

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 1 Er. Parul Awasthi et al 1-25

OPTIMISING WIRELESS SENSOR NETWORK THE GEOGRAPHICAL

DISTRIBUTION IN REAL TIME USING A LOW-COST

MICROCONTROLLER.

Er. Parul Awasthi1, Er. Anand Kumar Gupta2, Prof. Ashutosh Singh3

1,2Assistant Professor ÙIET, CSJM University, Kanpur
3Professor Department of Electronics Engineering HBTU, Kanpur

Corresponding Author Mail id: akgietk@rediffmail.com

Abstract:This research presents a low-cost microcontroller-based system that uses pedometer

measurements and communication between nodes in a wireless sensor network for localisation

purposes. The proposed system performs effectively on a sparse network, unlike other methods

that rely on good network connectivity.to solve nonlinear equations in real time during

localisation, two optimisation algorithms have been investigated: The Gauss-Newton algorithm

and particle swarm optimisation. The localisation and optimisation methods were built using a

microcontroller. Experiments were conducted to evaluate efficiency.

Keywords:Microcontrollers, particle swarm optimization (PSO), wireless sensor network

(WSN).

Introduction:

A Wireless Sensor Network (WSN) is a system consisting of numerous wirelessly interconnected

heterogeneous sensor nodes that are spatially dispersed over a designated area of interest.

Wireless Sensor Networks (WSN) have garnered significant research interest in recent years

owing to their potential applications across several domains. It has been utilised in applications

including ecological and natural habitat surveillance, medical instrumentation, industrial

automation, and military surveillance [1], [2]. Sensor nodes should generally be cost-effective

and compact for extensive deployment. Additionally, the sensor node's power consumption must

be minimal to extend its operating lifespan for many years to come.

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 2 Er. Parul Awasthi et al 1-25

Figure: 1 Experimental findings (single-direction approach) (x = pedometer, • = true position,

and □ = GNA).

Recent improvements in microelectronics have produced adaptable microcontrollers utilised in

various applications, including motor driving, light dimmer control, uninterruptible power

systems, and power sources. [3][9]. In Wireless Sensor Networks (WSN), the majority of

systems utilise a microcontroller as the core unit to execute numerous functions, including sensor

data acquisition, network protocol implementation, signal processing, and power management. A

primary problem of wireless sensor networks is ascertaining the physical locations of sensor

nodes. This can be accomplished by outfitting all sensor nodes with Global Positioning System

(GPS) technology. Nonetheless, this technology is expensive, requires substantial power, and is

constrained for outdoor use. Several GPS-independent localisation techniques have been

examined for dense networks [10] [15]. They can generally be categorised as range-free and

range-based algorithms. Range-free algorithms [10], [11] operate under the assumption that

distance or angle information is inaccessible, utilising network connectivity to estimate node

locations. Range-based algorithms [11] [15] necessitate distance measurements from anchor

nodes and employ triangulation or maximum likelihood estimate methods to determine the

positions of unknown nodes. Maximum likelihood estimate is used in most range-based methods

due to its superior accuracy, but with increased computing demands and memory consumption.

Most present works emphasise theoretical advancement while neglecting computational costs

and implementation aspects. In actuality, there are significant limitations on computational

power and memory. As a result, numerous advanced optimisation methods will be impractical.

This study presents the real-time Gauss–Newton algorithm (GNA) and the particle swarm

optimisation (PSO) utilising the probability field technique for sensor node localisation. In the

system being analysed, a deployment agent (DA), such as a pedestrian or an unmanned aerial

vehicle equipped with a positioning sensor, is responsible for deploying the sensor nodes.

Examine the perimeter deployment illustrated in Fig. 1 for a sparse network. A DA transitions

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 3 Er. Parul Awasthi et al 1-25

from an initial position A, traverses an area of interest, and concludes at position B to install the

sensor nodes. For the sake of the experiment, the designated agent in this study is an individual

walking while utilising a pedometer and an electronic compass. The system monitors the agent's

movement throughout the deployment. Following the deployment, the sensor nodes transmit

beacon packets to ascertain the distances between the nodes based on the received power

strength of the RF signals. Utilising both deployment and communication ranging data with the

suggested method enhances localisation accuracy.

Section II indicates that solving a nonlinear equation is necessary to ascertain the optimal

placement of the sensor nodes. A potential solution to the issue is the GNA. Nonetheless, the

GNA is a local optimisation technique and does not ensure global convergence. An alternate

method is to employ a global optimiser, such as Particle Swarm Optimisation (PSO). This work

examines and implements both GNA and PSO on the same platform. Furthermore, its efficacy in

identifying optimal solutions across various operating situations has been examined.

