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ABSTRACT:  We are aware of four exact algorithms for the undirected UPP. The first, due to 

Christofides, Campos, Corberan, and Mota (1981) uses branch-and-bound combined with 

Lagrangean relaxation. Corberan and Sanchis (1994) described an integer linear programming 

formulation solved using a branch-and-cut algorithm in which the separation problems are solved 

visually. Letchford (1996) added so-called path-bridge and Laporte (2000) introduced a new and 

more compact formulation which, when solved by branch-and-cut, yields excellent results on test 

problems. In what follows, we summarize some of the Ghiani and Laporte results.   
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INTRODUCTION: Let 𝐶𝑘(k = 1, …., p) be the 𝑘𝑡ℎ  connected component of the subgraph of          

G = (V, E) induced by the set R of required edges. Let 𝑉𝑅 be the set of vertices 𝜈𝑖 such that an 

edges (𝜈𝑖, 𝜈𝑗) exists in R, and 𝑉𝑘 ⊆ 𝑉𝑅 (i = 1,…., p) the vertex set of 𝐶𝑘. Denote by 𝑐𝑒 the cost of 

edge e ∈ R. A vertex 𝜈𝑖 ∈ R is R-odd (R-even) if and only if an odd (even) number of edges of       

R  are incident to 𝜈𝑖. Christofides et al. (1981) proposed the following graph reduction. 

Step 1. Add to 𝐺𝑅 = (𝑉𝑅, 𝑅) an edge between every pair of vertices of 𝑉𝑅 having a cost equal to 

that of the corresponding shortest chain on G.  

Step 2. Delete one of two parallel edges if they have the same cost, and all edges (𝜈𝑖, 𝜈𝑗) ∉ R such 

that 𝐶𝑖𝑗 = 𝐶𝑖𝑘 +  𝐶𝑘𝑗 for the some 𝜈𝑘. 

             We now recall the Corberan and Sanchis (1994) formulation. Given S ⊂ V, δ(S) be the set 

of edges of E with one extremity in S and one in V/S, If S = {𝜈}, then we write δ (𝜈) instead of 
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δ (S). Let 𝑥𝑒 = 𝑥𝑖𝑗 represent the number of additional (dead headed) copies of edge e = (𝜈𝑖, 𝜈𝑗) that 

must be added to G to make it Eulerian. The formulation is given: 

(UUPP1)   

                     𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐶𝑒𝑥𝑒

𝑒∈𝐸

                                                                                                                  (1) 

Subject to  

∑ 𝑥𝑒 = 0 𝑚𝑜𝑑(2)                     (𝑖𝑓 

𝒆∈δ(𝜈) 

𝜈 ∈  𝑉𝑅 𝑖𝑠 𝑅 − 𝑒𝑣𝑒𝑛)                                                             (2) 

∑ 𝑥𝑒 = 1 𝑚𝑜𝑑(2)                     (𝑖𝑓 

𝒆∈δ(𝜈) 

𝜈 ∈  𝑉𝑅 𝑖𝑠 𝑅 − odd)                                                               (3) 

∑ 𝑥𝑒 ≥ 2                                     (𝑆 

𝒆∈δ(𝜈) 

=  ⋃ 𝑉𝑘,

𝑘∈𝑃

  𝑃 ⊂ {1, … . , 𝑝}, 𝑝 ≠ ∅)                                        (4) 

  𝑥𝑒 ≥ 0 odd integer                       (e ∈ 𝐸)                                             (5) 

In this formulation, constraints (2) and (3) force each vertex to have an even degree, while 

constraints (4) ensure connectivity. In what follows, we recall some dominance relations that will 

enable a reformulation of the problem without the non-linear constraints (2) and (3). 

Dominance relation 1.                (Christofides et al.., 1981) 

Every optimal UPP solution satisfies the relations 

𝑥𝑒 ≤ 1     (if e∈ 𝑅)                                                                                                                       (6) 

𝑥𝑒 ≤ 2     (if e ∈ 𝐸\𝑅)                                                                                                                  (7) 

Dominance relation 2.                 (Corberan and Sanchis, 1994) 

Every optimal solution satisfies 

𝑥𝑒 ≤ 1     (if e = (𝜈𝑖, 𝜈𝑗), 𝜈𝑖, 𝜈𝑗  belong to the same component 𝐶𝑘).                                            (8) 

Dominance relation 3.                   (Ghiani and Laporte, 2000). 
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Let 𝑥(𝑒(1)), 𝑥(𝑒(2)),…, 𝑥(𝑒(ℓ)) be the variables associated with the edges 𝑒(1), 𝑒(2),…, 𝑒(ℓ) 

having exactly one end vertex in a given component 𝐶𝑘 and exactly one end vertex in another 

given component 𝐶ℎ. Then, in an optimal solution, only the variable x(𝑒(𝑟)) having a cost c(𝑒(𝑟)) 

= min {c(𝑒(1)), c(𝑒(2)), …, c(𝑒(ℓ))} can be equal to 2. 

Now define a 0/1/2 edge as an edge e for which 𝑥𝑒 can be at most equal to 2 in (UUPP1), and a 

0/1 edge as an edge e for which 𝑥𝑒 can be at most equal to 1. Denote by 𝐸012 and 𝐸01 the 

corresponding edge sets.  

