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Abstract:This research presents a low-cost microcontroller-based system that uses pedometer 

measurements and communication between nodes in a wireless sensor network for localisation 

purposes. The proposed system performs effectively on a sparse network, unlike other methods 

that rely on good network connectivity.to solve nonlinear equations in real time during 

localisation, two optimisation algorithms have been investigated: The Gauss-Newton algorithm 

and particle swarm optimisation. The localisation and optimisation methods were built using a 

microcontroller. Experiments were conducted to evaluate efficiency. 

Keywords:Microcontrollers, particle swarm optimization (PSO), wireless sensor network 

(WSN). 

Introduction:  

A Wireless Sensor Network (WSN) is a system consisting of numerous wirelessly interconnected 

heterogeneous sensor nodes that are spatially dispersed over a designated area of interest. 

Wireless Sensor Networks (WSN) have garnered significant research interest in recent years 

owing to their potential applications across several domains. It has been utilised in applications 

including ecological and natural habitat surveillance, medical instrumentation, industrial 

automation, and military surveillance [1], [2]. Sensor nodes should generally be cost-effective 

and compact for extensive deployment. Additionally, the sensor node's power consumption must 

be minimal to extend its operating lifespan for many years to come. 
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Figure: 1 Experimental findings (single-direction approach) (x = pedometer, • = true position, 

and □ = GNA). 

Recent improvements in microelectronics have produced adaptable microcontrollers utilised in 

various applications, including motor driving, light dimmer control, uninterruptible power 

systems, and power sources. [3][9]. In Wireless Sensor Networks (WSN), the majority of 

systems utilise a microcontroller as the core unit to execute numerous functions, including sensor 

data acquisition, network protocol implementation, signal processing, and power management. A 

primary problem of wireless sensor networks is ascertaining the physical locations of sensor 

nodes. This can be accomplished by outfitting all sensor nodes with Global Positioning System 

(GPS) technology. Nonetheless, this technology is expensive, requires substantial power, and is 

constrained for outdoor use. Several GPS-independent localisation techniques have been 

examined for dense networks [10] [15]. They can generally be categorised as range-free and 

range-based algorithms. Range-free algorithms [10], [11] operate under the assumption that 

distance or angle information is inaccessible, utilising network connectivity to estimate node 

locations. Range-based algorithms [11] [15] necessitate distance measurements from anchor 

nodes and employ triangulation or maximum likelihood estimate methods to determine the 

positions of unknown nodes. Maximum likelihood estimate is used in most range-based methods 

due to its superior accuracy, but with increased computing demands and memory consumption. 

Most present works emphasise theoretical advancement while neglecting computational costs 

and implementation aspects. In actuality, there are significant limitations on computational 

power and memory. As a result, numerous advanced optimisation methods will be impractical. 

This study presents the real-time Gauss–Newton algorithm (GNA) and the particle swarm 

optimisation (PSO) utilising the probability field technique for sensor node localisation. In the 

system being analysed, a deployment agent (DA), such as a pedestrian or an unmanned aerial 

vehicle equipped with a positioning sensor, is responsible for deploying the sensor nodes. 

Examine the perimeter deployment illustrated in Fig. 1 for a sparse network. A DA transitions 
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from an initial position A, traverses an area of interest, and concludes at position B to install the 

sensor nodes. For the sake of the experiment, the designated agent in this study is an individual 

walking while utilising a pedometer and an electronic compass. The system monitors the agent's 

movement throughout the deployment. Following the deployment, the sensor nodes transmit 

beacon packets to ascertain the distances between the nodes based on the received power 

strength of the RF signals. Utilising both deployment and communication ranging data with the 

suggested method enhances localisation accuracy. 

Section II indicates that solving a nonlinear equation is necessary to ascertain the optimal 

placement of the sensor nodes. A potential solution to the issue is the GNA. Nonetheless, the 

GNA is a local optimisation technique and does not ensure global convergence. An alternate 

method is to employ a global optimiser, such as Particle Swarm Optimisation (PSO). This work 

examines and implements both GNA and PSO on the same platform. Furthermore, its efficacy in 

identifying optimal solutions across various operating situations has been examined. 

Experimental findings indicate that the GNA is more efficacious when the pedometer error is 

less than 25%. It is shown that the PSO demonstrates greater robustness in the presence of 

significant pedometer errors, whereas the GNA may converge to a local minimum. Moreover, 

the GNA entails matrix inversion during its iterations and may infrequently exhibit instability. 