Experimental findings indicate that the GNA is more efficacious when the pedometer error is

less than 25%. It is shown that the PSO demonstrates greater robustness in the presence of

significant pedometer errors, whereas the GNA may converge to a local minimum. Moreover,

the GNA entails matrix inversion during its iterations and may infrequently exhibit instability.

Consequently, GNA is a viable optimiser for this application solely if the integrated pedometer

possesses high accuracy. Alternatively, the PSO is favoured.

This paper is organised as follows: Section II delineates the problem formulation employing the

proposed probability-based function and the error modelling. Section III presents the sensor node

architecture and the implementation of the GNA and PSO methodologies for localisation.

Section IV delineates the laboratory evaluation of the system, whereas Section V elucidates the

experimental system and gives several outdoor experimental outcomes. Section VI finishes this

document.

2.0 PROBABILITY-BASED LOCALISATION APPROACH.

The following paragraphs introduces a localisation method that integrates data from the received

signal strength indicator (RSSI) and deployment details. The agent initiates the deployment of

the first sensor node from a designated site A, as illustrated in Fig. 1. Upon deployment, the

locations of the sensor nodes are initially ascertained using the pedometer and compass

navigation system. Thereafter, the sensor nodes interact with adjacent nodes to share the RF

signal intensity that can be received. This work presents a probability-based localisation

approach designed to enhance localisation accuracy by utilising deployment measurements and

RSSI-based distance estimations from neighbouring nodes to develop the likelihood function for

the unknown node's precise position. Utilising information from two distinct sources enables

improved outcomes via data fusion.

The suggested methodology encompasses two localisation modes: unidirectional and

bidirectional. In unidirectional mode, each unidentified node exclusively employs RSSI

measurements from previously placed sensors. The bidirectional mode presupposes knowledge

of the last sensor node's position. Furthermore, the network is capable of communicating in both

forward and backward directions. This section outlines the techniques for constructing the

likelihood function and formulating the optimisation for an unidentified node.

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 4 Er. Parul Awasthi et al 1-25

2.1 Problem Formulation

Considering a sensor node i that has been deployed with the estimated position Φdi; its actual

position Φi is regarded as proximate to Φdi with a specific probability. According to probability

theory, the likelihood function of the actual position Φi is the conditional probability density

function of Φdi given the actual position Φi.Identify this likelihood equation as the installation

probability function for the unidentified node i.

where the diminutive “d” signifies deployment measurement and “i” represents the node’s index.

Given that Φdi follows a bivariate normal distribution with the real position Φi as the mean, the

deployment probability function is derived as

The standard deviations σx and σyare estimated as σx = xm·p and σy = ym·p, where xm and ym are

the measured distance vector derived from the walking distance and direction. It is assumed that

the error factor of the pedometer and the compass, after projection onto the x- and y-coordinates,

is p.

If sensor node i can receive the beacon packet from localised node j, the distance dij between the

two nodes can be determined using the RSSI measurements as dmij. Nonetheless, this

measurement is generally characterised by significant noise. Utilising the estimated location ˆ Φj

of j and the estimated distance dmij, the probability function of the actual position Φi may be

calculated. Designate this function as the radio extending likelihood equation.

The subscript “r” signifies “radio ranging,” whereas the subscript “j” represents the index of the

localised node.

The measured distance dm based on RSSI is often considered to follow a Gaussian distribution:

dm∼N(d,(d · r)²), where r represents the range error factor. The probability function of the actual

distance d, given dm and r, is

Let

be the distance between locations A
and B. For an unknown node i and a localized node the likelihood function of Φi is

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 5 Er. Parul Awasthi et al 1-25

Let Ji denote all the communicating localized nodes. Since the installation and RSSI range

measurements are uncorrelated with one another, the overall likelihood function is derived

through the addition of all the likelihood measures for the unidentified node i. Consequently,

through combining (2) and (5), we acquire

Taking natural logarithmof(6)yields

Whereα=−ln(2πσxσy)−j∈Ji ln√2πˆ dijr is a constant andthefunctionSisdefinedas

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 6 Er. Parul Awasthi et al 1-25

To determine the point Φi that maximises Li(Φi), the resulting function S must be minimised.

Consequently, the localisation issue transforms into an optimisation challenge.

