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Abstract : 

This article focuses on a specific class of integro-differential equations and their 

solutions. A. Ansari et al., in J. Appl. Math. & Informatics utilized the series solution 

method to derive the approximate numerical solution for Volterra integro-

differential equations. In this study, we apply the Laplace decomposition method 

to these equations, exploring both analytic and approximate solutions. 

Furthermore, we present a comparative analysis of the exact and approximate 

solutions for some problems. 
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1. Introduction 

Ordinary and partial differential equations, as well as integro-differential 

equations, are widely used equations in mathematical modelling of real-

world issues. Integro-differential equations are commonly utilised in 

mathematical models used  in physical science, including biological models, 

fluid dynamics, and economics [1,7,13]. Analysing integro-differential 

equations may be a tedious job unless we use an effective technique; hence, 

an effective approximation method is needed to determine the solution. 

There are several methods that dels with the solution of integro differential 

equations. In [1, 2, 3, 4], the series solution method is applied to determine 

the solution integro differential equations. In [5], the Variational iteration 

method determines the solution of differential and integrodifferential 

equations. S.S. Handibag et al. in [6] applied LDM and SSM for the solution 

integro differential equations  of the form  

( ) ( ) ( ) ( )( )
0

,

x

nv x x x t v t dt = + F P     (1) 
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where ( )nv x  indicate the nth derivative of v such as ( )
( )n

n

n

d v x
v x

dx
= . initial 

conditions  (0) ; 0 ( 1)m

mv k m n=   − such as ' " 1(0), (0), 0),.... (0),nv v v v −  the 

function ( )x are given real valued functions, ( ),x tF  is the kernel of integral 

equation, A is suitable constant and m, are constants that define the initial 

conditions. The function ( )( )v tP  is a non-linear function of ( )v x .  

Various strategies, including the series solution method  [10, 11, 12, 

13], the Variation Iteration Method (VIM) [13, 14] have been used to 

address these issues. These approaches combine two efficient methods to 

get accurate solutions to nonlinear equations. The recommended technique 

is demonstrated by solving instances of the Volterra integro-differential 

equations [15] using the established method. The acquired findings are 

compared to precise answers. The current algorithm worked exceptionally 

well in all scenarios. 

2. Methodology 

Combining the Adomian Decomposition and Laplace Transform techniques 

are also referred to as the Laplace Decomposition method (LDM).This 

methods main benefits is its ability to find a nonlinear equation's precise or 

approximate solution [3]. Differential equations can be successfully solved 

using the Laplace Decomposition method (LDM),which was initially 

presented by Suheil A. Khuri [4, 5]. When equation (1) is run through both 

sides using the Laplace transform, the result is  

 

( )  ( ) ( ) ( ) ( )  ( )  ( )( ) 1 2 1'0 0 ... 0  n n jL v x s v s v v L x L x t L v t− − −− − − − = + − +F P  

           (2) 

and 

( )  ( ) ( ) ( ) ( ) ( ) ( )  ( )  ( )( ) 1

2

'1 1 1 1 1
0 0 0 ... 0

n

j n n
L v x v v v v L x L x t L v t

s s s s s


−
= + + + + + + −F P  

           (3) 

In order to accomplish this, the linear expression v(x) on the left is first 

expressed using an endless succession of parts provided by, 

( ) ( )
0

n

n

v x v x


=

=          (4) 

recursively find the components  ( ), 0.nv x n    

For treating  the non-linear component ( )( ) ,G v x the Adomian polynomial 

shall be embodied by an endless series,  

nA we apply the Adomian polynomial get around its difficulties [1,7,8] in the 

format, 
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( )( )
0

( ),n

n

v x A x


=

=P          (5) 

where,  

0 0, 0,1,2,...

1

!

n n
j

n jn
j n

d
A v

n d



 = = =

 
=  

 
        (5) 

is obtained for all forms of nonlinearity types.  (4) into equation (3) result 

in 

( ) ( ) ( ) ( ) ( ) ( )  ( ) 1

0 0

'

2

1 1 1 1 1
0 0 ... 0 ( ) ,

n
n

n nj n n
j n

L v x v v v L x x t L A x
s s s s s




−

= =

   
= + + + + + −   

  
 L F  

           (6) 

with the Adomian decomposition approach, the recursive connection listed 

below can be used 

( )  ( ) ( ) ( ) ( )1

0 2

'1 1 1 1
0 0 ... 0 { ( )},

n

n n
L v x v v v L x

s s s s


−
= + + + +    (7) 

and 

( )  ( )  ( ) 
1

, 1.nn
L v x L x t L A x n

s
= − …F       (8) 

When the first portion of [8] is subjected to the inverse Laplace transform 

0 ( )v x   is obtained  which defined A0 . Consequently, by using second portion 

of  (7) the components of equation (4) will be fully determined. 

 

3. Application of Methodology 

Example.1 Consider the integrodifferential equation, 

( ) ( ) ( ) ( )3" 4

0

1
8

3

x

v x x x x t v t dt= − − − + − with the initial conditions 

( ) ( )'0 0, 0 2v v= = (9) 

To solve the problem we apply Laplace Decomposition Method as 

( )  ( ) ( ) ( )

( )( ) ( ) ( ) ( )

3 4

0

2

"

4

'

5 2

1
8

3

8 1 6 24 1
0 0 .