Consequently, GNA is a viable optimiser for this application solely if the integrated pedometer 

possesses high accuracy. Alternatively, the PSO is favoured. 

This paper is organised as follows: Section II delineates the problem formulation employing the 

proposed probability-based function and the error modelling. Section III presents the sensor node 

architecture and the implementation of the GNA and PSO methodologies for localisation. 

Section IV delineates the laboratory evaluation of the system, whereas Section V elucidates the 

experimental system and gives several outdoor experimental outcomes. Section VI finishes this 

document.  

2.0 PROBABILITY-BASED LOCALISATION APPROACH. 

The following paragraphs introduces a localisation method that integrates data from the received 

signal strength indicator (RSSI) and deployment details. The agent initiates the deployment of 

the first sensor node from a designated site A, as illustrated in Fig. 1. Upon deployment, the 

locations of the sensor nodes are initially ascertained using the pedometer and compass 

navigation system. Thereafter, the sensor nodes interact with adjacent nodes to share the RF 

signal intensity that can be received. This work presents a probability-based localisation 

approach designed to enhance localisation accuracy by utilising deployment measurements and 

RSSI-based distance estimations from neighbouring nodes to develop the likelihood function for 

the unknown node's precise position. Utilising information from two distinct sources enables 

improved outcomes via data fusion.  

The suggested methodology encompasses two localisation modes: unidirectional and 

bidirectional. In unidirectional mode, each unidentified node exclusively employs RSSI 

measurements from previously placed sensors. The bidirectional mode presupposes knowledge 

of the last sensor node's position. Furthermore, the network is capable of communicating in both 

forward and backward directions. This section outlines the techniques for constructing the 

likelihood function and formulating the optimisation for an unidentified node.  
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2.1 Problem Formulation 

Considering a sensor node i that has been deployed with the estimated position Φdi; its actual 

position Φi is regarded as proximate to Φdi with a specific probability. According to probability 

theory, the likelihood function of the actual position Φi is the conditional probability density 

function of Φdi given the actual position Φi.Identify this likelihood equation as the installation 

probability function for the unidentified node i. 

 
where the diminutive “d” signifies deployment measurement and “i” represents the node’s index.  

Given that Φdi follows a bivariate normal distribution with the real position Φi as the mean, the 

deployment probability function is derived as 

 
The standard deviations σx and σyare estimated as σx = xm·p and σy = ym·p, where xm and ym are 

the measured distance vector derived from the walking distance and direction. It is assumed that 

the error factor of the pedometer and the compass, after projection onto the x- and y-coordinates, 

is p. 

If sensor node i can receive the beacon packet from localised node j, the distance dij between the 

two nodes can be determined using the RSSI measurements as dmij. Nonetheless, this 

measurement is generally characterised by significant noise. Utilising the estimated location ˆ Φj 

of j and the estimated distance dmij, the probability function of the actual position Φi may be 

calculated. Designate this function as the radio extending likelihood equation. 

 
The subscript “r” signifies “radio ranging,” whereas the subscript “j” represents the index of the 

localised node.  

The measured distance dm based on RSSI is often considered to follow a Gaussian distribution: 

dm∼N(d,(d · r)²), where r represents the range error factor. The probability function of the actual 

distance d, given dm and r, is 

 
Let 

be the distance between locations A 
and B. For an unknown node i and a localized node the likelihood function of Φi is 
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Let Ji denote all the communicating localized nodes. Since the installation and RSSI range 

measurements are uncorrelated with one another, the overall likelihood function is derived 

through the addition of all the likelihood measures for the unidentified node i. Consequently, 

through combining (2) and (5), we acquire 

 
Taking natural logarithmof(6)yields 

 
Whereα=−ln(2πσxσy)−j∈Ji ln√2πˆ dijr is a constant andthefunctionSisdefinedas 
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To determine the point Φi that maximises Li(Φi), the resulting function S must be minimised. 

Consequently, the localisation issue transforms into an optimisation challenge. 