2.2 Discussion

The goal-setting function (8) is typically multifunctional when measurement errors from the

pedometer and RSSI range are significant. For local optimisation algorithms such as GNA, it is

necessary for the initial guess to be sufficiently proximate to the global minimum to ensure

global convergence. In this application, the deployed position of the pedometer is utilised as the

initial estimate.Consequently, a more precise pedometer measurement will result in a closer

initial estimate of the global minimum.When the pedometer error factor is minimal (p<0.25 from

evaluation studies), GNA typically converges to the global minimum, and GNA is chosen as the

optimiser because to its simplicity.However, when the pedometer error is substantial (p > 0.25),

GNA could come closer to a local minimum if the starting estimate is excessively distant from

the optimal position.In such a circumstance, a global optimisation strategy is essential, and

Particle Swarm Optimisation (PSO) is used. Comprehensive performance analyses of

optimisation methodologies are offered in Section IV.

Figure 2. Block illustration of a sensor nodes.

3.0 SENSORS NODE ARCHITECTURE AND IMPLEMENTATION

Figure 2 illustrates the block diagram of the sensor node architecture created for this

application.It comprises five principal components: the RF system, RSSI to distance converter,

GNA/PSO optimiser, transmission scheduler, and data memory. As indicated in Section II, after

the initial sensor node is deployed at a predetermined position, it commences transmitting its

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 7 Er. Parul Awasthi et al 1-25

location to other nodes.For each consecutive unknown node i being put in place, it acquires its

deployment statistics Φdi through its RF system from the pedometer/compass system.

Subsequently, its transmission scheduler will solicit neighbouring nodes to transmit their beacon

messages including their estimated positions.In addition to receiving the beacon message, the

RSSI to distance translator also measures the RSSI values of the received beacons and converts

them to a distance ˆ Di.The GNA/PSO optimiser will ascertain the estimated position of the

sensor node, denoted as ˆ Φi, by integrating the deployment and inter-node distance information

using (8).The transmission scheduler responds to requests from other nodes and broadcasts the

sensor node's beacon packet.

3.1 RF System

The RF infrastructure is utilised to receive beacon packets from neighbouring sensor nodes and

stride/heading data from the pedometer, as well as to emit its own beacon packets.

3.2 TransmissionScheduler

The Data Transfer Scheduler implements the media access control protocol to prevent data

collisions.For the convenience of experimentation, a straightforward polling approach is

employed.Upon deployment, a sensor node will acquire its pedometer data and subsequently

initiate polling of adjacent sensor nodes to transmit its beacon packets.Upon successful

localisation of the sensor, it will transition to listening mode and await polling from other nodes.

3.3 RSSI to Distance Translator

The RSSI for distance translators employs a function RtoD that encompasses the following

equation:

Table 1: Pseudocode for RSSI to Proximity The interpreter

// RSSI to Distance Translator

// Constants (you may need to adjust these based on your environment)

RSSI_At_1m = -40 // RSSI value at 1 meter distance (this is an example value, adjust as needed)

n = 2 // Path loss exponent (can vary depending on the environment)

Function RSSI_To_Distance(RSSI):

 // Calculate the distance based on the RSSI value

 Distance = 10 ^ ((RSSI_At_1m - RSSI) / (10 * n))

 Return Distance

// Main program

Start:

 // Prompt the user for the RSSI value

 Print "Enter the RSSI value (in dBm): "

 Input RSSI

 // Call the function to calculate the distance

 Distance = RSSI_To_Distance(RSSI)

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 8 Er. Parul Awasthi et al 1-25

 // Display the result

 Print "The estimated distance is: ", Distance, " meters."

End

where Rj is the acquired RSSI value; ˆdj is the corresponding distance; Ro is the received RSSI

value at a distance of 1 meter, and n is the path loss exponent. Ro and n are calibrated values

acquired prior to deployment.

Typically, RSSI measurements frequently experience burst interferences from diverse noise

sources. To enhance the estimation, the mean RSSI data from ten beacons are utilised to deduce

distance. Table I presents the pseudocode for the RSSI to Distance Transporter.

3.4 GNA/PSO Optimizer

3.4.1 GNA:The GNA is recognised for addressing nonlinear least squares estimation issues [17],

[18]. It is an iterative method that necessitates the user to supply an initial estimate of its answer.

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 9 Er. Parul Awasthi et al 1-25

Given m functions fi (i = 1,...,m) of n variables β = (β1, β2,...,βn), where m > n, the Generalised

Newton Algorithm (GNA) can be employed to determine the minimum of the sum of squares.

Commencing with an initial estimate β[0], the procedure advances through iterations.

with the increment Δk satisfying the normal equation

where f represents the vector of functional fi, and Jf is the Jacobian matrix of Jf concerning β[k].

