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Abstract 

Let R be a ring 𝑁 the set of nilpotent elements of 𝑅 and 𝐶 the center of 𝑅. A ring 𝑅 is called 

periodic if for each 𝑥 ∈ 𝑅, there exist distinct positive integers 𝑚 and 𝑛 such that  𝑥𝑛 = 𝑥𝑚. 𝑅 is called 

a generalized periodic ring if for every 𝑥 ∈ 𝑅\(𝑁 ∪  𝐶), there exist distinct positive integers 𝑚, 𝑛 of 

opposite parity such that 𝑥𝑛 = 𝑥𝑚 ∈ 𝑁 ∩ 𝐶. In this paper we prove that every nonzero idempotent 𝑒 in 

a 2-torsion free generalized periodic ring 𝑅 is central and if 𝑎 ∈ 𝑁 then 𝑒𝑎 ∈ 𝐶. Using this result, we 

show that 𝑅 is commutative. 
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1 Introduction 

Throughout this paper 𝑅 will denote a ring, 𝑁 the set of nilpotent, 𝐶 the centre, 𝐽 the Jacobson radical 

and 𝐶(𝑅) the commutator ideal of 𝑅. The ring 𝑅 is called generalized periodic if for every 𝑥 ∈

𝑅\(𝑁 ∪ 𝐶), there exist distinct positive integers 𝑚, 𝑛 of opposite parity such that 𝑥𝑛 = 𝑥𝑚 ∈ 𝑁 ∩ 𝐶. 

Bell [2] proved that a generalized periodic ring always has the set 𝑁 of nilpotent forming an ideal in 

𝑅. In [1] Bell and yaqub proved that a generalized Boolean ring with central idempotents must be 

either nil or commutative. In this direction, we prove that all the idempotent elements in a 2-torsion 

free generalized periodic 

ring is central. 

We need the following lemmas of [2] to prove the main results. 

Lemma 1: In a generalized periodic ring R, we have  

(i) C(R)  J  

(ii) J   N  C 

(iii) N  J 

Lemma 2: Let 𝑅 be a generalized periodic ring. Then 𝑅/𝑁 is commutative and 

hence 𝐶(𝑅)  ⊆  𝑁. 

Lemma 3: Let 𝑅 be a generalized periodic ring and suppose 𝑁 ⊆ 𝐶. Then 𝑅 is commutative. 

Lemma 4: If 𝑅 is a 2-torsion free generalized periodic ring then every nonzero idempotent is central. 

Proof: Suppose the idempotent e of 𝑅 is not central. 

Since R is a generalized periodic ring, e  (N  C) and -e  (N  C).  

Hence (–e)n – (-e)m  (N  C), where m, n are opposite parity. 

So (–e)n – (–e)m  C. 

If n, m are either even or odd positive integers, then 0  C. 

Otherwise –2e or 2e  C.  

That is, [2e, x] =0 or 2[e, x] = 0, for every x R. 

Since R is a 2-torsion free generalized periodic ring, [e, x] = 0. 

So e  C, a contradiction. 

This contradiction proves that nonzero idempotents are central.               

Lemma 5: Let 𝑅 be a generalized periodic ring. If 𝑒 is any nonzero idempotent in 𝑅 and 𝑎  𝑁, then 

𝑒𝑎  𝐶. 
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Proof: The proof is by contradiction. 

Suppose the lemma is false. 

 Let a0  N and ea0  C.                                                                         (1) 

Since e  C (by lemma 4.3.9) and a0N, we have ea0 is nilpotent. 

Let (ea0)  C,    0, 0 minimal.                                                    (2) 

Since ea0  C we have 0 > 1. Let a = ( ) 1

0
0 −a

ea . 

Then a = ( ) 1

0
0 −a

ea  N, a  C (by the minimality of 0), 

 aK
  C,  k  2. Since  

e C, and e2 = e  0, e  N.                                                                   (3) 

Equation 4.3.15 implies that e + a  C and e + a  N and hence  

 (e+a)m – (e+a)n C, where m, n are of opposite parity.              (4) 

Combining (3) and (4) we see that  

              (m – n)ea  C  where m – n is an odd integer.                     (5)  

Equation (3) also implies that (–e + a) is not in N  C. 

So (e + a) m – (e + a)n N, where n, m are of opposite parity.        (6) 

Combining (3) and (6), we see that (–e) m– (–e) n N,                         (7) 

and hence 2e N, since  n, m are of opposite parity.  

