ON COMMUTATIVITY OF GENERALIZED PERIODIC RINGS

Dr. Palle Prathapa Reddy Assistant Professor Department of Mathematics Gopalan College of Engineering and Management Bangalore, Karnataka <u>prathap_maths@gopalancolleges.com</u> Abstract

Let R be a ring N the set of nilpotent elements of R and C the center of R. A ring R is called periodic if for each $x \in R$, there exist distinct positive integers m and n such that $x^n = x^m$. R is called a generalized periodic ring if for every $x \in R \setminus (N \cup C)$, there exist distinct positive integers m, n of opposite parity such that $x^n = x^m \in N \cap C$. In this paper we prove that every nonzero idempotent e in a 2-torsion free generalized periodic ring R is central and if $a \in N$ then $ea \in C$. Using this result, we show that R is commutative.

Key words: Commutativity, Periodic ring, generalized periodic ring, Centre of a ring.

1 Introduction

Throughout this paper *R* will denote a ring, *N* the set of nilpotent, *C* the centre, *J* the Jacobson radical and *C*(*R*) the commutator ideal of *R*. The ring *R* is called generalized periodic if for every $x \in R \setminus (N \cup C)$, there exist distinct positive integers *m*, *n* of opposite parity such that $x^n = x^m \in N \cap C$. Bell [2] proved that a generalized periodic ring always has the set *N* of nilpotent forming an ideal in *R*. In [1] Bell and yaqub proved that a generalized Boolean ring with central idempotents must be either nil or commutative. In this direction, we prove that all the idempotent elements in a 2-torsion free generalized periodic

ring is central.

We need the following lemmas of [2] to prove the main results.

Lemma 1: In a generalized periodic ring *R*, we have

(i)
$$C(R) \subseteq J$$

(ii)
$$J \subseteq N \cup C$$

(iii)
$$N \subseteq J$$

Lemma 2: Let R be a generalized periodic ring. Then R/N is commutative and

hence $C(R) \subseteq N$.

Lemma 3: Let *R* be a generalized periodic ring and suppose $N \subseteq C$. Then *R* is commutative.

Lemma 4: If R is a 2-torsion free generalized periodic ring then every nonzero idempotent is central. **Proof:** Suppose the idempotent e of R is not central.

Since R is a generalized periodic ring, $e \notin (N \cup C)$ and $-e \notin (N \cup C)$.

Hence $(-e)^n - (-e)^m \in (N \cup C)$, where *m*, *n* are opposite parity.

So
$$(-e)^n - (-e)^m \in C$$
.

If *n*, *m* are either even or odd positive integers, then $0 \in C$.

Otherwise $-2e \text{ or } 2e \in C$.

That is, [2e, x] = 0 or 2[e, x] = 0, for every $x \in R$.

Since *R* is a 2-torsion free generalized periodic ring, [e, x] = 0.

So $e \in C$, a contradiction.

This contradiction proves that nonzero idempotents are central.

Lemma 5: Let *R* be a generalized periodic ring. If *e* is any nonzero idempotent in *R* and $a \in N$, then $ea \in C$.

Proof: The proof is by contradiction. Suppose the lemma is false. Let $a_0 \in N$ and $ea_0 \notin C$. (1) Since $e \in C$ (by lemma 4.3.9) and $a_0 \in N$, we have ea_0 is nilpotent. Let $(ea_0)^{\alpha} \in C$, $\forall \alpha \ge \alpha_0$, α_0 minimal. (2)Since $ea_0 \notin C$ we have $\alpha_0 > 1$. Let $a = (ea_0)^{a_0-1}$. Then $a = (ea_0)^{a_0-1} \in N$, $a \notin C$ (by the minimality of α_0), $a^{\kappa} \in C, \forall k \ge 2$. Since $e \in C$, and $e^2 = e \neq 0$, $e \notin N$. (3)Equation 4.3.15 implies that $e + a \notin C$ and $e + a \notin N$ and hence $(e+a)^{m'} - (e+a)^{n'} \in C$, where m', n' are of opposite parity. (4) Combining (3) and (4) we see that $(m'-n)ea \in C$ where m'-n' is an odd integer. (5) Equation (3) also implies that (-e + a) is not in $N \cup C$. So $(e + a)^{m''} - (e + a)^{n''} \in N$, where n'', m'' are of opposite parity. (6) Combining (3) and (6), we see that $(-e)^{m''} - (-e)^{n''} \in N$, (7)and hence $2e \in N$, since n'', m'' are of opposite parity. Therefore $(2e)^r = 0$, $r \in Z^+$ and thus $2^r e = 0$, which implies that $2^r ea \in C, r \in Z^+$. (8) Now combining (5) and (8) and since $(2^r, m' - n') = 1$, we see that $ea \in C$. Hence by (3), $a = ea \in C$, which contradicts (3). This contradiction proves the lemma. **Theorem 6:** Suppose *R* is a generalized periodic ring containing an idempotent element which is not a zero divisor. Then R is commutative. **Proof:** Let e be an idempotent element in *R*. Let $a \in N$. By lemma 5, we have $ea \in C$ and hence [ea, x] = 0for all $x \in R$. This implies that eax - xea = 0. Since idempotents are central, so that eax - exa = 0. Therefore e[a, x] = 0. (9) Since *e* is not a zero divisor, [a, x] = 0, $\forall x \in R$, $\forall a \in N$. By lemma 3 and a well-known theorem of Herstein [4], it follows that R is commutative and the theorem is proved. **Theorem 7:** Suppose R is a generalized periodic ring, N the set of nilpotent, and E the set of idempotents of *R*. Suppose every commutator [a, b] = ab - ba with $a \in N$ and $b \in N$ is potent. Then *R* is commutative. **Proof:** By lemma 2, $C(R) \subseteq N$ and hence $[a, b] \in N$. By hypothesis $[a, b] = [a, b]^q = [a, b]^{1+\lambda(q-1)}$ for all positive integer λ . Hence [a, b] = 0, Since $[a, b] \in N$. Thus [a, b] = 0 for all $a, b \in N$ that is N is commutative. (10)We also have $x - x^{n-m+1} \in N$. We proved that for every x in R, we have $x - x^k \in N$, for some $k \ge 1$ or $x \in C$ ($x \in R$). (11)Combining equation (10), (11) we see that for all x, y in R, $[x - x^k, y - y^r] = 0$ for some k > 1, r > 1. (12)As is well known $R \cong a$ subdirect sum of subdirectly irreducible rings R_i . (13)