In the localisation problem, the predicted deployment position Φdi serves as the first

approximation. Table II illustrates the

START

 // Step 1: Initialize population

population_size = 100

 population = GenerateRandomPopulation(population_size)

 // Step 2: Define parameters for genetic algorithm

crossover_rate = 0.8

mutation_rate = 0.1

 generations = 1000

 // Step 3: Evaluate initial population

EvaluatePopulation(population)

 // Step 4: Repeat for a specified number of generations

 FOR generation = 1 TO generations DO

 // Step 5: Select individuals for reproduction (parent selection)

selected_parents = SelectParents(population)

 // Step 6: Perform crossover (mating) to create offspring

 offspring = Crossover(selected_parents, crossover_rate)

 // Step 7: Perform mutation on offspring

mutated_offspring = Mutate(offspring, mutation_rate)

 // Step 8: Evaluate offspring's fitness

EvaluatePopulation(mutated_offspring)

 // Step 9: Select individuals for next generation (survival selection)

 population = SelectNextGeneration(population, mutated_offspring)

 // Step 10: Optionally print or track the best solution

best_solution = GetBestSolution(population)

 PRINT "Generation ", generation, " Best Solution: ", best_solution

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 10 Er. Parul Awasthi et al 1-25

 END FOR

 // Step 11: Final output

best_solution = GetBestSolution(population)

 PRINT "Best solution found after ", generations, " generations: ", best_solution

END

// Function to Generate a random initial population

Function GenerateRandomPopulation(population_size):

 population = []

 FOR i = 1 TO population_size DO

 individual = GenerateRandomIndividual()

 ADD individual TO population

 END FOR

 RETURN population

// Function to Evaluate the fitness of the population

Function EvaluatePopulation(population):

 FOR each individual IN population DO

individual.fitness = CalculateFitness(individual)

 END FOR

// Function to select parents for reproduction (based on fitness)

Function SelectParents(population):

selected_parents = []

 FOR i = 1 TO population_size / 2 DO

 parent1, parent2 = SelectTwoParents(population)

 ADD parent1, parent2 TO selected_parents

 END FOR

 RETURN selected_parents

// Function to perform crossover and create offspring

Function Crossover(parents, crossover_rate):

 offspring = []

 FOR each pair of parents IN parents DO

 IF random() <crossover_rate THEN

 child = PerformCrossover(parent1, parent2)

 ADD child TO offspring

 END IF

 END FOR

 RETURN offspring

// Function to mutate offspring

Function Mutate(offspring, mutation_rate):

 FOR each individual IN offspring DO

 IF random() <mutation_rate THEN

MutateIndividual(individual)

 END IF

 END FOR

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 11 Er. Parul Awasthi et al 1-25

 RETURN offspring

// Function to select the next generation

Function SelectNextGeneration(population, offspring):

combined_population = population + offspring

new_population = SelectBestIndividuals(combined_population)

 RETURN new_population

// Function to get the best solution

Function GetBestSolution(population):

best_individual = Individual with highest fitness in population

 RETURN best_individual

Pseudocode for the GNA, incorporating a basic line-search algorithm.

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 12 Er. Parul Awasthi et al 1-25

The pseudocode indicates that the approach entails matrix inversion in Step 3. The iteration will

be unsuccessful if the matrix JT
fJfis singular. This matrix is theoretically non-singular in this

localisation problem. Nevertheless, the matrix may approach singularity due to the

microcontroller's low precision, occasionally failing to converge to the halting requirement. This

matter will be addressed in a subsequent section.

3.4.2 PSO:This paper utilises the PSO method described in [19] for the global optimisation of

sensor node positions. Table III presents the pseudocode utilised for the implementation. Particle

Swarm Optimisation (PSO) has been applied in diverse fields, including robotics and antenna

design [20]–[25]. Like other heuristic algorithms, such as the genetic algorithm [26], [27], the

Particle Swarm Optimisation (PSO) method begins with a population of random solutions,

referred to as particles. Each particle monitors its optimal fitness solution, referred to as pbest.

Additionally, the optimiser retains the global best fitness solution, referred to as gbest.

At every time step, the PSO optimiser modifies the acceleration of two members, which

correspond to the x- and y-coordinates of the sensor node.