2.2 Discussion  

The goal-setting function (8) is typically multifunctional when measurement errors from the 

pedometer and RSSI range are significant. For local optimisation algorithms such as GNA, it is 

necessary for the initial guess to be sufficiently proximate to the global minimum to ensure 

global convergence. In this application, the deployed position of the pedometer is utilised as the 

initial estimate.Consequently, a more precise pedometer measurement will result in a closer 

initial estimate of the global minimum.When the pedometer error factor is minimal (p<0.25 from 

evaluation studies), GNA typically converges to the global minimum, and GNA is chosen as the 

optimiser because to its simplicity.However, when the pedometer error is substantial (p > 0.25), 

GNA could come closer to a local minimum if the starting estimate is excessively distant from 

the optimal position.In such a circumstance, a global optimisation strategy is essential, and 

Particle Swarm Optimisation (PSO) is used. Comprehensive performance analyses of 

optimisation methodologies are offered in Section IV. 

 
Figure 2. Block illustration of a sensor nodes. 

3.0 SENSORS NODE ARCHITECTURE AND IMPLEMENTATION 

Figure 2 illustrates the block diagram of the sensor node architecture created for this 

application.It comprises five principal components: the RF system, RSSI to distance converter, 

GNA/PSO optimiser, transmission scheduler, and data memory. As indicated in Section II, after 

the initial sensor node is deployed at a predetermined position, it commences transmitting its 
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location to other nodes.For each consecutive unknown node i being put in place, it acquires its 

deployment statistics Φdi through its RF system from the pedometer/compass system. 

Subsequently, its transmission scheduler will solicit neighbouring nodes to transmit their beacon 

messages including their estimated positions.In addition to receiving the beacon message, the 

RSSI to distance translator also measures the RSSI values of the received beacons and converts 

them to a distance ˆ Di.The GNA/PSO optimiser will ascertain the estimated position of the 

sensor node, denoted as ˆ Φi, by integrating the deployment and inter-node distance information 

using (8).The transmission scheduler responds to requests from other nodes and broadcasts the 

sensor node's beacon packet. 

3.1 RF System 

The RF infrastructure is utilised to receive beacon packets from neighbouring sensor nodes and 

stride/heading data from the pedometer, as well as to emit its own beacon packets. 

3.2 TransmissionScheduler 

The Data Transfer Scheduler implements the media access control protocol to prevent data 

collisions.For the convenience of experimentation, a straightforward polling approach is 

employed.Upon deployment, a sensor node will acquire its pedometer data and subsequently 

initiate polling of adjacent sensor nodes to transmit its beacon packets.Upon successful 

localisation of the sensor, it will transition to listening mode and await polling from other nodes. 

3.3 RSSI to Distance Translator 

The RSSI for distance translators employs a function RtoD that encompasses the following 

equation: 

 
Table 1: Pseudocode for RSSI to Proximity The interpreter 

// RSSI to Distance Translator 

// Constants (you may need to adjust these based on your environment) 

RSSI_At_1m = -40  // RSSI value at 1 meter distance (this is an example value, adjust as needed) 

n = 2              // Path loss exponent (can vary depending on the environment) 

Function RSSI_To_Distance(RSSI): 

    // Calculate the distance based on the RSSI value 

    Distance = 10 ^ ((RSSI_At_1m - RSSI) / (10 * n)) 

    Return Distance 

// Main program 

Start: 

    // Prompt the user for the RSSI value 

    Print "Enter the RSSI value (in dBm): " 

    Input RSSI 

 

    // Call the function to calculate the distance 

    Distance = RSSI_To_Distance(RSSI) 
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    // Display the result 

    Print "The estimated distance is: ", Distance, " meters." 

End 

 
 

where Rj is the acquired RSSI value; ˆdj is the corresponding distance; Ro is the received RSSI 

value at a distance of 1 meter, and n is the path loss exponent. Ro and n are calibrated values 

acquired prior to deployment. 

Typically, RSSI measurements frequently experience burst interferences from diverse noise 

sources. To enhance the estimation, the mean RSSI data from ten beacons are utilised to deduce 

distance. Table I presents the pseudocode for the RSSI to Distance Transporter. 

3.4 GNA/PSO Optimizer 

3.4.1 GNA:The GNA is recognised for addressing nonlinear least squares estimation issues [17], 

[18]. It is an iterative method that necessitates the user to supply an initial estimate of its answer. 
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Given m functions fi (i = 1,...,m) of n variables β = (β1, β2,...,βn), where m > n, the Generalised 

Newton Algorithm (GNA) can be employed to determine the minimum of the sum of squares. 

 
Commencing with an initial estimate β[0], the procedure advances through iterations. 

 
with the increment Δk satisfying the normal equation 

 
where f represents the vector of functional fi, and Jf is the Jacobian matrix of Jf concerning β[k]. 

