
Study of Heat Transfer in Porous Fin with Temperature Dependent

Properties

Surjan Singh 1, Priti Sharma 2∗ , and Subrahamanyam Upadhaya 3

1 Department of Mathematics, Eternal Universty, Baru Sahib, Himachal Pradesh, India, Email:surjan.singhbhu@gmail.com

2∗ Corresponding Author: Department of Mathematics, Eternal University, Baru Sahib, Himachal Pradesh, India,

Email:pritisharma251997@gmail.com

3Faculty of BS & H, INA, Ezhimal, India, Email:subabbu16@gmail.com

Abstract

In this paper, mathematical model of heat transfer in a porous fin with internal heat generation, and thermal

conductivity is influenced by both spatial factors and temperature are examined. These two concepts are inte-

grated into the model, which highlighting the originality of the current study. The equations and conditions that

govern the system are expressed in a dimensionless manner. We examine three scenarios for thermal conductivity:

constant, linear, and exponential dependence on temperature. We have utilized three different techniques to solve

the problem, including the Legendre Wavelet Collocation, Finite Difference, and Least Square. Due to the non-

linearity of the presented problem, it is not possible to find an exact analytical solution. In this specific scenario,

we calculate exact solution, which is then compared to these three methods and found to have a good agreement.

The findings and error assessment are displayed in figures and tables. The Legendre wavelet collocation approach

yields high accuracy. The novelty of the research is the implantation of space and temperature dependent thermal

conductivity and solution of a complex nonlinear problem using a hybrid numerical technique, specifically the

collocation method with Legendre Wavelet basis functions.

Keywords: Finite difference, Least square, Porous fin, Legendre Wavelet Collocation Method, Conductivity.

1. Introduction

Mechanical processes produce heat. The important question here is how is how to efficiently disperse this heat into

the surrounding medium. In recent times, fins have gained popularity as efficient tools for dissipating heat into the

surrounding environment due to their uncomplicated structure and ability to facilitate various forms of coupled heat

transmission. Fins are appendages affixed to a primary item to augment the transfer of heat between the primary

object and its environment. Firstly, Harper and Brown [1] presented mathematical analysis for extended surfaces.

This surface was referred as a cooling fin, which later evolved into a fin. Further, Jakob [2] noted that the roots of the

published mathematical analysis of fin can be traced back to early 1789. At that time, experiments were conducted

to demonstrate the thermal conductivity of various metals. The fabrication of rods made from different metals
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was coated with wax, and the resulting melting patterns were observed when the bases of the rods were heated.

The mathematical analysis of temperature variations in rods was published by Fourier [3]. Fins are produced using

metallic materials that possess a high level of thermal conductivity. Aluminum, copper, and stainless steel are the

most often utilized materials. Kundu and Das [4] stated that maximizing the fin efficiency is largely dependent on its

geometry. It is widely known that when the length of a fin rises, the heat transmission rate from the fin reduces, and

the entire surface of the fin may not be used to its full potential. Because of this, designers are constantly working to

discover the optimal fin that will either reduce the fin material’s contribution to heat transfer or optimize the heat

transmission rate over any specific fin region. An analysis of the fin shape and all of its dimensions can determine

the amount of material required to make a fin as small as possible for the desired heat transfer. Alternatively, fin

profile dimensions that fulfill the optimization conditions presented in reference [5]. Multiple fin forms are available

for dissipating heat into the surroundings, such as rectangular, annular, elliptic, parabolic, and pin fins, etc. [6]. The

applications of expanded surfaces are rising in various industries, including air conditioning, refrigeration, internal

combustion engines, etc. [7]. Yunus [8] published a book that specifically examines heat transmission, providing

a clear explanation of fundamental ideas. With the help of mathematical formulations, a novel fin design can be

created, improving the overall quality of the fin, optimizing material costs, and maintaining fin efficiency.

