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Abstract

The purpose of this paper is to introduce a new modification of Lupaş operators in the

frame of post quantum setting and to investigate their approximation properties. First using

the relations between q-calculus and post quantum calculus, the post quantum analogue of op-

erators constructed will be linear and positive but will not follow Korovkin’s theorem. Hence a

new modification of q-Lupaş operators is constructed which will preserve test functions. Based

on these modification of operators, approximation properties have been investigated. Further,

the rate of convergence of operators by mean of modulus of continuity and functions belonging

to the Lipschitz class as well as Peetre’s K-functional are studied.

Keywords and phrases: Lupaş operators; Post quantum analogue; q analogue; Peetre’s
K-functional; Korovkin’s type theorem; Convergence theorems.
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1. Introduction and preliminaries

A. Lupaş [17] introduced the linear positive operators at the International Dortmund
Meeting held in Witten (Germany, March, 1995) as follows:

Lm(f ;u) = (1− a)−mu
∞∑
l=0

(mu)la
l

l!
f

(
l

m

)
, u ≥ 0, (1.1)

with f : [0,∞)→ R. If we impose Lm(u) = u, we get a = 1
2 . Thus operators (1.1) becomes

Lm(f ;u) = 2−mu
∞∑
l=0

(mu)l
l!2l

f

(
l

m

)
, u ≥ 0, (1.2)

where (mu)l is the rising factorial defined as:

(mu)0 = 1, (mu)l = mu(mu+ 1)(mu+ 2) · · · (mu+ l − 1), l ≥ 0.

The q-analogue of Lupaş operators (1.2) is defined in [26] as:

Lp,qm (f ;u) = 2−[m]qu
∞∑
l=0

([m]qu)l
[l]!2l

f

(
[l]q

[m]q

)
, u ≥ 0. (1.3)

1
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2. Construction of new operators and auxiliary results

Let us recall certain notations and definitions of (p, q)-calculus. Let p > 0, q > 0. For
each non negative integer l, m, m ≥ l ≥ 0, the (p, q)-integer, (p, q)-binomial are defined, as

[j]p,q = pj−1 + pj−2q + pj−3q2 + ...+ pqj−2 + qj−1 =



pj−qj
p−q , when p 6= q 6= 1,

j pj−1, when p = q 6= 1,

[j]q, when p = 1,
j, when p = q = 1.

where [j]q denotes the q-integers and m = 0, 1, 2, · · · .

The formula for (p, q)-binomial expansion is as follows:

(au+ bv)mp,q :=
m∑
l=0

p
(m−l)(m−l−1)

2 q
l(l−1)

2

[
m
l

]
p,q

am−lblum−lvl,

(u+ v)mp,q = (u+ v)(pu+ qv)(p2u+ q2v) · · · (pm−1u+ qm−1v),

(1− u)mp,q = (1− u)(p− qu)(p2 − q2u) · · · (pm−1 − qm−1u),

where (p, q)-binomial coefficients are defined by[
m
l

]
p,q

=
[m]p,q!

[l]p,q![m− l]p,q!
.

Details on (p, q)-calculus can be found in [9, 11, 21].

In the case of p = 1, the above notations reduce to q-analogues and one can easily see that
[m]p,q = pm−1[m]q/p. Mursaleen et al. [21] introduced (p, q)-calculus in approximation theory
and constructed post quantum analogue of Bernstein operators. On the other hand Khalid and
Lobiyal defined the (p, q)- analogue of Lupaş Bernstein operators in [12] and have shown its
application in computer aided geometric design for construction of Beizer curves and surfaces.
For another applications of extra parameters p in the field of approximation on compact disk,
one can refer [4]. For related literature, one can refer [1, 2, 9, 3, 13, 14, 18, 19, 20, 22, 23, 25, 24]
papers based on q and (p, q) integers in approximation theory and CAGD. Motivated by the
above mentioned work, we introduce a new analogue of Lupaş operators. The post quantum
analogue of (1.3) are as follows:

Definition 2.1. Let f : [0,∞) → R, 0 < q < p ≤ 1 and for any m ∈ N. we define the
(p, q)-analogue of Lupaş operators as

Lp,qm (f ;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

f

(
pl−m[l]p,q

[m]p,q

)
, u ≥ 0. (2.1)

The operators (2.1) are linear and positive. For p = 1, the operators (2.1) turn out to be
q-Lupaş operators defined in (1.3). Next, we prove some auxiliary results for (2.1).