START

 // Step 1: Define parameters for PSO

population_size = 100 // Number of particles

max_iterations = 1000 // Maximum number of iterations

inertia_weight = 0.5 // Inertia weight (controls exploration)

cognitive_coeff = 1.5 // Cognitive coefficient (personal best influence)

social_coeff = 1.5 // Social coefficient (global best influence)

 // Step 2: Initialize particles

 particles = InitializeParticles(population_size)

 // Step 3: Initialize global best position and fitness

global_best_position = null

global_best_fitness = infinity

 // Step 4: Iterate until maximum iterations or convergence

 FOR iteration = 1 TO max_iterations DO

 // Step 5: Update each particle's velocity and position

 FOR each particle IN particles DO

 // Step 5.1: Calculate fitness of the current particle

particle.fitness = EvaluateFitness(particle.position)

 // Step 5.2: Update particle's personal best position

 IF particle.fitness<particle.best_fitness THEN

particle.best_fitness = particle.fitness

particle.best_position = particle.position

 END IF

 // Step 5.3: Update global best position

 IF particle.fitness<global_best_fitness THEN

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 13 Er. Parul Awasthi et al 1-25

global_best_fitness = particle.fitness

global_best_position = particle.position

 END IF

 // Step 5.4: Update particle's velocity using the PSO velocity update equation

particle.velocity = inertia_weight * particle.velocity

 + cognitive_coeff * random() * (particle.best_position - particle.position)

 + social_coeff * random() * (global_best_position - particle.position)

 // Step 5.5: Update particle's position

particle.position = particle.position + particle.velocity

 END FOR

 // Step 6: Optionally print or track the global best solution

 PRINT "Iteration ", iteration, " Global Best Fitness: ", global_best_fitness

 END FOR

 // Step 7: Output the global best solution

 PRINT "Best solution found after ", max_iterations, " iterations: "

 PRINT "Position: ", global_best_position

 PRINT "Fitness: ", global_best_fitness

END

// Function to Initialize particles with random positions and velocities

Function InitializeParticles(population_size):

 particles = []

 FOR i = 1 TO population_size DO

 particle = CreateRandomParticle()

 ADD particle TO particles

 END FOR

 RETURN particles

// Function to Evaluate fitness of a given particle (custom based on the problem)

Function EvaluateFitness(position):

 // This should be problem-specific: calculate the fitness value based on the position

 fitness = CalculateFitness(position)

 RETURN fitness

// Function to create a random particle (initialize position and velocity)

Function CreateRandomParticle():

 particle = {}

particle.position = GenerateRandomPosition() // Random position in search space

particle.velocity = GenerateRandomVelocity() // Random initial velocity

particle.best_position = particle.position // Initial personal best is the starting position

particle.best_fitness = infinity // Initial personal best fitness is very poor (infinity)

 RETURN particle

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 14 Er. Parul Awasthi et al 1-25

// Function to generate a random position within the problem's search space

Function GenerateRandomPosition():

 // This should generate a random value or vector within the valid range of the problem space

 position = random_value_in_range()

 RETURN position

// Function to generate a random velocity

Function GenerateRandomVelocity():

 // Typically, velocity is set to be a small value initially

 velocity = random_small_value()

 RETURN velocity

// Function to calculate the fitness of a position (problem-dependent)

Function CalculateFitness(position):

 // This is the function that calculates the fitness value based on the position

 // For example, it could return the value of the objective function for the given position

 fitness = some_function(position)

 RETURN fitness

The particle will move towards its personal best (pbest) and global best (gbest) positions with a

stochastic weight. This investigation examines the composition of each particle's state.

4.0 Inspection of systems

The microcontroller in question (Microchip PIC18LF4620) has been running the suggested GNA

and PSO algorithms. Microcontroller features 3968-B SRAM data memory and 64-kB Flash

program memory. It runs forty MHz in a clock rate. Both algorithms have been written in C

language utilising floating point structure for simplicity of development. The Microchip MPLAB

C18 compiler compiles the C programs then downloads them to the Flash memory using the

MPLAB ICD2 debugger.

Together, the routines for RSSI to distance translators and transmission scheduler take roughly 4-

kB program memory. The codes for the GNA and PSO optimisers call for roughly 8- and 12-kB

RAM, respectively.

We assess the two optimisation techniques in a laboratory environment in the next conversation.

Here we bypass the RSSI for distance translators as well as the transmission scheduler. From

their predicted distributions, the required data pedometer and RSSI distance measurements

randomly generates themselves.

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 15 Er. Parul Awasthi et al 1-25

Figure 3: Single-direction system evaluation of a sparse network.

As seen in Fig. 3, it is assumed that the network to be evaluated is sparse. It comprises thirty-one

nodes positioned generally along the path. utilising single-direction approach with GNA, Fig. 3

presents an example of the localised network; utilising bidirection method with GNA, Fig. 4

illustrates the localised outcome.

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 16 Er. Parul Awasthi et al 1-25

Figure 4: Bidirectional based system evaluation of a sparse network.

Not presented for brevity, the localisation result using PSO is virtually exact to the GNA. From

this work, the variation between the projected placements using these two optimisation

techniques for every node usually is less than 0.1 units. Here we have utilised a 0.2 pedometer

and a 0.15 range error factor. Assumed to be the communication range is 60 units.