Several researchers have conducted extensive research on various aspects of fins or heat exchangers. Bergman

et al. [9] presented key concepts pertaining to the transfer of heat and mass, establishing a correlation between the

principles of thermodynamics and heat transfer. Khatami and Rahbar [10] investigated the effectiveness of porous

fins by integrating the concepts of the second law of thermodynamics into the governing differential equation. Hatami

and colleagues [11] employed the differential transformation, the least square, and the moment techniques to analyze

temperature variations in a porous fins with attributes that rely on temperature. Cuce and Cuce [12] utilized

the homotopy perturbation method to evaluate the influence of heat transfer, efficiency, and efficacy on a porous

fin. In addition, Venkitesh and Mallick [13] expanded the homotopy perturbation approach to analyze annular

porous fins with two different geometries. Ma et al. [14] utilized the spectral element method to examine the heat

transmission in rotating porous fins with various profiles. Kundu et al. [15] utilized the adomian decomposition

approach to evaluate the performance and optimal design factors for porous fins. In a similar vein, Buonomo et

al. [16] employed the adomian decomposition method to evaluate the influence of convection and radiation on a

porous fin upon temperature. Although, Gireesha and Sowmya [17] utilized the differential transform approach to

analyze the interaction between natural radiation and convection on an inclined extended porous fin. Hatami and

Ganji [18] employed the RK4 method to investigate heat transfer and heat flux in circular convective and radiative

porous fins. Ghasemi et al. [19]utilized the differential transformation method to investigate the heat transmission in

solid and porous longitudinal fins, while considering the influence of temperature-dependent characteristics. Hatami

and Ganji [20] utilized the RK4 technique and the Least Square method to analyze the variations in temperature and

cooling effectiveness of totally wet porous fins. Bhanja et al. [21] utilized the adomian decomposition technique to

examine the fluctuations in temperature, efficiency, and optimal design parameters for rotating porous fins. Hamdan

and Al-Nimr [22] employed an implicit finite difference method to investigate forced convection between two parallel,

isothermal plates with porous fins. Khani and Aziz [23] utilized Bessel function in study state for finding temperature

variation and efficiency in longitudinal fin with space dependent thermal conductivity. Jangid et al. [24] applied RK4
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to determine heat and mass transfer through fluid-flows extended sheets with variable thickness. Kumar et al. [25]

examine the impact of thermal radiation and velocity slip on the melting of magnetic hydrodynamic micro-polar

fluid flow over an exponentially stretching sheet fixed in a porous medium.

Recently, wavelet-weighted residual techniques have been successfully implemented to obtain solutions to the

complicated problems. Singh et al. [26] employed the wavelet collocation technique to examine heat dissipation in

a constantly rotating fin with properties that are temperature and wavelength dependent. Singh et al. [27] applied

wavelet collocation and Galerkin techniques to examine heat transmission in a power-law-type fin. Oguntala et

al. [28] examine the ideal layout, thermal efficiency, and stability of a rectangular fin via utilizing the haar wavelet

collocation technique. Upadhyay et al. [29] employing the finite difference Legendre wavelet collocation technique

along with the Galerkin approach to study heat and moisture transmission in the industrial drying of food goods.

Recently, Kaur and Singh [30] utilized Legendre wavelet collocation and Least square techniques to study convective

and radiative heat transfer in moving fin. The results findings concluded that Legendre wavelet collocation technique

gives high accuracy in comparison to least square.

The objective of this study is to validate a mathematical model of heat transfer in a porous fin with internal heat

generation, and thermal conductivity is influenced by both spatial factors and temperature. In order to achieve our

research target, we utilize three separate methodologies: Legendre Wavelet Collocation, Finite Difference, and Least

Square. In this specific scenario, we calculated a precise solution, compared it to the results of all these approaches,

and saw a strong agreement. The findings and error assessment are displayed in figures and tables.

In existing studies, many numerical methods have been applied by researchers for finding temperature variation

in porous or solid fins with temperature or space-dependent thermal conductivity, but this is the first time influences

of thermal conductivity in both temperate and space are studied with the implementation of the Legendre wavelet

collocation method. This creates interest for science or technology readers and can be applied in industries where

thermal conductivity depends on both temperature and space. The novelty of the research is the implantation of

space and temperature-dependent thermal conductivity and the solution of a complex nonlinear problem using a

hybrid numerical technique, specifically the collocation method with Legendre wavelet basis functions. The present

method has been successfully applied to linear and nonlinear problems.