Lemma 2.2. Let 0 < q < p ≤ 1 and m ∈ N. We have

(i) Lp,qm (1;u) = 1,
(ii) Lp,qm (t;u) = u

pm−1(2−p)[m]p,qu+1 ,

(iii) Lp,qm (t2;u) = u
[m]p,qp2m−2(2−p3)[m]p,qu+1 + qu2

p2m−4(2−p2)[m]p,qu+2 + qu

p2m−4(2−p2)[m]p,qu+2[m]p,q
.

Proof. we have
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(i)

Lp,qm (1;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

= 1.

(ii)

Lp,qm (t;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

pl−m[l]p,q
[m]p,q

= 2−[m]p,qu
∞∑
l=1

([m]p,qu)([m]p,qu+ 1)l−1
[l]p,q[l − 1]p,q!2l

pl−m[l]p,q
[m]p,q

= 2−[m]p,quu
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l+1

pl+1−m

=
2−[m]p,qu−1

pm−1
u
∞∑
l=0

([m]p,qu+ 1)lp
l

[l]p,q!2l

=
u

(pm−1)(2− p)([m]p,qu+1)
.

(iii)

Lp,qm (t2;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

p2l−2m[l]2p,q
[m]2p,q

= 2−[m]p,qu
∞∑
l=1

([m]p,qu)([m]p,qu+ 1)l−1
[l]p,q[l − 1]p,q!al

p2l−2m[l]2p,q
[m]2p,q

= 2−[m]p,quu
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l+1

p2l+2−2m[l + 1]p,q
[m]p,q

=
2−[m]p,qu−1

p2m−2
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

p2l[l + 1]p,q
[m]p,q

=
2−[m]p,qu−1

p2m−2
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

p2l[pl + q[l]p,q]

[m]p,q

=
2−[m]p,qu−1

p2m−2
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

p3l

[m]p,q

=
2−[m]p,qu−1

p2m−2
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

p2lq[l]p,q
[m]p,q

= I1 + I2(say),

�
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we find that I1 and I2 are

I1 =
2−[m]p,qu−1

p2m−2
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

p3l

[m]p,q

=
u

[m]p,qp2m−2(2− p3)
[m]p,qu+1

.

I2 =
2−[m]p,qu−1

p2m−2
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

p2lq[l]p,q
[m]p,q

=
2−[m]p,qu−1([m]p,qu+ 1)

p2m−2
qu
∞∑
l=0

([m]p,qu+ 2)l−1
[l]p,q[l − 1]p,q!2l

p2l[l]p,q
[m]p,q

=
2−[m]p,qu−1([m]p,qu+ 1)

[m]p,qp2m−2
qu
∞∑
l=1

([m]p,qu+ 2)l−1p
2l

[l − 1]p,q!2l

=
2−[m]p,qu−2([m]p,qu+ 1)

[m]p,qp2m−4
qu
∞∑
l=0

([m]p,qu+ 2)lp
2l

[l]p,q!2l

=
qu2

p2m−4(2− p2)
[m]p,qu+2

+
qu

p2n−4(2− p2)
[m]p,qu+2

[m]p,q
.

On adding I1and I2, we get

Lp,qm (t2;u) =
u

[m]p,qp2m−2(2− p3)
[m]p,qu+1

+
qu2

p2m−4(2− p2)
[m]p,qu+2

+
qu

p2m−4(2− p2)
[m]p,qu+2

[m]p,q
.

The sequence of (p, q)-Lupaş operators constructed in (2.1) however do not preserve the test
functions t and t2. Hence one can not guarantee approximation via these operators. Therefore,
we construct the modified (p, q)- Lupaş operators as follows:

Lemma 2.3. Let 0 < q < p ≤ 1 and m ∈ N. For f : [0,∞)→ R, we define the (p, q)-analogue
of Lupaş operators as:

L̃p,qm (f ;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!al

f

(
[l]p,q

[m]p,q

)
, u ≥ 0. (2.2)

The operators (2.2) are linear and positive. For p = 1, the operators (2.2) turn out to be
q-Lupaş operator defined in (1.3).
We shall investigate approximation properties of the operators (2.2). We obtain rate of conver-
gence of the operators via modulus of continuities. We also obtain approximation behaviors of
the operators for functions belonging to Lipschitz spaces.