In the localisation problem, the predicted deployment position Φdi serves as the first 

approximation. Table II illustrates the 

START 

    // Step 1: Initialize population 

population_size = 100 

    population = GenerateRandomPopulation(population_size) 

    // Step 2: Define parameters for genetic algorithm 

crossover_rate = 0.8 

mutation_rate = 0.1 

    generations = 1000 

    // Step 3: Evaluate initial population 

EvaluatePopulation(population) 

    // Step 4: Repeat for a specified number of generations 

    FOR generation = 1 TO generations DO 

        // Step 5: Select individuals for reproduction (parent selection) 

selected_parents = SelectParents(population) 

        // Step 6: Perform crossover (mating) to create offspring 

        offspring = Crossover(selected_parents, crossover_rate) 

        // Step 7: Perform mutation on offspring 

mutated_offspring = Mutate(offspring, mutation_rate) 

        // Step 8: Evaluate offspring's fitness 

EvaluatePopulation(mutated_offspring) 

        // Step 9: Select individuals for next generation (survival selection) 

        population = SelectNextGeneration(population, mutated_offspring) 

        // Step 10: Optionally print or track the best solution 

best_solution = GetBestSolution(population) 

        PRINT "Generation ", generation, " Best Solution: ", best_solution 
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    END FOR 

    // Step 11: Final output 

best_solution = GetBestSolution(population) 

    PRINT "Best solution found after ", generations, " generations: ", best_solution 

END 

// Function to Generate a random initial population 

Function GenerateRandomPopulation(population_size): 

    population = [] 

    FOR i = 1 TO population_size DO 

        individual = GenerateRandomIndividual() 

        ADD individual TO population 

    END FOR 

    RETURN population 

// Function to Evaluate the fitness of the population 

Function EvaluatePopulation(population): 

    FOR each individual IN population DO 

individual.fitness = CalculateFitness(individual) 

    END FOR 

// Function to select parents for reproduction (based on fitness) 

Function SelectParents(population): 

selected_parents = [] 

    FOR i = 1 TO population_size / 2 DO 

        parent1, parent2 = SelectTwoParents(population) 

        ADD parent1, parent2 TO selected_parents 

    END FOR 

    RETURN selected_parents 

// Function to perform crossover and create offspring 

Function Crossover(parents, crossover_rate): 

    offspring = [] 

    FOR each pair of parents IN parents DO 

        IF random() <crossover_rate THEN 

            child = PerformCrossover(parent1, parent2) 

            ADD child TO offspring 

        END IF 

    END FOR 

    RETURN offspring 

// Function to mutate offspring 

Function Mutate(offspring, mutation_rate): 

    FOR each individual IN offspring DO 

        IF random() <mutation_rate THEN 

MutateIndividual(individual) 

        END IF 

    END FOR 
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    RETURN offspring 

// Function to select the next generation 

Function SelectNextGeneration(population, offspring): 

combined_population = population + offspring 

new_population = SelectBestIndividuals(combined_population) 

    RETURN new_population 

// Function to get the best solution 

Function GetBestSolution(population): 

best_individual = Individual with highest fitness in population 

    RETURN best_individual 

 

 
Pseudocode for the GNA, incorporating a basic line-search algorithm. 
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The pseudocode indicates that the approach entails matrix inversion in Step 3. The iteration will 

be unsuccessful if the matrix JT
fJfis singular. This matrix is theoretically non-singular in this 

localisation problem. Nevertheless, the matrix may approach singularity due to the 

microcontroller's low precision, occasionally failing to converge to the halting requirement. This 

matter will be addressed in a subsequent section. 

3.4.2 PSO:This paper utilises the PSO method described in [19] for the global optimisation of 

sensor node positions. Table III presents the pseudocode utilised for the implementation. Particle 

Swarm Optimisation (PSO) has been applied in diverse fields, including robotics and antenna 

design [20]–[25]. Like other heuristic algorithms, such as the genetic algorithm [26], [27], the 

Particle Swarm Optimisation (PSO) method begins with a population of random solutions, 

referred to as particles. Each particle monitors its optimal fitness solution, referred to as pbest. 

Additionally, the optimiser retains the global best fitness solution, referred to as gbest.  

At every time step, the PSO optimiser modifies the acceleration of two members, which 

correspond to the x- and y-coordinates of the sensor node. 