Therefore (2e)r = 0, r  Z+ and thus 2re = 0, which implies that  

2rea  C, rZ+.                                                    (8)                       

Now combining (5) and (8) and since (2r, m – n) = 1,  

we see that ea  C. Hence by (3), a = ea  C, which contradicts (3).  

This contradiction proves the lemma.       

Theorem 6: Suppose R is a generalized periodic ring containing an idempotent element which is not a 

zero divisor. Then R is commutative. 

Proof: Let e be an idempotent element in R. 

Let a  N. By lemma 5, we have ea  C and hence [ea, x] = 0  

for all x R. This implies that eax - xea = 0. 

Since idempotents are central, so that eax – exa = 0. 

Therefore e[a, x] = 0.                                                                              (9) 

Since e is not a zero divisor, [a, x] = 0,  x  R,  a N. 

By lemma 3 and a well-known theorem of Herstein [4], it follows that R is commutative and the theorem 

is proved.                             

Theorem 7: Suppose R is a generalized periodic ring, N the set of nilpotent, and E the set of idempotents 

of R. Suppose every commutator [a, b] = ab – ba with a N and b  N is potent. Then R is commutative. 

Proof:  By lemma 2, C(R)  N and hence [a, b]  N.  

By hypothesis [a, b] = [a, b]q = [a, b]1+(q-1) for all positive integer . 

Hence [a, b] = 0, Since [a, b]  N. 

Thus [a, b] = 0 for all a, b  N that is N is commutative.                      (10) 

We also have x – xn-m+1 N. We proved that for every x in R, we have 

              x – xk  N, for some k > 1 or x  C (x  R).                              (11) 

Combining equation (10), (11) we see that for all x, y in R,  

    [x - xk, y - yr] = 0 for some k > 1, r > 1.                                                (12) 

As is well known  

    R  a subdirect sum of subdirectly irreducible rings Ri.                    (13)   
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We now see the structure of each of this subdirect summands Ri to prove their commutativity. 

Case 1: Ri
 does not have an identity. 

Let: R → Ri be the natural homomorphism of R onto Ri and let : x →xi.. 

Let Ni and Ci denote the set of nilpotents and the center of Ri respectively.  

We claim that     

                                  Ri  Ni   Ci.                                                        (14) 

Suppose not, let x  Ri, xi  Ni, xi Ci, and let : x →xi (x  R).  

Then clearly x  N and x C and hence  xn – xm  N,  

for some positive integers n and m, n  m. 

This implies that xq = xqe for some positive integer q and some idempotent e in R. In a generalized 

periodic ring idempotents are central and hence  xq = xqe , e2 = e  C.  

This implies in Ri that  

                               xi
q = xi

qei, ei
2 = ei  Ci.                                                    (15) 

 Since ei is a central idempotent in the subdirectly irreducible ring Ri and Ri does not have identity, we 

have ei = 0. Hence xi
q = 0 a contradiction, since xi is not nilpotent.  

This contradiction proves Ri   Ni  Ci. 

From (11) we see that [xi – xi
k, yi – yi

r] = 0, k  1, r 1, xi, yi  Ri.           (16) 

Now by a trivial minimality argument, it is easily verified that 4.3.28 implies      

             [ai, bi] = 0, for all nilpotents ai, bi in Ri,                                          (17) 

i.e., Ni is Commutative. 

Combining (14) and (17), we see that Ri is commutative.  

Case 2: Ri has an identity. 

        Since the homomorphic image of a generalized periodic ring is also generalized periodic, it follows 

that Ri is commutative by corollary 4 of [2].  

Since each Ri in the subdirect sum representation 4.3.25 is commutative therefore the ground ring R 

itself is also commutative and the theorem is proved.    

We consider the following two examples, which show that neither centrality of idempotents nor 

commutativity of nilpotent elements implies commutativity of a generalized periodic ring. We note that, 

in each case, central elements are zero divisors. 

Example 4.3.13: Let 

                 R = ( )








































21,0\

11

11
,

10

10
,

01

01
,

00

00
GF . 

It is easily verified that R is a generalized periodic ring with commuting nilpotent but its idempotents 

are not in the centre. 

Example 4.3.14: Let 

                R = 

































)3(,,\

000

00

0

GFcbac

ba

. 

It can be seen that R is a generalized periodic ring with central idempotents but its nilpotent do not 

commute with each other. 
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