Lemma 2.4. Let 0 < q < p ≤ 1 and m ∈ N. We have

(i) L̃p,qm (1;u) = 1,

(ii) L̃p,qm (t;u) = u,

(iii) L̃p,qm (t2;u) = u
(2−p)([m]p,qu+1)[m]p,q

+ qu
[m]p,q

+ qu2.

Proof. We have

(i)

L̃p,qm (1;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

= 1.
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(ii)

L̃p,qm (t;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

[l]p,q
[m]p,q

= 2−[m]p,qu
∞∑
l=1

([m]p,qu)([m]p,qu+ 1)l−1
[l]p,q[l − 1]p,q!2l

[l]p,q
[m]p,q

= 2−[m]p,qu−1u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

= u.

(iii)

L̃p,qm (t2;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

[l]2p,q
[m]2p,q

= 2−[m]p,qu
∞∑
l=1

([m]p,qu)([m]p,qu+ 1)l−1
[l]p,q[l − 1]p,q!2l

[l]2p,q
[m]2p,q

= 2−[m]p,quu
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l+1

[l + 1]p,q
[m]p,q

= 2−[m]p,qu−1u

∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

[pl + q[l]p,q]

[m]p,q

=
2−[m]p,qu−1

[m]p,q
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

pl

+
2−[m]p,qu−1

[m]p,q
qu
∞∑
l=0

([m]p,qu+ 1)l[l]p,q
[l]p,q!2l

= I1 + I2(Say).

After solving I1 and I2, we get

I1 =
2−[m]p,qu−1

[m]p,q
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

pl

=
u

(2− p)([m]p,qu+1)[m]p,q
.

I2 =
2−[m]p,qu−1

[m]p,q
qu

∞∑
l=0

([m]p,qu+ 1)l[l]p,q
[l]p,q!2l

=
2−[m]p,qu−1

[m]p,q
qu
∞∑
l=1

([m]p,qu+ 1)([m]p,qu+ 2)l−1[l]p,q
[l]p,q[l − 1]p,q!2l

=
2−[m]p,qu−2([m]p,qu+ 1)qu

[n]p,q

∞∑
l=0

([m]p,qu+ 2)l
[l]p,q!2l

=
qu

[m]p,q
+ qu2.

On adding I1and I2, we get

L̃p,qm (t2;u) =
u

(2− p)([m]p,qu+1)[m]p,q
+

qu

[m]p,q
+ qu2.

�
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Corollary 2.5. Using Lemma 2.4, we get the following central moments.

L̃p,qn (t− u;u) = 0

L̃p,qn ((t− u)2;u) = u
(2−p)([m]p,qu+1)[m]p,q

+ qu
[m]p,q

+ qu2 − u2 = δm(u) (say).

Remark 2.6. One can observe that

lim
m→∞

[m]p,q =


0, p,q ∈ (0, 1),

1
1−q , p = 1 and q ∈ (0, 1).

Thus for approximation processes, one need to choose convergent sequences (pm) and (qm) such
that for each n, 0 < qm < pm ≤ 1 and pm, qm → 1 so that [m]pm,qm →∞ as m→∞.

Theorem 2.7. Let f ∈ CB [0,∞) and qm ∈ (0, 1), pm ∈ (qm, 1] such that qm → 1, pm → 1, as
m→∞. Then for each u ∈ [0,∞) we have

lim
n→∞

L̃pm,qmm (f ;u) = f(u).

Proof. By Korovkin’s theorem it is enough to show that

lim
m→∞

L̃pm,qmm (tm;u) = um, m = 0, 1, 2.

By Lemma 2.4, it is clear that

lim
m→∞

L̃pm,qmm (1;u) = 1

lim
m→∞

L̃pm,qmm (1;u) = u

and

lim
m→∞

L̃pm,qmm (t2;u) = lim
m→∞

[
u

(2− pm)([m]pm,qmu+1)[m]pm,qm
+

qmu

[m]pm,qm
+ qmu

2

]

= u2.