START 

    // Step 1: Define parameters for PSO 

population_size = 100          // Number of particles 

max_iterations = 1000          // Maximum number of iterations 

inertia_weight = 0.5           // Inertia weight (controls exploration) 

cognitive_coeff = 1.5         // Cognitive coefficient (personal best influence) 

social_coeff = 1.5            // Social coefficient (global best influence) 

    // Step 2: Initialize particles 

    particles = InitializeParticles(population_size) 

    // Step 3: Initialize global best position and fitness 

global_best_position = null 

global_best_fitness = infinity 

        // Step 4: Iterate until maximum iterations or convergence 

    FOR iteration = 1 TO max_iterations DO 

                // Step 5: Update each particle's velocity and position 

        FOR each particle IN particles DO 

            // Step 5.1: Calculate fitness of the current particle 

particle.fitness = EvaluateFitness(particle.position) 

                        // Step 5.2: Update particle's personal best position 

            IF particle.fitness<particle.best_fitness THEN 

particle.best_fitness = particle.fitness 

particle.best_position = particle.position 

            END IF 

                        // Step 5.3: Update global best position 

            IF particle.fitness<global_best_fitness THEN 
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global_best_fitness = particle.fitness 

global_best_position = particle.position 

            END IF 

                        // Step 5.4: Update particle's velocity using the PSO velocity update equation 

particle.velocity = inertia_weight * particle.velocity 

                                + cognitive_coeff * random() * (particle.best_position - particle.position) 

                                + social_coeff * random() * (global_best_position - particle.position) 

                        // Step 5.5: Update particle's position 

particle.position = particle.position + particle.velocity 

                    END FOR 

        // Step 6: Optionally print or track the global best solution 

        PRINT "Iteration ", iteration, " Global Best Fitness: ", global_best_fitness 

    END FOR 

    // Step 7: Output the global best solution 

    PRINT "Best solution found after ", max_iterations, " iterations: " 

    PRINT "Position: ", global_best_position 

    PRINT "Fitness: ", global_best_fitness 

END 

// Function to Initialize particles with random positions and velocities 

Function InitializeParticles(population_size): 

    particles = [] 

    FOR i = 1 TO population_size DO 

        particle = CreateRandomParticle() 

        ADD particle TO particles 

    END FOR 

    RETURN particles 

// Function to Evaluate fitness of a given particle (custom based on the problem) 

Function EvaluateFitness(position): 

    // This should be problem-specific: calculate the fitness value based on the position 

    fitness = CalculateFitness(position) 

    RETURN fitness 

// Function to create a random particle (initialize position and velocity) 

Function CreateRandomParticle(): 

    particle = {} 

particle.position = GenerateRandomPosition()   // Random position in search space 

particle.velocity = GenerateRandomVelocity()   // Random initial velocity 

particle.best_position = particle.position     // Initial personal best is the starting position 

particle.best_fitness = infinity               // Initial personal best fitness is very poor (infinity) 

    RETURN particle 
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// Function to generate a random position within the problem's search space 

Function GenerateRandomPosition(): 

    // This should generate a random value or vector within the valid range of the problem space 

    position = random_value_in_range()  

    RETURN position 

// Function to generate a random velocity 

Function GenerateRandomVelocity(): 

    // Typically, velocity is set to be a small value initially 

    velocity = random_small_value() 

    RETURN velocity 

// Function to calculate the fitness of a position (problem-dependent) 

Function CalculateFitness(position): 

    // This is the function that calculates the fitness value based on the position 

    // For example, it could return the value of the objective function for the given position 

    fitness = some_function(position) 

    RETURN fitness 

The particle will move towards its personal best (pbest) and global best (gbest) positions with a 

stochastic weight. This investigation examines the composition of each particle's state.  

4.0 Inspection of systems 

The microcontroller in question (Microchip PIC18LF4620) has been running the suggested GNA 

and PSO algorithms. Microcontroller features 3968-B SRAM data memory and 64-kB Flash 

program memory. It runs forty MHz in a clock rate. Both algorithms have been written in C 

language utilising floating point structure for simplicity of development. The Microchip MPLAB 

C18 compiler compiles the C programs then downloads them to the Flash memory using the 

MPLAB ICD2 debugger. 

Together, the routines for RSSI to distance translators and transmission scheduler take roughly 4-

kB program memory. The codes for the GNA and PSO optimisers call for roughly 8- and 12-kB 

RAM, respectively. 

We assess the two optimisation techniques in a laboratory environment in the next conversation.  