Dr. Palle Prathapa Reddy et al 216-219

We now see the structure of each of this subdirect summands R_i to prove their commutativity. Case 1: R_i does not have an identity.

Let $\sigma: R \to R_i$ be the natural homomorphism of R onto R_i and let $\sigma: x \to x_i$. Let N_i and C_i denote the set of nilpotents and the center of R_i respectively. We claim that

$$R_i \subseteq N_i \cup C_i$$
.

(14)

Then clearly $x \notin N$ and $x \notin C$ and hence $x^n - x^m \in N$,

Suppose not, let $x \in R_i$, $x_i \notin N_i$, $x_i \notin C_i$, and let $\sigma: x \rightarrow x_i$ ($x \in R$).

for some positive integers *n* and *m*, $n \neq m$.

This implies that $x^q = x^q e$ for some positive integer q and some idempotent e in R. In a generalized periodic ring idempotents are central and hence $x^q = x^q e$, $e^2 = e \in C$. This implies in R_i that

$$x_i^q = x_i^q e_i, \ e_i^2 = e_i \in C_i.$$
(15)

Since e_i is a central idempotent in the subdirectly irreducible ring R_i and R_i does not have identity, we have $e_i = 0$. Hence $x_i^q = 0$ a contradiction, since x_i is not nilpotent.

This contradiction proves $R_i \subseteq N_i \cup C_i$.

From (11) we see that $[x_i - x_i^k, y_i - y_i^r] = 0, k \ge 1, r \ge 1, x_i, y_i \in R_i$. (16) Now by a trivial minimality argument, it is easily verified that 4.3.28 implies

 $[a_i, b_i] = 0, \text{ for all nilpotents } a_i, b_i \text{ in } R_i, \tag{17}$

i.e., N_i is Commutative.

Combining (14) and (17), we see that R_i is commutative.

<u>**Case 2**</u>: R_i has an identity.

Since the homomorphic image of a generalized periodic ring is also generalized periodic, it follows that R_i is commutative by corollary 4 of [2].

Since each R_i in the subdirect sum representation 4.3.25 is commutative therefore the ground ring R itself is also commutative and the theorem is proved.

We consider the following two examples, which show that neither centrality of idempotents nor commutativity of nilpotent elements implies commutativity of a generalized periodic ring. We note that, in each case, central elements are zero divisors.

Example 4.3.13: Let

$$R = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \setminus 0, 1 \in GF(2) \right\}.$$

It is easily verified that R is a generalized periodic ring with commuting nilpotent but its idempotents are not in the centre.

Example 4.3.14: Let

$$R = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \setminus a, b, c \in GF(3) \right\}.$$

It can be seen that R is a generalized periodic ring with central idempotents but its nilpotent do not commute with each other.

References

[1] H. E. Bell and A. Yaqub, Generalized periodic rings and generalized boolean rings,

Int. J. Math. Math. Sci. 26 (2001), no. 8, 457-465.

[2] H. E. Bell and A. Yaqub, Generalized periodic rings, Int. J. Math. Math. Sci. 19

(1996), no. 1, 8792.

- [3] M. Chacron, On a theorem of Herstein, Canad. J. Math. 21 (1969), 13481353.
- [4] A note on rings with central nilpotent elements, Proc. Amer. Math. Soc. 5 (1954),620.