With GNA as the optimisation method, Fig. 5 displays the localisation error under several range

and pedometer error factors for both single- and bidirection approaches. Once more, the PSO

localisation results are rather close to the GNA. If p = 0.3, the difference for every data point is

smaller than 0.1 unit; brevity keeps this from showing. All things considered, with the same

measurements both GNA and PSO can search the same optimum. The two algorithms may

converge from distinct directions, so the small variations are caused by termination at different

points when stopping criterion is satisfied.

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 17 Er. Parul Awasthi et al 1-25

Fig. 5: Under varying measuring accuracy, average localisation error.

Figure 6: Average localisation mistake at p = 0.35.

Nevertheless, as demonstrated in Fig. 6, there is some variation between the localisation

outcomes of these two techniques given very great pedometer error (p>0.3). PSO typically shows

superior localisation. This is true because GNA's poor first predictions cause it to periodically

converge to local minima.

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 18 Er. Parul Awasthi et al 1-25

4.1 Calculating Computational Expenses

In general, GNA needs less executive time than PSO for computational costs. From our analysis,

it is also seen that the GNA computes the second derivative of the objective function most of the

execution time. Objectives function evaluations occupy just roughly 15% of the execution time.

Each sensor node has 2.5 average neighbours for single-direction method and 5 neighbours for

bidirection method out of a communication range of 60 units.

Table IV localises a single node for various network densities by matching the average execution

time required by the two techniques. Here the pedometer error factor is 0.2. Table IV makes it

clear that the PSO needs double the computation time.

For modest pedometer inaccuracy, therefore, local optimisation techniques like GNA are

advised. From the table, it is also noted that as the number of neighbouring nodes rises, both the

techniques require more calculation time.

TABLE IV: an average execution time to localizes lender versus varying amount of neighbours

Table V: Mean Performance Time Tolerable Based on Lender versus unusual PEDO Meter

Error Percentage

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 19 Er. Parul Awasthi et al 1-25

Table V demonstrates the way the pedometer's accuracy influences the GNA computation need.

Every sensor node here averages 2.5 neighbours. The GNA calls for additional execution time to

get the necessary precision as the pedometer error factor gets bigger. This is so as the first guess

will be far from the ideal location. Conversely, the PSO execution time is rather constant. This

attracts the PSO for a system with significant pedometer error factor.

Figure 7 illustrates the average function objective value in relation to the number of

iterations/generations.

Fig. 7 displays the average objective function values against the number of iterations or

generations for both of these two methods, therefore displaying the performance trend. From the

figure, one finds that the GNA converges faster. This outcome is expected as the GNA

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 20 Er. Parul Awasthi et al 1-25

determines the descending direction directly by computing the second derivative of the goal

function and starts from a location nearer to the minimum. Conversely, by means of comparative

analysis of the objective function values, the PSO chooses a more estimate. The GNA hence

usually needs fewer iteration to converge to a minimum. If the starting place is too far off the

ideal location, though, the GNA could come together to a local minimum.

4.2 The evaluation of GNA Stability

GNA entails matrix inversion during its iterations. The iteration will fail if the matrix JT
fJf is

single.The determining factor of the matrices can be derived as indicated in (13), displayed at the

bottom of the page.

In (13), the initial two terms are consistently positive.The third term is 0 when the current

location estimation and the estimated positions of its neighbouring nodes are

collinear.Consequently, JT f Jf is often non-singular; nevertheless, it may approach singularity

due to finite word length when the algorithm is executed on a microcontroller. Consequently, it

may not converge to a distinct place at times.This occurs when the pedometer error factor is

sufficiently great to render the first two terms of (13) almost zero, and the neighbouring nodes

are coincidentally collinear.

Table VI indicates that when the pedometer error factor exceeds 0.25 and likewise surpasses the

range error factor, the method may become unstable. In this testing, the predicted positions of

neighbouring nodes and the initial guessed position are set to be collinear.

In summation, it is seen that both GNA and PSO possess their own advantages.When the

precision of the pedometer is elevated, local optimisation is adequate, and these two methods

yield fairly similar localisation results. In this instance, GNA is favoured as it necessitates

reduced processing and execution time.Conversely, the PSO is resilient as it consistently

provides distinct position estimations. The GNA entails a matrix inversion during its

iteration.Consequently, the optimal result will not be attainable.

