups

Definition 4.1: If Ω_{α}^{f} is a $(f - \alpha)$ -flexible Q-fuzzy group of a group M_{α} , then Ω_{α}^{f} is referred to as a normal $(f - \alpha)$ -flexible Q-fuzzy subgroup of M_{α} if

$$\inf \Omega_{\alpha}^{f}(m_{\alpha}n_{\alpha}) = \inf \Omega_{\alpha}^{f}(n_{\alpha}m_{\alpha}) \text{ and}$$
$$\sup \Omega_{\alpha}^{f}(m_{\alpha}n_{\alpha}) = \sup \Omega_{\alpha}^{f}(n_{\alpha}m_{\alpha}) \text{ for all } m_{\alpha}, n_{\alpha} \in M_{\alpha}$$

Theorem 4.2: A normal $(f - \alpha)$ -flexible Q-fuzzy subgroup of a group M_{α} can be expressed as the intersection of any two normal $(f - \alpha)$ -flexible Q-fuzzy subgroups of M_{α} .

Proof: Let Z_{α}^{f} and Y_{α}^{f} be two normal $(f - \alpha)$ -flexible Q-fuzzy subgroups of a group M_{α} . We need to show that $Z_{\alpha}^{f} \cap Y_{\alpha}^{f}$ is also a normal $(f - \alpha)$ -flexible Q-fuzzy group of M_{α} .

To do this, consider any elements m_{α} , $n_{\alpha} \in M_{\alpha}$. By definition,

$$\inf (\mathbf{Z}_{\alpha}^{f} \cap Y_{\alpha}^{f}) (m_{\alpha} n_{\alpha}, q_{rl}) = T - nrm \{ (\inf Z^{f} (m_{\alpha} n_{\alpha}, q_{rl}), \inf Y^{f} (m_{\alpha} n_{\alpha}, q_{rl})), \alpha \}$$

 $= T - nrm \{ (\inf Z^f (n_{\alpha} m_{\alpha}, q_{rl}), \inf Y^f (n_{\alpha} m_{\alpha}, q_{rl})), \alpha \}$

$$= \inf \mathbf{Z}_{\alpha}^{f} \cap Y_{\alpha}^{f} (m_{\alpha} n_{\alpha}, q_{rl}).$$

In a similar manner, sup $(\mathbb{Z}^f_{\alpha} \cap Y^f_{\alpha})$ $(m_{\alpha}n_{\alpha}, q_{rl}) = \sup (\mathbb{Z}^f_{\alpha} \cap Y^f_{\alpha})$ $(n_{\alpha}m_{\alpha}, q_{rl})$.

This demonstrates that $Z_{\alpha}^{f} \cap Y_{\alpha}^{f}$ is a normal $(f - \alpha)$ -flexible Q-fuzzy group of M_{α}

Theorem 4.3: A normal $(f - \alpha)$ -flexible Q-fuzzy subgroup of a group M_{α} can be expressed as the intersection of any arbitrary collection of normal $(f - \alpha)$ -flexible Q-fuzzy subgroups of M_{α} .

Proof: Let m_{α} , $n_{\alpha} \in M_{\alpha}$ and $\alpha \in M_{\alpha}$. Now it finds that

$$\inf Z_{\alpha}^{f} (m_{\alpha} n_{\alpha}^{-1}, q_{rl}) = \inf Z_{\alpha}^{f} (\alpha^{-1} m_{\alpha} n_{\alpha}^{-1} \alpha, q_{rl}) \text{ by definition}$$

$$= \inf Z_{\alpha}^{f} (\alpha^{-1} m_{\alpha} \alpha \alpha^{-1} n_{\alpha}^{-1} \alpha, q_{rl})$$

$$= \inf (Z_{\alpha}^{f} (\alpha^{-1} m_{\alpha} \alpha, q_{rl}), Z_{\alpha}^{f} ((\alpha^{-1} n_{\alpha} \alpha)^{-1}, q_{rl}))$$

$$\geq T - nrm \{ (\inf (Z^{f} (\alpha^{-1} m_{\alpha} \alpha, q_{rl}), \inf Z^{f} (\alpha^{-1} n_{\alpha} \alpha, q_{rl})), \alpha \}$$

$$= T - nrm \{ (\inf (Z^{f} (m_{\alpha}, q_{rl}), Z^{f} (n_{\alpha}, q_{rl})), \alpha \}.$$

Again sup $Z_{\alpha}^{f}(m_{\alpha}n_{\alpha}^{-1}, q_{rl}) = \sup Z_{\alpha}^{f}(\alpha^{-1}m_{\alpha}n_{\alpha}^{-1}\alpha, q_{rl})$ by definition

$$= \sup \left(\mathbf{Z}_{\alpha}^{f} \left(\alpha^{-1} m_{\alpha} \alpha \alpha^{-1} n_{\alpha}^{-1} \alpha, q_{rl} \right) \right)$$

$$= \sup \left(\mathbf{Z}_{\alpha}^{f} \left(\alpha^{-1} m_{\alpha} \alpha, q_{rl} \right), \mathbf{Z}_{\alpha}^{f} \left((\alpha^{-1} n_{\alpha} \alpha)^{-1}, q_{rl} \right) \right)$$

$$\geq T - nrm \left\{ (\sup \left(\mathbf{Z}^{f} \left(\alpha^{-1} m_{\alpha} \alpha, q_{rl} \right), \sup \left(\mathbf{Z}^{f} \left(\alpha^{-1} n_{\alpha} \alpha \right), q_{rl} \right) \right), \alpha \right\}$$

$$= T - nrm \left\{ (\sup \left(\mathbf{Z}^{f} \left(m_{\alpha}, q_{rl} \right), \mathbf{Z}^{f} \left(m_{\alpha}, q_{rl} \right) \right), \alpha \right\}.$$