2. Mathematical Formulation

Figure 1 depicts a graphical illustration of a rectangular porous fin. It has specific measurements, such as a length

L, and a thickness t, is located in an environment, where heat is transferred through convection on both surfaces

at a temperature T∞. Oguntala and Abd-Alhameed [31] make the assumption that the porous media is uniform,

isotropic, and completely surrounded by a single-phase fluid. The solid and fluid are assumed to have constant

physical properties, with the exception of the liquid’s fluctuating density, which may affect the buoyancy term. The

fluid and porous media within the domain are in a state of thermodynamic equilibrium, whereas any surface radiative

transfers and non-Darcian influences are deemed negligible. The temperature change within the fin is restricted to

a one-dimensional distribution, meaning that it varies along its length while remaining constant over time. It is

presumed that the tip of the fin maintains a constant temperature throughout.
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Figure 1: Rectangular porous fin geometry.

The mathematical model governing heat transmission in a one-dimensional fin is determined using Darcy’s model

and the assumption made before. This model is governed by [31], which is as follows:

d

dx
[keff (T )

dT

dx
]− h(T − T∞)

t
− ρcpgβ

′
K(T − T∞)2

tvf
+ qa(T ) = 0, (1)

and the specified boundary conditions (BC) are as follows:

x = L, T = Tb, (2)

x = 0,
dT

dx
= 0, (3)

here, our main emphasis is on the measurement of thermal conductivity and the internal heat generation. These

factors are influenced by temperature and location-specific thermal conductivity [32], which can be described as:

keff (T ) = kaf

(
T − T0
Tb − T∞

)
, (4)

qa(T ) = qa[1 + ψ(T − T∞)], (5)

Keff (T ) = ka(1 + ax), (6)

putting Eqs. (4-5) in Eq. (1), we get Eq. (7) and Eqs. (5-6) into Eq. (1), we get Eq. (8) as described below:

d

dt

[
f

(
T − T0
Tb − T∞

)
dt

dx

]
− h(T − T∞)

kat
− ρcpgβ

′
K(T − T∞)2

katvf
+ qa[1 + ψ(T − T∞)] = 0, (7)

d

dt

[
f(x)

dt

dx

]
− h(T − T∞)

kat
− ρcpgβ

′
K(T − T∞)2

katvf
+ qa[1 + ψ(T − T∞)] = 0, (8)

instigating dimensionless variables and parameters:

X =
x

L
, θ =

T − T∞
Tb − T∞

, Ra =

(
β
′
gTat

3

vf 2

)(
ρcpvf
keff,a

)
, Q =

qvf t

ρcpgβ
′K(Tb − T∞)2

,

M2 =
hL2

keff,at
Da =

k

t2
, Sh =

RaDa
(
L
t

)2
keff,a

, β = λ(Tb − T∞), γ = ψ(Tb − T∞), (9)
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the Eqs. (4), (5) and (6) can be converted into a dimensionless form as follows:

keff (θ) = kaf(θ),

qa(θ) = qa[1 + γ(θ)],

Keff (θ) = ka(1 +BX),

using Eq. (9), the dimensionless form of the model Eqs. (7) and (8) subjected to the boundary conditions Eqs.

(2)-(3) come out to be:

f(θ)
d2θ

dX2
+ f

′
(θ)

(
dθ

dX

)2

−M2θ − Shθ2 + ShQ(1 + γθ) = 0, (10)

f(X)
d2θ

dX2
+ f

′
(X)

(
dθ

dX

)2

−M2θ − Shθ2 + ShQ(1 + γθ) = 0, (11)

the conditions at the boundaries are:

X = 1, θ = 1, (12)

X = 0,
dθ

dX
= 0. (13)

3. Solution of the problem

The concepts of matrix of integration, wavelet collocation method, Least Square method (LSM) and Finite Difference

method (FDM) are given below:

3.1. Operational Matrix of integration

The matrix that represents the integration operational properties of the Legendre wavelet is given by:

ψn,m =


√

(m+ 1/2)2k/2Pm
(
2kX − n̂

)
, n̂−1

2k
≤ X ≤ n̂+1

2k

0 , otherwise

, (14)

where n = 1, 2, ..., 2k−1,m = 0, 1, ..., S − 1 and k is the positive integer. Here, Pm(X) signifies the Legendre polyno-

mial of degree m, and ψ(X), as defined in Eq. (14), is derived as follows:

∫ X

0

ψ(t)dt = Pψ(X), ∈ [0, 1),

where P is the operational matrix of order 2k−1M × 2k−1M and k = 1, which is investigated by Razzaghi and

Yousefi [33].
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3.2. Legendre Wavelet Collocation Method

Let

θ
′′

= CTψ(X), (15)

integrating Eq. (15) twice from 0 to X, and using BC, we obtain

θ
′
(X) = CTPψ(X), (16)

and

θ(X) = 1− CTP 2ψ(1) + CTP 2ψ(X), (17)

substituting Eqs. (15),(16) and (17) in Eqs. (10) and (11), we get

f(θ)[CTψX)] + f
′
(θ)[CTPψ(X)]2 −M2[1− CTP 2ψ(1) + CTP 2ψ(X)]− Sh[1−

CTP 2ψ(1) + CTP 2ψ(X)]2 + ShQ[1 + γ(1− CTP 2ψ(1) + CTP 2ψ(X))] = 0, (18)

f(X)[CTψX)] + f
′
(X)[CTPψ(X)]2 −M2[1− CTP 2ψ(1) + CTP 2ψ(X)]− Sh[1−

CTP 2ψ(1) + CTP 2ψ(X)]2 + ShQ[1 + γ(1− CTP 2ψ(1) + CTP 2ψ(X))] = 0, (19)

as θ(X) is an approximation of the results of the Eqs. (19). We choose n collocation points denoted as (Xi, i =

1, 2, 3, ..., n), such that the residuals R(X, c1, c2, ..., cn) become zero. It is essential to note that the count of these

collocation points and coefficients should be identical.

3.2.1. Temperature dependent thermal conductivity

For temperature dependent thermal conductivity we apply three cases in Eq. (18), we get

Case 1: Where thermal conductivity remains constant, the substitution of f(θ) = 1 into Eq. (19) produces the

following outcome:

[CTψ(X)]−M2[1− CTP 2ψ(1) + CTP 2ψ(X)]− Sh[1− CTP 2ψ(1) +

CTP 2ψ(X)]2 + ShQ[1 + γ(1− CTP 2ψ(1) + CTP 2ψ(X))] = 0. (20)

Case 2: Where thermal conductivity remains linear, the substitution of f(θ) = 1 + βθ into Eq. (19), produces the

following outcome:

[1 + β(1− CTP 2ψ(1) + CTP 2ψ(X))][CTψX)] + β[CTPψ(X)]2 −M2[1− CTP 2ψ(1) + CTP 2ψ(X)]

−Sh[1− CTP 2ψ(1) + CTP 2ψ(X)]2 + ShQ[1 + γ(1− CTP 2ψ(1) + CTP 2ψ(X))] = 0. (21)
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Case 3: Where thermal conductivity remains exponential, we put f(θ) = eβθ in Eq. (19), we get

eβθ[CTψX)] + βeβθ[CTPψ(X)]2 −M2[1− CTP 2ψ(1) + CTP 2ψ(X)]− Sh[1− CTP 2

ψ(1) + CTP 2ψ(X)]2 + ShQ[1 + γ(1− CTP 2ψ(1) + CTP 2ψ(X))] = 0. (22)

3.2.2. Location dependent thermal conductivity

For location dependent thermal conductivity, we take f(X) = 1 +BX as a linear function in Eq. (19), we get

(1 +BX)[CTψ(X)] +B[CTPψ(X)]2 −M2[1− CTP 2ψ(1) + CTP 2ψ(X)]− Sh[1− CTP 2ψ(1) +

CTP 2ψ(X)]2 + ShQ[1 + γ(1− CTP 2ψ(1) + CTP 2ψ(X))] = 0. (23)

This system consists of nine nonlinear algebraic equations, which are evaluated utilizing nine Legendre Wavelet

basis functions and collocation points spanning the interval (0, 1). Solving the resulting system of Eqs. (20), (21),

(22) and (23) separately, by using Newton-Raphson Method. The system has nine nonlinear algebraic equations,

which are computed using nine Legendre Wavelet basis functions and collocation points inside the interval (0, 1).

The values of the unknowns Ci were determined, and the dimensionless temperature was computed using the Eq.

(17).