Table VI: Possibility of In percent Stability

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 21 Er. Parul Awasthi et al 1-25

when the matrix gets singular or approaches singularity due to the precision of the

microcontroller.While alternative methods can be employed to circumvent the singular matrix in

the GNA, this may considerably impact the convergence rate.Furthermore, in cases of significant

pedometer error, GNA may converge to local minima, resulting in greater localisation error

compared to PSO.For systems with significant pedometer error factors, PSO will be employed

due of its resilience.

Alternatively, GNA would be a superior option due to its simplicity and minimal computational

expenses.

5.0 Exterior the experiment

The experimental measurement has been conducted around a lake and a park located on the

university campus.The network comprises 31 sensor nodes. Each sensor node is equipped with

an XBeeZNet 2.5 OEM RF module, which is capable of measuring the RSSI.Prior to

deployment, calibration was conducted to ascertain the parameters utilised in the path-loss

equation by measuring the RSSI in relation to a reference distance.From the measurement, the

range of error factor is 0.21.

A pedometer comprises of a three-axis accelerometer-based stride counter and an electronic

compass.Redeployment measurements indicate that the pedometer error factor is p = 0.22.

The experimental results are presented in Figures 1 and 8. In the figures, the actual positions of

the sensor nodes, the estimated positions derived from the pedometer, and the single and

bidirectional localisation approaches are indicated on the satellite image map. Figure 9 illustrates

the errors encountered during the localisation process at each node along the deployment path.

The figure indicates that the average errors for single and bidirectional modes are 16.43 m and

9.51 m, respectively. The mean error associated with the exclusive use of the pedometer,

excluding RSSI, is 19.5745 meters. Consequently, the error has been minimised from a

unidirectional to a bidirectional approach. The superior performance of the bidirectional

approach is anticipated due to its access to a greater number of RSSI values for processing

compared to the unidirectional approach.

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 22 Er. Parul Awasthi et al 1-25

Figure:8 shows outcomes from experiments using the bidirection approach (x-pedometer, real

position, GNA).

Figure:9 shows the experimental inaccuracy at each node (x-pedometer, single-direction, and

bidirection).

TABLE VII PSO VERSUSGNA

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 23 Er. Parul Awasthi et al 1-25

Figures 8 and 9 present the results obtained using only the GNA. The results obtained from the

application of PSO closely align with those of GNA and are omitted for brevity. Table VII

presents the performance outcomes of the two methods. The table indicates that the localisation

results of PSO and GNA exhibit minimal differences.

This aligns with previous findings, indicating that both methods can identify the same optimal

value using the same measurements. Furthermore, the GNA is noted to require approximately

half the execution time compared to the PSO.

6.0 CONCLUSION

This study employs a microcontroller to perform two optimisation methodologies: the GNA and

PSO techniques, aimed at enhancing sensor node localisation in a WSN. The efficacy of the

offered methodologies has been assessed and corroborated through experimental results. The

results indicate that both exhibit comparable performance with enhanced precision. Furthermore,

the GNA necessitates less computational and execution time compared to the PSO, especially

when the pedometer's precision is elevated. Nonetheless, significant errors in the pedometer may

cause the GNAm to converge to a local minimum. In such instances, the PSO is favoured for its

robustness, consistently providing distinct position estimations. An alternate method could

involve a Memetic Algorithm that integrates PSO and GNA. In this instance, the algorithm

utilises a PSO framework and employs a GNAas as a local the investigator.

References
[1] F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: A survey,”

Comput. Netw., vol. 38, no. 4, pp. 393–422, Mar. 2002.

[2] K. S. Low, W. N. N. Win, and M. J. Er, “Wireless sensor networks for industrial environments,” in
Proc. Int. Conf. Comput. Intell. Model., ControlAutom., 2005, pp. 271–276.

[3] C. A. Hudson, N. S. Lobo, and R. Krishnan, “Sensorless control of sin gle switch-based switched
reluctance motor drive using neural network,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 321–329,
Jan. 2008.

[4] E. Mininno, F. Cupertino, and D. Naso, “Real-valued compact genetic al gorithms for embedded
microcontroller optimization,” IEEE Trans. Evol. Comput., vol. 12, no. 2, pp. 203–219, Apr. 2008.

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 24 Er. Parul Awasthi et al 1-25

[5] C.-S. Wang, “Flicker-insensitive light dimmer for incandescent lamps,” IEEE Trans. Ind. Electron., vol.
55, no. 2, pp. 767–772, Feb. 2008.

[6] S. Saponara, L. Fanucci, and P. Terreni, “Architectural-level power op timization of microcontroller
cores in embedded systems,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 680–683, Feb. 2007.

[7] F. Botteron and H. Pinheiro, “A three-phase UPS that complies with the standard IEC 62040-3,” IEEE
Trans. Ind. Electron., vol. 54, no. 4, pp. 2120–2136, Aug. 2007.