This completes the proof. �

3. Direct results

Let CB [0,∞) be the space of real-valued continuous and bounded functions f defined on
the interval [0,∞). The norm ‖ · ‖ on the space CB [0,∞) is given by

‖ f ‖= sup
0≤x<∞

| f(x) | .

Let us consider the K-functional as:

K2(f, δ) = inf
s∈W 2

{‖ f − s ‖ +δ ‖ s
′′
‖},

where δ > 0 and W 2 = {s ∈ CB [0,∞) : s
′
, s
′′ ∈ CB [0,∞)}.

Then as in ([4], p. 177, Theorem 2.4), there euists an absolute constant C > 0 such that

K2(f, δ) ≤ Cω2(f,
√
δ). (3.1)
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Second order modulus of smoothness of f ∈ CB [0,∞) is as follows

ω2(f,
√
δ) = sup

0<h≤
√
δ

sup
u∈[0,∞)

| f(u+ 2h)− 2f(u+ h) + f(u) | .

The usual modulus of continuity of f ∈ CB [0,∞) is defined by

ω(f, δ) = sup
0<h≤δ

sup
u∈[0,∞)

| f(u+ h)− f(u) | .

Theorem 3.1. Let f ∈ CB [0,∞), p, q ∈ (0, 1) such that 0 < q < p ≤ 1. Then for every
u ∈ [0,∞) we have

| L̃p,qm (f ;u)− f(u) |≤ Cω2(f ; δm(u)),

where

δ2m(u) =
u

(2− p)([m]p,qu+1)[m]p,q
+

qu

[m]p,q
+ qu2 − u2.

Proof. Let s ∈ W2. Then from Taylor’s expansion, we get

s(t) = s(u) + s′(u)(t− u) +

∫ t

u

(t− u)s′′(u)du, t ∈ [0,A], A > 0.

Now by Corollary 2.5, we have

L̃p,qm (s;u) = s(u) + L̃p,qm

(∫ t

u

(t− u)s′′(u)du;u

)
.

|L̃p,qm (s;u)(s;u)− s(u)| ≤ L̃p,qm

(∣∣∣∣∫ t

u

| (t− u) | | s′′(u) | du;u

∣∣∣∣)
≤ L̃p,qm

(
(t− u)2;u

)
‖ s′′ ‖,

hence we get

|L̃p,qm (s;u(s;u)− s(u)| ≤‖ s′′ ‖
(

u

(2− p)([m]p,qu+1)[m]p,q
+

qu

[m]p,q
+ qu2 − u2

)
.

By Lemma 2.3, we have

|L̃p,qm (f ;u)| ≤ 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

∣∣∣∣f ( [l]p,q
[m]p,q

) ∣∣∣∣≤‖ f ‖ .
Thus, we have

|L̃p,qm (f ;u)| ≤ | L̃p,qm ((f − s);u)− (f − s)(u) | +|L̃p,qm (s;u)− s(u)|.

After substituting all values, we get

|L̃p,qm (f ;u)− f(u)| ≤ ‖ f − s ‖ + ‖ s′′ ‖
(

u

(2− p)([m]p,qu+1)[m]p,q
+

qu

[m]p,q
+ qu2 − u2

)
.

By taking the infimum on the right hand side over all s ∈ W2, we get

|L̃p,qm (f ;u)− f(u)| ≤ CK2

(
f, δ2m(u)

)
.

By using the property of K-functional, we have

|L̃p,qm (f ;u)− f(u)| ≤ Cω2 (f, δm(u)) .

This completes the proof. �
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4. Pointwise estimates

Theorem 4.1. Let 0 < α ≤ 1 and Ȩ be any bounded subset of the interval [0,∞). If f ∈
CB [0,∞), is locally Lip(α), i.e., the condition

|f(v)− f(u)| ≤  L|v − u|α, v ∈ Ȩ and u ∈ [0,∞) (4.1)

holds, then, for each u ∈ [0,∞), we have

|L̃p,qm (f ;u)− f(u)| ≤  L
{
δm(u)

α
2 + 2(d(u, Ȩ))α

}
, u ∈ [0,∞)

where  L is a constant depending on α and f and d(u; Ȩ) is the distance between u and Ȩ defined
by

d(u, Ȩ) = inf {|t− u|; t ∈ E} and δm(u) = L̃p,qm ((t− u)2;u).