3.3. Least Square Method

The LSM, initially proposed by [34], is a weighted approach for minimizing the residuals of the test functions, which

satisfies boundary conditions and is used to calculate the nonlinear differential equations. If all of the squared

residuals are added up continuously [35], then

S =

∫
X

R(X)R(X)dX =

∫
X

R2(X)dX, (24)

in order to minimize this scalar function, all derivatives of S with respect to the unknown coefficients should be

equated to zero, as stated in [35].

δS

δci
= 2

∫
X

R(X)
δR

δci
dX = 0, (25)

the weighted function is

Wi = 2
δR

δci
, (26)

where, the equation’s coefficient ”2” will be eliminated. Then, Eq. (26) can be written as:

Wi =
δR

δci
, (27)

to applying this method, we consider trial solution as follows

θ(X) = 1 + c1(1−X2) + c2(1−X3) + c3(1−X4) + c4(1−X5) + c5(1−X6), (28)
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which satisfies boundary conditions. Now putting the computed values of θ(X), θ′(X), and θ′′(X) into Eqs. (10)

and (11). We obtain residuals R(X, c1, c2, ..., cn) and evaluate the weighted function as described in Eq. (27). We

substitute these residuals and weighted function (Wi, i = 1, 2, ...n) in Eq. (25). Subsequently, we proceed to integrate

Eq. (25) form 0 to 1, and we obtain a system of nonlinear equations in ci. We employ the Newton-Raphson method

to solve these systems of nonlinear equations and derive the values of ci
′s, which we subsequently substitute into

the Eq. (28) in order to achieve the desired solution for the problem.

3.4. Finite Difference Method

Han et al [36] previously highlighted the use and validity of the finite element technique to examine the heat flow

in fins for constant thermal properties. We used the central difference approximation to discretize X co-ordinate.

Setting the central difference formulae as follows:

θ(X) ≈ θi,
dθ

dX
≈ θi+1 − θi−1

2h
,

d2θ

dX2
≈ θi+1,j − 2θi,j + θi−1,j

h2
,

substituting above formulae in Eqs. (10) and (11) with BC Eqs. (12) and (13), we get eleven nonlinear algebraic

equations. Solving this system of equations by well known method.

4. Results and Discussion

The present dimensionless model Eqs. (10)-(13) is a boundary value problem with a system of nonlinear differential

equations. In order to find a resolution for this model, we utilized three separate methodologies: LWCM , LSM ,

and FDM . The approaches were employed to estimate the temperature distribution within a rectangular porous

fin. The findings are displayed in figures 2-12 and tables 1-2.

4.1. Numerical validation of present method

A comparative analysis of the current approach with an exact results is required to validate the accuracy of the

current methodology. In order to calculate the precise answer for a certain scenario, we substitute t f(θ) = f(X) = 1

and Sh = 0 in Eqs. (10) and (11), we obtain

d2θ

dX2
−M2θ = 0, (29)

and boundary conditions are provided in Eqs. (12) and (13).

The exact solution of Eq. (29) is:

θ =
coshMX

coshM
. (30)

Table 1 displays the comparison between the exact solution and the results obtained from the LWCM , LSM ,
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and FDM . the results produced by the LWCM , LSM , and FDM . In order to calculate the findings, we utilize

the following reference values: γ = 0.2, β = 0.0, Sh = 0.0, Q = 0.4, and M = 0.3. From this table, it can be noticed

that the findings obtained from these methods closely align with the exact results. In order to determine the highest

level of accuracy among these methods, we do error analysis as presented in Table 2. An observation reveals that,

the error in LWCM is less as compared to LSM and FDM .This demonstrates the legitimacy of LWCM . So for

further calculations, we employed the LWCM .

Table 1: A comparative analysis of Exact result with LWCM,FDM and LSM in case 1.

X Exact LWCM FDM LSM

0.0 0.956627911900248 0.956627911900249 0.956628107692020 0.956627911900222

0.1 0.957058426747764 0.957058426747753 0.957058620610012 0.957058426749248

0.2 0.958350358782735 0.958350358782722 0.958350546851783 0.958350358783170

0.3 0.960504870831200 0.960504870831203 0.960505049233111 0.960504870828954

0.4 0.963523902099437 0.963523902099422 0.963524066941668 0.963523902096714

0.5 0.967410169919377 0.967410169919378 0.967410317284990 0.967410169919146

0.6 0.972167172194391 0.972167172194380 0.972167298133904 0.972167172196937

0.7 0.977799190547633 0.977799190547621 0.977799291072906 0.977799190550148

0.8 0.984311294175793 0.984311294175771 0.984311365252331 0.984311294175578

0.9 0.991709344411717 0.991709344411725 0.991709381990155 0.991709344410103

1.0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000

Table 2: Error analysis of Exact solution with LWCM, FDM and LSM for case 1.