Dominance relation 4.   (Ghiani and Laporte, 2000) 

Let 𝐺𝐶
∗ = (𝑉𝐶 , 𝐸𝐶) be an auxiliary graph having a vertex 𝜐𝑖

′ for each component 𝐶𝑖 and, for each pair 

of components 𝐶𝑖 and 𝐶𝑗. Then, in any optimal (UUPP1) solution, the only 0/1/2 edges belong to 

a Minimum Spanning Tree on 𝐺𝐶
∗ (denoted by M S𝑇𝐶). 

A New Binary Formulation Using Only Edge Variables: Using Dominance relation 4, 

formulation (UUPP1) can now be rewritten by replacing each 0/1/2 edge e belonging to a given   

M S𝑇𝐶 by two parallel 0/1 edge 𝑒′ and 𝑒′′. Denote by 𝐸′(𝐸′′) the sets of edges 𝑒′(𝑒′′),                        

and let �̅� = 𝐸01 ∪ 𝐸′ ∪ 𝐸′′. In formulation (UUPP1), constraints (13) are simply replaced by  

                                   𝑥𝑒 = 0 𝑜𝑟 1                                    (e ∈  �̅�)                                               (9) 

Ghiani and Laporte (2000) also replace the modulo relations (2) and (3) by the following 

constraints called cocircuit inequalities by Barahona and Gr�̈�tschel (1986). 

∑ 𝑥𝑒  ≥ 

𝒆∈δ(𝜈)\F

∑ 𝑥𝑒

𝒆∈F

− |𝐹| + 1(𝜐 ∈ 𝑉, 𝐹 ⊆ δ(𝜈),  

                                                     |𝐹| is odd if 𝜐 is R-even, |F| is even if 𝜐 is R-odd.                 (10) 

Thus, the new undirected UPP formulation, called (UUPP2) and defined by (1), (10), (4) and (9),  

is linear in the 0/1 𝑥𝑒 variables. Constraints (10) can be generalized to any non-empty                    

subset S of V: 

∑ 𝑥𝑒  ≥ 

𝒆∈δ(𝜈)\F

∑ 𝑥𝑒

𝒆∈F

− |𝐹| + 1(𝐹 ⊆ δ(𝑆),  
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                                                    |𝐹| is odd if S is R-even, |F| is even if S is R-odd.                    (11) 

Which are valid inequalities for (UUPP2). If S is R-odd and F= ∅, constraints (19) reduce to the 

known R-odd inequalities (Corberan and Sanchis, 1994) 

∑ 𝑥𝑒  ≥ 1

𝒆∈δ(𝑆)

 

If S is R-even and F={𝑒𝑏}, they reduce to the R-even inequalities introduced by Ghiani and Laporte 

(2000): 

                                                                       ∑ 𝑥𝑒  ≥ 𝑥𝑒𝑏

𝒆∈δ(𝑆)/{𝑒𝑏}

                                                            (13) 

Ghiani and Laporte (2000) have shown that constraints (11) are facet inducing for (UUPP2). They 

have also developed a branch-and-cut algorithm in which connectivity constraints (4) and 

generalized cocircuit inequalities (11) are dynamically generated. In practice, it is sufficient to 

generate constraints of type (10), (12) and (13) to identify a feasible UPP solution.   

Computational Results:  The branch-and-cut algorithm developed by Ghaiani and Laporte (2000) 

was tested on several sets on randomly generated instances generated in the same manner as those 

of Hertz, Laporte and Nanchen-hugo (1999). Instances defined on random planar graphs with         

|V | = 50, 100, …, 350 were solved to optimality with very few nodes in the branch-and -cut tree 

and within reasonable computing times. For example, the 350 vertex instances required an average 

of 22.4 nodes and 332.5 seconds on a PC with a Pentium processor at 90 MHz with 16 Mbytes 

Ram. At the root of the search tree, the average ratio of the lower bound over the optimum almost 

always exceeded 0.997. R-even inequalities played a key role in the problem resolution. These 

results outperform those reported by Christofides et al. (1981), Corberan and Sanchis (1994) and 

Letchforg (1996) who solved much smaller randomly generated instances (|V | ≤ 84) with far more 

branching.  

Conclusions: Arc routing problems lie at the heart of several real-life applications and their 

resolution by good heuristics or exact algorithms can translate into substantial savings. Over the 

past few years, there has been a revived interest in the study of these problems. In the area of 

heuristics, specialized procedures such as SHORTEN, DROP-ADD, and 2-OPT (Hertz, Laporte 

and Nanchen-Hugo, 1999) have been proposed for the undirected UPP. These can also be used for 
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the solution of constrained versions of the UPP such as the CARP (Hertz, Laporte and Mittaz, 

2000) or adopted to the directed case (Mittaz, 1999). In addition, powerful local search out: tabu 

search and variable neighborhood search. In the field of exact algorithms, branch-and-cut appears 

to be the most promising approach. In the past two decades this method has known a formidable 

growth and considerable success on related problems such as the TSP (see Padberg and Rinaldi, 

1991; Grotschel and Holland, 1991; Junger, Reinelt and Rinaldi, 1995). Recent advances made by 

Corberan and Sanchis (1994), Letchford (1996) and Ghiani and Laporte (2000) indicate that this 

method also holds much potential for arc routing problems.  

In coming years, we expect to see the development of similar heuristics and branch-and -cut 

algorithms to more intricate and realistic arc routing problems incorporating a wider variety of 

practical constraints. Extensions to the area of locating-routing problems in arc routing context 

(see Ghiani and Laporte, 1999) are also to be expected. 
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