Proof. Let Ȩ be the closure of Ȩ in [0, 1). Then, there exists a point t0 ∈ Ȩ such that d(u, Ȩ) =
|u− t0|.
Using the triangle inequality, we have

|f(t)− f(u)| ≤ |f(t)− f(t0)|+ |f(t0)− f(u)|.
By using (4.1) we get,

|L̃p,qm (f ;u)− f(u)| ≤ L̃p,qm (|f(t)− f(t0)|;u) + L̃p,qm (|f(u)− f(t0)|;u)

≤  L
{
L̃p,qm (|t− t0|α;u) + (|u− t0|α;u) + |u− t0|α

}
≤  L

{
L̃p,qm (|t− u|α;u) + 2|u− t0|α

}
.

By choosing p = 2
α and q = 2

2−α , we get 1
p + 1

q = 1. Then by using Hölder’s inequality we get

|L̃p,qm (f ;u)− f(u)| ≤  L
{
L̃p,qm (|t− u|αp;u)

1
p [L̃p,qm (1q;u)]

1
q + 2(d(u, Ȩ))α

}
≤  L

{
L̃p,qm

(
((t− u)2;u)

)α
2 + 2(d(u, Ȩ))α

}
≤  L

{
δm(u)

α
2 + 2(d(u, Ȩ))α

}
.

Hence the proof is completed. �

Now, we recall local approximation in terms of α order Lipschitz-type maximal function
given by Lenze [16] as

ω̃α(f ;u) = sup
t6=u,t∈(0,∞)

|f(t)− f(u)|
|t− u|α

, u ∈ [0,∞) and α ∈ (0, 1]. (4.2)

Then we get the next result

Theorem 4.2. Let f ∈ CB [0,∞) and α ∈ (0, 1]. Then, for all u ∈ [0,∞), we have

|L̃pm,qmm (f ;u)− f(u)| ≤ ω̃α(f ;u)
(
δm(u)

)α
2

,

where δm(u) is defined in Corollary 2.5.

Proof. We know that

|L̃pm,qmm (f ;u)− f(u)| ≤ L̃pm,qmm (|f(t)− f(u)|;u).

From equation (4.2), we have

|L̃pm,qmm (f ;u)− f(u)| ≤ ω̃α(f ;u)L̃pm,qmm (|t− u|α;u).

From Hölder’s inequality with p = 2
α and q = 2

2−α , we have

|L̃pm,qmm (f ;u)− f(u)| ≤ ω̃α(f ;u)
(
L̃pm,qmm (|t− u|2;u)

)α
2 ,
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which proves the desired result. �

5. Weighted approximation by L̃p,qm

In this section we shall discuss weighted approximation theorems for the operators L̃p,qm
on the interval [0,∞).

Theorem 5.1 (cf. [5, 15]). Let (Tm) be the sequence of linear positive operators from Cu2 [0,∞)
to Bu2 [0,∞) satisfy

lim
m→∞

‖ Tmκi − κi ‖u2= 0, i = 0, 1, 2.

Then for any function f ∈ C∗u2 [0,∞)

lim
m→∞

‖ Tmf − f ‖u2= 0.

Theorem 5.2 (cf. [6, 7]). Let (qm) and (pm) be two sequences such that 0 < qm < pm ≤ 1, for
all n and both converge to 1. Then for each function f ∈ C∗u2 [0,∞), we get

lim
m→∞

‖ Lpm,qmm f − f ‖u2= 0.

Proof. By Theorem 5.1, it is enough to show

lim
m→∞

‖ L̃pm,qmm κi − κi ‖u2 = 0, i = 0, 1, 2. (5.1)

By Lemma 2.4 (i) and (ii), it is clear that

‖ Lpm,qmm (1;u)− 1 ‖u2 = 0

‖ L̃pm,qmm (t;u)− u ‖u2 = 0

and by Lemma 2.4 (iii), we have

‖ L̃pm,qmm (t2;u)− u2 ‖2 = sup
u∈[0,∞)

(
1

(2−pm)([m]pm,qmu+1)[m]pm,qm
+ qm

[m]pm,qm

)
u+ (qm − 1)u2

1 + u2

≤
(

1

(2− pm)[m]pm,qm
+

qm
[m]pm,qm

)
+ (qm − 1).