[8] Z. Jiang and R. A. Dougal, “A compact digitally controlled fuel cell/battery hybrid power source,”
IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1094–1104, Jun. 2006.

[9] A. Caponio, G. L. Cascella, F. Neri, N. Salvatore, and M. Sumner, “A fast adaptive memetic algorithm
for off-line and on-line control design of PMSM drives,” IEEE Trans. Syst., Man, Cybern. B, Cybern.—
Special Issue Memetic Algorithms, vol. 37, no. 1, pp. 28–41, Feb. 2007.

[10] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low-cost outdoor localization for very small
devices,” IEEE Pers. Commun., vol. 7, no. 5, pp. 28–34, Oct. 2000.

[11] D. Niculescu and B. Nath, “DV based positioning in ad hoc networks,” J. Telecommun. Syst., vol.
22, no. 1–4, pp. 267–280, Jan. 2003

[12] D. Niculescu and B. Nath, “Ad hoc positioning system (APS) using AOA,” in Proc. IEEE Comput.
Commun. Soc., 2003, pp. 1734–1743.

[13] C. Savarese, J. Rabaey, and K. Langendoen, “Robust positioning algorithm for distributed ad-hoc
wireless sensor networks,” in Proc. USENIX Tech. Annu. Conf., Monterey, CA, 2002, pp. 317–328.

[14] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, “Localization from mere connectivity,” in
Proc. 4th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., Annapolis, MD, 2003, pp. 201–212.

[15] M. L. Sichitiu and V. Ramadurai, “Localization of wireless sensor net works with a mobile
beacon,” in Proc. Int. Conf. Mobile Ad-Hoc Sensor Syst., 2004, pp. 174–183.

[16] H. Guo, K. S. Low, and M. J. Er, “Localization in a sparse wireless sensor network using
pedometer and communication ranging measurements,” in Proc. IECON, 2007, pp. 2627–2632.

[17] S. Y. Xue and S. X. Yang, “Power system frequency estimation using supervised Gauss–Newton
algorithm,” in Proc. ISIC, 2007, pp. 3761–3766.

[18] J. De Zaeytijd, A. Franchois, C. Eyraud, and J.-M. Geffrin, “Full-wave three-dimensional
microwave imaging with a regularized Gauss–Newton method—Theory and experiment,” IEEE Trans.
Antennas Propag., vol. 55, no. 11, pp. 3279–3292, Nov. 2007.

[19] K. S. Low, H. A. Nguyen, and H. Guo, “A particle swarm optimization approach for the
localization of a wireless sensor network,” in Proc. IEEE Int. Symp. Ind. Electron., Jul. 2008, pp. 1820–
1825.

[20] A. Chatterjee, K. Pulasinghe, K. Watanabe, and K. Izumi, “A particle swarm-optimized fuzzy-
neural network for voice-controlled robot sys tems,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1478–
1489, Dec. 2005.

[21] L. Dos Santos Coelho and B. M. Herrera, “Fuzzy identification based on a chaotic particle swarm
optimization approach applied to a nonlinear yo-yo motion system,” IEEETrans. Ind.Electron., vol. 54,
no. 6, pp. 3234–3245, Dec. 2007.

[22] Y. Song, Z. Chen, and Z. Yuan, “New chaotic PSO-based neural net work predictive control for
nonlinear process,” IEEE Trans. Neural Netw., vol. 18, no. 2, pp. 595–601, Mar. 2007.

[23] T. Huang and A. S. Mohan, “A microparticle swarm optimizer for the reconstruction of
microwave images,” IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 568–576, Mar. 2007.

Journal of Computational Analysis and Applications VOL 28, NO. 6, 2020

 25 Er. Parul Awasthi et al 1-25

[24] N.JinandY.Rahmat-Samii,“Advancesinparticle swarm optimization for antenna designs: Real-
number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antennas Propag.,
vol. 55, no. 3, pp. 556 567, Mar. 2007.

[25] L. Lizzi, F. Viani, R. Azaro, and A. Massa, “Optimization of a spline shaped UWB antenna by PSO,”
IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 182–185, Mar. 2007.

[26] F.-J. Lin, P.-K. Huang, and W.-D. Chou, “Recurrent-fuzzy-neural network-controlled linear
induction motor servo drive using genetic al gorithms,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp.
1449–1461, Jun. 2007.

[27] K.-S. Low and T.-S. Wong, “A multiobjective genetic algorithm for optimizing the performance of
hard disk drive motion control system,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1716–1725, Jun.
2007.