Here we bypass the RSSI for distance translators as well as the transmission scheduler. From 

their predicted distributions, the required data pedometer and RSSI distance measurements 

randomly generates themselves. 
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Figure 3: Single-direction system evaluation of a sparse network. 

 

As seen in Fig. 3, it is assumed that the network to be evaluated is sparse. It comprises thirty-one 

nodes positioned generally along the path. utilising single-direction approach with GNA, Fig. 3 

presents an example of the localised network; utilising bidirection method with GNA, Fig. 4 

illustrates the localised outcome. 



 

Journal of Computational Analysis and Applications                                                                              VOL 28, NO. 6, 2020 

 

                                                                                              16                                               Er. Parul Awasthi et al 1-25 

 

 

 
Figure 4: Bidirectional based system evaluation of a sparse network. 

 

Not presented for brevity, the localisation result using PSO is virtually exact to the GNA. From 

this work, the variation between the projected placements using these two optimisation 

techniques for every node usually is less than 0.1 units. Here we have utilised a 0.2 pedometer 

and a 0.15 range error factor. Assumed to be the communication range is 60 units. 

With GNA as the optimisation method, Fig. 5 displays the localisation error under several range 

and pedometer error factors for both single- and bidirection approaches. Once more, the PSO 

localisation results are rather close to the GNA.  If p = 0.3, the difference for every data point is 

smaller than 0.1 unit; brevity keeps this from showing. All things considered, with the same 

measurements both GNA and PSO can search the same optimum. The two algorithms may 

converge from distinct directions, so the small variations are caused by termination at different 

points when stopping criterion is satisfied. 
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Fig. 5: Under varying measuring accuracy, average localisation error. 

 
Figure 6: Average localisation mistake at p = 0.35. 

 

 

Nevertheless, as demonstrated in Fig. 6, there is some variation between the localisation 

outcomes of these two techniques given very great pedometer error (p>0.3). PSO typically shows 

superior localisation. This is true because GNA's poor first predictions cause it to periodically 

converge to local minima. 
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4.1 Calculating Computational Expenses 

In general, GNA needs less executive time than PSO for computational costs. From our analysis, 

it is also seen that the GNA computes the second derivative of the objective function most of the 

execution time. Objectives function evaluations occupy just roughly 15% of the execution time.  

Each sensor node has 2.5 average neighbours for single-direction method and 5 neighbours for 

bidirection method out of a communication range of 60 units. 

Table IV localises a single node for various network densities by matching the average execution 

time required by the two techniques. Here the pedometer error factor is 0.2. Table IV makes it 

clear that the PSO needs double the computation time. 

For modest pedometer inaccuracy, therefore, local optimisation techniques like GNA are 

advised. From the table, it is also noted that as the number of neighbouring nodes rises, both the 

techniques require more calculation time. 

TABLE IV: an average execution time to localizes lender versus varying amount of neighbours 

 
Table V: Mean Performance Time Tolerable Based on Lender versus unusual PEDO Meter 

Error Percentage 
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Table V demonstrates the way the pedometer's accuracy influences the GNA computation need. 

Every sensor node here averages 2.5 neighbours. The GNA calls for additional execution time to 

get the necessary precision as the pedometer error factor gets bigger. This is so as the first guess 

will be far from the ideal location. Conversely, the PSO execution time is rather constant. This 

attracts the PSO for a system with significant pedometer error factor. 

 
Figure 7 illustrates the average function objective value in relation to the number of 

iterations/generations. 

Fig. 7 displays the average objective function values against the number of iterations or 

generations for both of these two methods, therefore displaying the performance trend. From the 

figure, one finds that the GNA converges faster. This outcome is expected as the GNA 
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determines the descending direction directly by computing the second derivative of the goal 

function and starts from a location nearer to the minimum. Conversely, by means of comparative 

analysis of the objective function values, the PSO chooses a more estimate. The GNA hence 

usually needs fewer iteration to converge to a minimum. If the starting place is too far off the 

ideal location, though, the GNA could come together to a local minimum.  

4.2 The evaluation of GNA Stability 

GNA entails matrix inversion during its iterations. The iteration will fail if the matrix JT
fJf is 

single.The determining factor of the matrices can be derived as indicated in (13), displayed at the 

bottom of the page. 