3

x

L v x L x x x t v t dt

s v s sv v v s
s s s s

 
= − − − + − 

 

 
− − = − − − + 

 


   (10) 

 

Further, we obtain, 
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( )( ) ( )

( )

( ) ( )

( )

2

4 5 2

2 3 6 7 4

4 2 3 6 7

4

4 2 3 6 7

8 2 8 1
2

2 8 2 8 1

1 2 8 2 8
1

2 8 2 8
.

1

s v s v s
s s s s

v s
s s s s s

v s v s
s s s s s

s
v s

s s s s s

− = − − + +

= − − + +

 
− = − − + 

 

 
= − − + −  

    (11) 

Now, applying inverse Laplace transformation to both sides of equation, we 

get, 

( ) 
4

1 1

4 2 3 6 7

2 8 2 8
.

1

s
L v s L

s s s s s

− −   
= − − +  −   

 

By performing some mathematical steps, we get, 

( ) 22 4 .v x x x= − which is an exact solution, for example (Ex.1). 

 

 
Figure-1: Plot of Exact solution of Example (1). 

 

Example.2 Consider the integrodifferential equation 

 ( ) ( ) ( )2' 2'3 2

0

1
,

3
 

x
x tx xv x xe x e e v t dt
−

= + −      (12) 

with initial conditions ( )0 0v = . 

To solve the problem, we apply Laplace Decomposition Method as 
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( )  ( ) ( )

( )( ) ( )
( ) ( ) ( )

( ) 

'23 2 2'

2'

0

2 4

1

3

1 2 1
0 .

21 2

x
x tx xL v x L xe x e e v t

s V s v L v t
ss

dt

s

− 
= + − 

 

− = + −
−− −


   (13) 

Further, we obtain 

( )
( ) ( ) ( )

( ) 4

2'

2

1 2 1

21 2
.V s L v t

s ss s s s
= + −

−− −
    (14) 

Now, applying inverse Laplace transformation to both sides of the equation 

we get, 

( ) 
( ) ( ) ( )

( ) 

( )
( ) ( ) ( )

( ) 

( )
( )

( ) 

1

'

2'

2

21 1

2 4

1 1

2 4

2 2 2 3 2
2 1 '

1 2 1

21 2

1 2 1

21 2

1 1 1
1

8 8 4 4 6 2

x x x
x x x

L V s L L v t
s ss s s s

v x L L L L v t
s ss s s s

xe x e x e
v x e xe e L L v t

s s

− −

− − −

−

= + −
−− −

          
= + −     

−− −          

  
= − + + − + − + −  

−  

 

          (15) 

Now, consider the first iteration  

( )
2 2 2 3 2

2

0

1 1
1 .

8 8 4 4 6

x x x
x x x xe x e x e

v x e xe e= − + + − + − +    (16) 

Now, the first Adomian polynomial is, 

( )0

2
3 2

0

3

2'

0

2 2 4 6 4

0

,

,
3

2 1
.

3 9

x
x

x x x

A v x

x e
A xe

A x e x e x e

=

 
= + 
 

= + +

 

Now, the second approximation is, 

( )
( )

 

( )
( )

( ) 

( )
( ) ( )( ) ( )( )

1

1 0

21

1

1

1 4 5 7

'

1

2

1

2

2 16 80
.

2 2 3 2 4

v x L L A
s s

v x L L v t
s s

v x L
s s s s s s s s

−

−

−

  
= −  

−  

  
= −  

−  

  
= − + + 

− − − − −  

 

By performing some mathematical steps, we get, 

( )
2 2 2 3 2

2

1

1 1
.

8 8 4 4 6

x x x
x xe x e x e

v x e= − + − + −  
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( ) ( ) ( )

( )

( ) ( )

0 1

2 2 2 3 2
2

2 2 2 3 2
2

1 1
1

8 8 4 4 6

1 1

8 8 4 4 6

1 1.

x x x
x x x

x x x
x

x

v x v x v x

xe x e x e
e xe e

v x
xe x e x e

e

v x e x

= +

 
− + + − + − + 

 =
 
− + − + −  

= − +

   (17) 

Now, Hence, ( ) ( )1 1,xv x e x= − +   is an exact solution to example (2). 

 
Figure-2: Plot of Exact solution of Example (2) 

 

 

Example. 3 Consider the integrodifferential equation: 

 
2

0

1
( ) ( ) ,

2

x

v x v t dt = − +   with the initial condition ( )0   0.v =   (18) 

We apply the Laplace transform of both sides of the equation (18). Since we 

have   

 { ( )} ( )v x V s=L  and { ( )} ( ) (0)v x sV s v = −L . Given that ( )0   0v = , we have: 

  2

0

1
( ) ( ) .

2

x

sV s v t dt
s

= − + L  

The Laplace transform of the integral term is: 

     2 2

0

1
( ) ( ) .

x

v t dt v x
s

 =L L  

Thus 

  21 1
( ) ( ) .