Consequently, it can be concluded that Z_{α}^{f} is a normal $(f - \alpha)$ -flexible Q-fuzzy subgroup of the group M_{α} .

5. Conclusion

We proposed the notions of $(f - \alpha)$ -flexible fuzzy sets and $(f - \alpha)$ -flexible Q-fuzzy groups in this paper. Furthermore, we described and analyzed some of the fundamental features of $(f - \alpha)$ -flexible Q-fuzzy normal groups. Many of these attributes have been demonstrated.

References

- [1] A. Rosenfield. "Fuzzy groups" J. Math. Anal. Appl., Vol.35, (1965), 521-517
- [2] J.H. Anthony and H. Sherwood, (1979) "Fuzzy groups redefined". J.Hath.Anal.Appl .69, 124-130. <u>https://doi.org/10.1016/0022-247X(79)90182-3</u>
- [3] N.P. Mukherjee and P. Bhattacharya. "Fuzzy normal subgroups and fuzzy cosets", Information Sciences, Vol.34, (1984), 225-239. https://doi.org/10.1016/0020-0255(84)90050-1
- [4] N.P. Mukherjee and P. Bhattacharya" Fuzzy groups: Some group theoretic analogs" Information Sciences, Vol.39. (1986), 247-269.
 <u>https://doi.org/10.1016/0020-0255(86)90039-3</u>
- [5] Murali.V and Makamba B.B (2004) "Fuzzy subgroups of finite abelian groups "for East journal of Mathematical Science (EJMC), 14, 360-371.

- [6] Murali.V and Makamba B.B (2006). "Counting the number of fuzzy subgroups of abelian group of order pn q" Fuzzy sets and systems, 44. 459-470. https://doi.org/10.1016/S0165-0114(03)00224-0
- [7] A. Solairaju and R. Nagarajan "Q-fuzzy left R-subgroup of near rings with respect to Tnorms" Antarctica Journal of Mathematics, 5 (1-2), (2008), 59-63.
- [8] A. Solairaju and R. Nagarajan "A new structure and construction of Q-fuzzy groups" Advances in Fuzzy Mathematics 4(1), (2009), 23-29.
- [9] A. Zadeh, "Fuzzy Sets", Information and Control Vol.8, (1965), 338-353.
 <u>https://doi.org/10.1016/S0019-9958(65)90241-X</u>
- [10] A. Solairaju and R. Nagarajan, Some structure properties of upper Q-fuzzy index order with upper Q-fuzzy subgroups Int. Journal of open Problem Math.Appl., 1, (2011), 21-29. <u>https://doi.org/10.5120/1952-2116</u>
- [11] P. Sarangapani and P. Muruganantham "New structures on upper flexible Q-fuzzy groups "International Journal of Mathematics Research Vol8 (2), (2016), 107-112.
- [12] W. H. Wu (1981), Normal fuzzy subgroups. Fuzzy Math, 1, 21-30.
- [13] Massadeh M "Properties of fuzzy subgroups in particular the normal subgroups" Damacus University - Syrian Arab Republic, Doctorate thesis.
- [14] V. Vanitha and G. Subbiah "Certain thresholds on flexible fuzzy subgroups with flexible fuzzy order" Int.Rearch journal of pure algebra -6(11), 2016, 436-442.
- [15] Zimmerman H.J., "Fuzzy set theory and its applications" Kluwer Academic publishers London, third edition, (1997).
- [16] Muhammad Gulzar and Ghazanfar Abbas, "Algebraic Properties of ω-Q-fuzzy subgroups" Int. Journal of Mathematics and Computer Science, 15(2020), no.1, 265-274.
- [17] Mwafaq M. Salih and Delbrin H. Ahmed, α- Q- fuzzy subgroups. Academic Journal of Nawroz university (AJNU).
- [18] Certain properties of ω- Q- fuzzy subrings, Indonesian Journal of Electrical Engineering and computer science vol.21, No.2 PP.822-828,2021. https://doi.org/10.11591/ijeecs.v21.i2.pp822-828
- [19] Geethalakshmi Manickam and A. Solairaju, "New structure properties of flexible Q-fuzzy groups and flexible normal Q-fuzzy subgroups" Int. Research Journal of pure algebra-10, 7(2020), 14-18.

[20] Geethalakshmi Manickam, Kulandaivel Maruthamuthu Paramasivam, Gopal Thangavel, Sharmila Banu S and Kasper Sebastine, Development and Analysis of New Intuitionistic Q-Fuzzy Soft Rings and Ideals Using Triangular Norms. (Accepted for the Publication)