X Percentage Error

LWCM FDM LSM

0.0 1.0445×10−13 2.04669 ×10−5 2.71571×10−12

0.1 1.14844×10−12 2.02561×10−5 1.55062 ×10−10

0.2 1.35543×10−12 1.96242×10−5 4.5389 ×10−11

0.3 3.12086×10−13 1.85738×10−5 2.33833×10−10

0.4 1.55554×10−12 1.710×10−5 2.82601×10−10

0.5 1.03286×10−13 1.5233×10−5 2.38821 ×10−11

0.6 1.13058×10−12 1.29545×10−5 2.61897 ×10−10

0.7 1.22626×10−12 1.02808×10−5 2.57209 ×10−10

0.8 2.23328×10−12 7.22094×10−6 2.18365 ×10−11

0.9 8.06043×10−13 3.78926×10−6 1.62742 ×10−10

1.0 0 0 0

4.2. Effect of parameters

The preceding section (3) covered the development of a thermal conductivity model that takes into account the

influence of location and temperature on a rectangular porous fin. We take thermal conductivity as temperature

and location dependent to examine the temperature profile in porous fin. In this study, we consider one case for

location-dependent thermal conductivity i.e., linear and three cases for temperature-dependent conductivity namely,

constant, linear, and exponential function of temperature.

9
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Figures 2-12 illustrate the impact of different parameters, such as thermal conductivity (β), thermo-geometric

(M), porosity (Sh), heat transfer rate (Q), internal heat generation (γ), h value, and thermal conductivity gradient

(B). The parameters are assigned reference values of β = 0.5, Sh = 0.5, γ = 0.5, B = 0.5,M = 0.5, and Q = 0.5.

4.2.1. Effects of parameters on temperature dependent porous fin

Figure 2 depicts the consequences of the thermal conductivity parameter (β) on the temperature profile in fin for

case 1 and 2. From this figure, we deduced that the temperature in fin goes up with higher thermal conductivity

values. Significantly, the temperature distribution for case 3 is higher than that of case 2. Consequently, in terms of

X
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Figure 2: Effect of thermal conductivity parameter on
temperature profile in fin for cases 2 and 3.
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Figure 3: Impact of the porosity parameter on tempera-
ture profile in fin for cases 1, 2 and 3.

the cooling process, case 2 exhibits more efficiency compared to case 3. Figure 3 illustrates how the porosity

parameter (Sh) affects the temperature profile in fin for cases 1, 2, and 3. We noticed that as the value of Sh

rises, the temperature within the fin drops for cases 1, 2, and 3. This finding indicates that the fin’s temperature

tends to decrease with lower Darcy and Rayleigh numbers or higher effective thermal conductivity ratios. Figure 4

represented the impact of an internal heat generation parameter (γ) on the fin’s temperature profile for cases 1, 2

and 3. Our observation revealed that the temperature within the fin goes up with higher values of γ for cases 1, 2,
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3.
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and 3. Figure 5 illustrated how thermo-geometric parameter M effect the fin temperature profile for case 1, 2

and 3. We concluded that as the value of M climbs for cases 1, 2, and 3, the temperature within the fin reduces.

This suggests that, the fin’s temperature goes down with higher effective thermal conductivity values or shorter fin

lengths. Figure 6 displays the impact of heat transfer rate (Q) on the temperature profile within the fin for cases 1,

2, and 3. Our finding illustrates that as the value of Q grows, the temperature within the fin likewise rises for cases

1, 2, and 3. This shows that the fin’s temperature goes up as both the kinematic viscosity and fin thickness grows,

or as both the specific heat and coefficient of thermal expansion decrease. Figure 7 demonstrates the influence of

varying h in FDM on temperature distribution in fin for case 1. We observed that, the accuracy of the results incre-
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-ased when the value of h decreased. Figures 3, 4, 5, 6, we noticed that, the temperature in porous fin for case 3 is

greater as compared to case 2 and 1. It suggests that, case 1 is more efficient then other cases for cooling process.