In (13), the initial two terms are consistently positive.The third term is 0 when the current 

location estimation and the estimated positions of its neighbouring nodes are 

collinear.Consequently, JT f Jf is often non-singular; nevertheless, it may approach singularity 

due to finite word length when the algorithm is executed on a microcontroller. Consequently, it 

may not converge to a distinct place at times.This occurs when the pedometer error factor is 

sufficiently great to render the first two terms of (13) almost zero, and the neighbouring nodes 

are coincidentally collinear.  

Table VI indicates that when the pedometer error factor exceeds 0.25 and likewise surpasses the 

range error factor, the method may become unstable. In this testing, the predicted positions of 

neighbouring nodes and the initial guessed position are set to be collinear.  

In summation, it is seen that both GNA and PSO possess their own advantages.When the 

precision of the pedometer is elevated, local optimisation is adequate, and these two methods 

yield fairly similar localisation results. In this instance, GNA is favoured as it necessitates 

reduced processing and execution time.Conversely, the PSO is resilient as it consistently 

provides distinct position estimations. The GNA entails a matrix inversion during its 

iteration.Consequently, the optimal result will not be attainable. 

Table VI: Possibility of In percent Stability 
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when the matrix gets singular or approaches singularity due to the precision of the 

microcontroller.While alternative methods can be employed to circumvent the singular matrix in 

the GNA, this may considerably impact the convergence rate.Furthermore, in cases of significant 

pedometer error, GNA may converge to local minima, resulting in greater localisation error 

compared to PSO.For systems with significant pedometer error factors, PSO will be employed 

due of its resilience.  

Alternatively, GNA would be a superior option due to its simplicity and minimal computational 

expenses. 

5.0 Exterior the experiment 

The experimental measurement has been conducted around a lake and a park located on the 

university campus.The network comprises 31 sensor nodes. Each sensor node is equipped with 

an XBeeZNet 2.5 OEM RF module, which is capable of measuring the RSSI.Prior to 

deployment, calibration was conducted to ascertain the parameters utilised in the path-loss 

equation by measuring the RSSI in relation to a reference distance.From the measurement, the 

range of error factor is 0.21. 

 
A pedometer comprises of a three-axis accelerometer-based stride counter and an electronic 

compass.Redeployment measurements indicate that the pedometer error factor is p = 0.22.  

The experimental results are presented in Figures 1 and 8. In the figures, the actual positions of 

the sensor nodes, the estimated positions derived from the pedometer, and the single and 

bidirectional localisation approaches are indicated on the satellite image map. Figure 9 illustrates 

the errors encountered during the localisation process at each node along the deployment path. 

The figure indicates that the average errors for single and bidirectional modes are 16.43 m and 

9.51 m, respectively. The mean error associated with the exclusive use of the pedometer, 

excluding RSSI, is 19.5745 meters. Consequently, the error has been minimised from a 

unidirectional to a bidirectional approach. The superior performance of the bidirectional 

approach is anticipated due to its access to a greater number of RSSI values for processing 

compared to the unidirectional approach. 
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Figure:8 shows outcomes from experiments using the bidirection approach (x-pedometer, real 

position, GNA). 

 
Figure:9 shows the experimental inaccuracy at each node (x-pedometer, single-direction, and 

bidirection). 

TABLE VII PSO VERSUSGNA 
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Figures 8 and 9 present the results obtained using only the GNA. The results obtained from the 

application of PSO closely align with those of GNA and are omitted for brevity. Table VII 

presents the performance outcomes of the two methods. The table indicates that the localisation 

results of PSO and GNA exhibit minimal differences. 

This aligns with previous findings, indicating that both methods can identify the same optimal 

value using the same measurements. Furthermore, the GNA is noted to require approximately 

half the execution time compared to the PSO. 

6.0 CONCLUSION 

This study employs a microcontroller to perform two optimisation methodologies: the GNA and 

PSO techniques, aimed at enhancing sensor node localisation in a WSN. The efficacy of the 

offered methodologies has been assessed and corroborated through experimental results. The 

results indicate that both exhibit comparable performance with enhanced precision. Furthermore, 

the GNA necessitates less computational and execution time compared to the PSO, especially 

when the pedometer's precision is elevated. Nonetheless, significant errors in the pedometer may 

cause the GNAm to converge to a local minimum. In such instances, the PSO is favoured for its 

robustness, consistently providing distinct position estimations. An alternate method could 

involve a Memetic Algorithm that integrates PSO and GNA. In this instance, the algorithm 

utilises a PSO framework and employs a GNAas as a local the investigator. 
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