Last inequality means that (5.1) holds for i = 2. By Theorem 5.1, the proof is completed. �

Theorem 5.3. Let qm ∈ (0, 1), pm ∈ (q, 1] such that qm → 1, pm → 1 as m → ∞. Let
f ∈ C∗u2 [0,∞), and its modulus of continuity ωd+1(f ; δ) be defined on [0, d+ 1] ⊂ [0,∞). Then,
we have

|L̃pm,qmm (f ;u)− f(u)‖C[0,d] ≤ 6Mf (1 + d2)δm(d) + 2ωd+1(f ;
√
δm(d)),

where δm(d) = L̃p,qm ((t− u)2;u) = u
(2−p)([m]p,qu+1)[m]p,q

+ qu
[m]p,q

+ qu2 − u2.

Proof. From ([10] p. 378), for u ∈ [0, d] and t ∈ [0,∞), we have

|f(t)− f(u)| ≤ 6Mf (1 + d2)(t− u)2 +

(
1 +
|t− u|
δ

)
ωd+1(f ; δ).

Applying L̃p,qm both the sides, we have

|L̃p,qm (f ;u)− f(u)| ≤ 6Mf (1 + d2)L̃p,qm ((t− u)2;u) +

(
1 +

L̃p,qm (|t− u|;u)

δ

)
ωd+1(f ; δ).

Applying Cauchy-Schwarz inequality,for u ∈ [0, d] and t ≥ 0, we get

|L̃p,qm (f ;u)− f(u)| ≤ L̃p,qm (|(f ;u)− f(u)|;u)

≤ 6Mf (1 + d2)L̃p,qm ((t− u)2;u)

+ ωd+1(f ; δ)

(
1 +

1

δ
L̃p,qm

(
(t− u)2;u

) 1
2

)
.
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Thus, from Lemma 2.4, for u ∈ [0, d], we get

|L̃p,qm (f ;u)− f(u)| ≤ 6Mf (1 + d2)δm(d) + ωd+1(f ; δ)

(
1 +

√
δm(d)

δ

)
.

By Choosing δ =
√
δm(d), we get the required result. �

Now, we prove a theorem to approximate all functions in C∗u2 Such type of results are
given in [8] for locally integrable functions.

Theorem 5.4. Let 0 < qm < pm ≤ 1 such that qm → 1, pm → 1 as m → ∞. Then for each
function f ∈ C∗u2 [0,∞), and α > 1

lim
m→∞

sup
u∈[0,∞)

| L̃pm,qmm (f ;u)− f(u) |
(1 + u2)α

= 0.

Proof. Let for any fixed u0 > 0,

sup
u∈[0,∞)

| L̃pm,qmm (f ;u)− f(u) |
(1 + u2)α

≤ sup
u≤u0

| L̃pm,qmm (f ;u)− f(u) |
(1 + u2)α

+ sup
u≥u0

| L̃pm,qmm (f ;u)− f(u) |
(1 + u2)α

≤ ‖ Lpm,qmm (f)− f ‖[c0,u0] + ‖ f ‖u2 sup
u≤u0

| L̃pm,qmm (1 + t2;u) |
(1 + u2)α

+ sup
u≥u0

| f(u) |
(1 + u2)α

. (5.2)

Since, | f(u) |≤Mf (1 + u2) we have,

sup
u≥u0

| f(u) |
(1 + u2)α

≤ sup
u≥u0

Mf

(1 + u2)α−1
≤ Mf

(1 + u2)α−1
.

Let ε > 0, and let us choose u0 large then we have

Mf

(1 + u02)α−1
<
ε

3
(5.3)

and in view of (2.4), we get,

‖ f ‖u2 lim
m→∞

| L̃pm,qmm (1 + t2;u) |
(1 + u2)α

= ‖ f ‖u2

1 + u2

(1 + u2)α

≤ ‖ f ‖u2

(1 + u2)α−1

≤ ‖ f ‖u2

(1 + u02)α−1

≤ ε

3
. (5.4)

By using Theorem 5.3, the first term of inequality (5.2) becomes

‖ L̃pm,qmm (f)− f ‖[c0,u0]<
ε

3
, as m→∞. (5.5)

Hence we get the required proof by combining (5.3)-(5.5)

sup
u∈[0,∞)

| L̃pm,qmm (f ;u)− f(u) |
(1 + u2)α

< ε.

�
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