4.2.2. Effects of parameters on location dependent porous fin

Figure 8 demonstrates the impact of thermal conductivity gradiant parameter (B) on the temperature profile in fin.

We inferred that, the temperature within the fin rises with greater values of parameter B. Figure 9 exhibits the

impact of the porosity parameter (Sh) on the temperature profile within the fin. Our observation indicates that as

X
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
im

en
si

on
le

ss
 T

em
pe

ra
tu

re
 θ

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

B = 0.0
B = 0.5
B = 1.0

Figure 8: Effect of thermal conductivity gradiant B on
temperature profile in fin.
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the value of (Sh) rises, the temperature within the fin drops. This finding indicates that the fin’s temperature

tends to decrease with lower Darcy and Rayleigh numbers or higher effective thermal conductivity ratios. Figure 10

illustrates how internal heat generation parameter γ affects the temperature profile within the fin. It was noted that

the temperature within the fin rises with higher values of γ. Figure 11 depicted the influence of heat transfer rate

(Q) on the temperature profile within the fin. We deduced that, the temperature within the fin rises as the value of

Q rises. This shows that the fin’s temperature goes up as both the kinematic viscosity and fin thickness grows, or

as both the specific heat and coefficient of thermal expansion decrease. Figure 12 illustrated the consequences of
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perature profile in fin.
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Figure 11: Effect of heat transfer rate on temperature
profile in fin.

thermo-geometric parameter (M) on the temperature profile within the fin. We concluded that, the temperature

within the fin goes down as the value of M rises. This suggests that, the fin’s temperature goes down with higher

effective thermal conductivity values or shorter fin lengths.
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Figure 12: Impact of thermo-geometric parameter on
temperature profile in fin.

5. Conclusions

In this paper, we consider a mathematical model and simulation technique for analyzing heat transfer in a porous fin,

where the properties are influenced by temperature and location. The entire analysis has been done in dimensionless
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form. To address our research objective, we employ three distinct methods: LWCM,FDM and LSM . The main

significant outcomes are summarized below:

• The results of LWCM is correct up to twelve or thirteen decimal places with exact results as compared to

FDM and LSM .

• The temperature in fin decreases when the values of Sh and M rises.

• The temperature in fin increases as the values of β,B,Q and γ increase.

• In case 1, the temperature is noticeably lower in comparison to cases 2 and 3. This observation implies that

case 1 exhibits enhanced efficiency in the context of the cooling process within the fin.

• In the context of a linear case, it becomes evident that the temperature within a location-dependent porous

fin is relatively lower than a temperature-dependent porous fin.

This research is novel for the incorporation of spatial and temperature-dependent thermal conductivity, as well as

the solution of a complex nonlinear issue utilizing a hybrid numerical technique i.e., LWCM . As a result, the present

method is applicable to highly nonlinear fin problems. It can be used in the engineering industry to improve the

quality of fins. The future work can be extended for nanofluids with different shapes and size of the nano-particles.

NOMENCLATURE

P Fin perimeter (m)

β
′

coefficient of thermal expansion (K−1)

Keff effective thermal conductivity ratio (W/mK)

T local fin temperature (K)

Tb fin base temperature (K)

T∞ Sink temperature for convection (K)

t thickness of the fin (mm)

h heat transfer coefficient over the fin surface (W (m2K))

L length of the fin (m)

g gravity constant (ms2)

cp specific heat (J(kg −K))

K permeability of the porous fin (m2)

ka thermal conductivity at the base of the fin (Wm−1k−1)

x axial length measured from fin tip (m)

q internal heat generation (W/in3)

Da Darcy number (m2)

v kinematic viscosity (m2s)

a constant, dimensions vary absorption coefficient (m2)

Dimensionless parameter
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β thermal conductivity parameter

θ temperature in fin

Ra Rayleigh number

X length of the fin

Q heat transfer rate per unit area

γ internal heat generation

Sh porosity

M thermo-geometric parameter

B thermal conductivity gradiant parameter

Abbreviation

LWCM Legendre Wavelet Collocation Method

FDM Finite Difference Method

LSM Least Square Method

BC Boundary Conditions
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