2
sV s v x

s s
= − + L  

Rearranging the above equation, we get   2

2 2

1 1
( ) ( )

2
V s v x

s s
= − + L . 



Journal of Computational Analysis and Applications                                VOL. 33, NO. 7, 2024 
Journal's ISSN: 1521-1398 (Paper),1572-9206 (Online) 

 

1701 
S. S. Handibag et. al. (1695-1705) 

Next, we decompose ( )v x  and ( )v x  as: 

0 0

( ) ( ), ( ) ( ).n n

n n

v x v x v x v x
 



= =

= =   

The Adomian polynomials nA  are given by: 

2

0
0

1
( ) .

!

n
k

n kn
k

d
A v x

n d









=
=

  
=   

   
  

From the initial conditions, we have  

0

1
( ) .

2
v x x= −          (19) 

The first Adomian polynomial is: 

 
2

2

0 0

1 1
( ) .

2 4
A v x

 
= = − = 

 
 

Now, we compute ( )1v x  as 

 1

1 02

1

1 2

2

1

1
( )

1 1
( )

4

( ) .
8

v x A
s

v x
s

x
v x

−

−

 
=  

 

  
=   

  

=

L L

L L        (20) 

The second Adomian polynomial is: 

1 0 1

2

1

3

1

2 ( ) ( )

2
2 8

.
8

A v x v x

x x
A

x
A

=

  
= −   

  

= −

 

Further, we compute ( )2v x as 

 1

2 12

3
1

2 2

5

2

1
( )

1
( )

8

( ) .
160

v x A
s

x
v x

s

x
v x

−

−

 
=  

 

   
= −  

   

= −

L L

L L        (21) 

The third Adomian polynomial is: 
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 
2

2 1 0 2

2
2 5

2

6 4

2

( ) 2 ( ) ( )

2
8 2 160

.
160 64

A v x v x v x

x x x
A

x x
A

= +

    
= + − −    

    

= +

         

The next terms 3( )v x  as; 

 1

3 22

6 4
1

3 2

8 6

3

1
( )

1
( )

160 64

( ) .
8960 1920

v x A
s

x x
v x

s

x x
v x

−

−

 
=  

 

   
= +  

   

= +

L L

L L       (22) 

The fourth Adomian polynomial is: 

( ) ( )3 0 3 1 2

9 7

3

2 ( ) ( ) 2

.
17920 480

A v x v x v x v x

x x
A

= +

= − −
 

The next terms 4 ( )v x  as  

 1

4 32

9 7
1

4 2

9 11

4

1
( )

1
( )

17920 480

( ) .
55296 1917200

v x A
s

x x
v x

s

x x
v x

−

−

 
=  

 

   
= − −  

   

= −

L L

L L       (23) 

Similarly, the next terms are computed as follows: 
11 13 15

5

13 15 17

6

15 17 19

7

17 19 21

8

( ) ,
1216512 49847200 2449440000

( ) ,
31933440 479001600 22118400000

( ) ,
34488115200 1016064000000 85996339200000

( )
976924160000 71285145600000 143588639

x x x
v x

x x x
v x

x x x
v x

x x x
v x

= − − +

= − + −

= − + −

= − + .
02720000

 (24) 

The approximate solution up to ( )8v x  is: 
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2 5 6 8 9

11 13

15

( )

17

2 8 160 1920 8960 55296

1 1 1 1

1917200 1216512 49847200 31933440

1 1 1

2449440000 479001600 34488115200

1 1 1

1016064000000 22118400000 976924160000

1

859

v x

x x x x x x

x x

ADM x

x

− + − + + −

   
− + − +   
   

 
= + + − 

 

 
+ − + 
 

−
21

19

.

1

96339200000 71285145600000 14358863902720000

x
x

 
 
 
 
 
 
 
 
 
 
 


 
+


+ 






 


 



which is closer to the exact solution ( )

1
ln 1

2
v xExact x

 
= − + 

 
 , at limiting case. 

The approximate solution in [10] for Example (3) by series solution method 

is 
3 7

( )
2 12 1008

v x

x x x
SSM = − + + +L  

 

 

 

 

 
Figure-3:Plot of Exact and approximate solution of Example (3) 

 

Figure 3 represents the exact and approximate solutions of Example 3.3. The 

graph shows that the Laplace decomposition method is more accurate and suitable 

for problem 3.3 than the series solution method. 

4. Conclusion 
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This study employed the Laplace Decomposition Method (LDM) to solve linear and 

nonlinear integro-differential equations, as outlined in [10]. To address the 

nonlinear cases, we utilised Adomian polynomials. In the referenced article, 

equations Example 1 to  Example 3  were solved using the series solution method, 

which yielded approximate results. In contrast, our application of the LDM to 

Example 1 and  Example 2  produced exact solutions within one or two iterations, 

outperforming the series method, which only provided approximations. For 

Example 3, although we obtained an approximate solution using the LDM, it was 

closer to the exact solution than the one derived from the series method. A 

comparison of these solutions is shown in Figure 3. This shows that for Examples 

(1) to Example (3), the Laplace Decomposition Method is more effective than the 

series solution method. 
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