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1. INTRODUCTION 
Fractional calculus is a field within mathematical analysis that broadens the notions of 

differentiation and integration to include non-integer orders. Unlike traditional calculus, 

which deals exclusively with whole numbers, fractional calculus allows us to work with 

fractional or non-integer orders, opening up a rich field of mathematical exploration. Its 

applications span a wide range of scientific disciplines, from physics and engineering to 

biology and finance. Fractional calculus has proven to be a powerful tool for modeling 

complex systems with memory effects, non-local behavior, and fractal geometry. It has 

been employed in solving differential equations in physics, optimizing control systems, 

understanding anomalous transport phenomena, and even in designing novel financial 

models to better capture the dynamics of markets. In recent years, interest in fractional 

calculus and its applications has surged, as researchers and engineers recognize its 

potential to address a variety of real-world challenges and phenomena with greater 

accuracy and insight. Boundary value problems (BVPs) are widely used in various fields 

of science and engineering, including physics, heat transfer, fluid mechanics, quantum 

mechanics, and more. They often arise when studying physical systems where the 

behavior of the system is influenced by external conditions at its boundaries, for 

nonlinear fractional differential equations see [1-3], for predictor-corrector approach [4-

6], for the existence and uniqueness see [7-14] and references therein. 

In this work, we focus on investigating the following nonlinear    -Caputo fractional 

value problem (   -CFVP) 
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where  10    . Let Ψ be increasing function via Ψ’(t)≠0, Ɐt.  xt,F   from  

  ,a   to  R . 

Our paper is organized as follows: In Section 2, we give a concise review of fundamental 

definitions and essential preliminary information that will serve as a foundation for the 

subsequent sections. In Section 3, we demonstrate the existence and uniqueness of the 

solution, employing both the SFPT and the BFPT and we also delve into the discussion of 

the continuation theorem. Finally, in the last section, we provide an illustrative example 

to showcase the practical application of the results we have derived. 

                               
2. ESSENTIAL PRELIMINARIES 

Within this section, we introduce fundamental definitions and initial facts that will serve 

as a foundational framework for the subsequent sections. 

 Definition 2.1  [15].  The fractional integral 
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 where  0  , is called Riemann-Liouville fractional integral of order     for a 

function    R,0: F   and   .   is the gamma function defined by 
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 Definition 2.2  [15].   The Riemann-Liouville fractional derivative of order  0  , for 

a continuous function    R,0: F   is given by 
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 Definition 2.3  [16].  The Caputo fractional derivative of order  0  , for a 

continuous function    R,0: F   is intended by 
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 Definition 2.4  [19, 20].  The Hadamard fractional integral of order  0  , for a 

continuous function    R,1: f   is given by 
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 Definition 2.5  [19, 20].  The Caputo-Hadamar fractional derivative fractional 
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integral of order  0  , for a continuous function    R,1: F   is given by 
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 Definition 2.6  [17, 21].  The    Riemann-Liouville fractional integral of order  

0   for a continued function    R,: taf   is referred to as 
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 Definition 2.7  [17, 21].  The    Caputo fractional derivative of order  0  , for a 

continuous function    R,: taF   stands for of 
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 Lemma 2.10  [18].  Assuming the continuity of   ,,utF   the initial value problem for 

the nonlinear    Caputo fractional value problem (1.1) can be expressed as an 

equivalent Volterra integral equation in the following manner 

 

          (2.1)      

  

Lemma 2.11  [22].  Consider the subset  M   within the space   TaC ,  . The subset  M   

is  precompact if, and only if, the following conditions are verified: 

 )1(      Mxtv :   is uniformly bounded, 

 )2(      Mxtv :   is equicontinuous on   .,Ta   

 Lemma 2.12  [22, 23].   SFPT    

Give a closed, bounded, and convex subset  U   within the Banach space  ,X   if we 

assume that the mapping  UUP :   is completely continuous, then it follows that  P   

possesses a fixed point within the set  .U   

 Lemma 2.13  [22, 23].   BFPT   
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3. WELL-POSEDNESS 
Now, let's examine the local existence and uniqueness of the solution to    CFVP 

(1.1). We make the following assumption: 

   :1H        ,R,,,  aCxtF   where  ,R   and that   xt,F   is a bounded 

continuous map defined on    ,, 0Ta   where  0   is a supposed to be a bounded subset 

of  .   

     

 Theorem 3.1.  If assumption   1H   is satisfied, then    CFVP (1.1) possesses at 

least one solution     haCtx ,   for a certain   .,Tah   

 

 Proof.  First we start by setting  

 
   

 ,max:,
,,




a
TatTaCa xxxxTaCxS  

 where  0   is a constant. From the continuity of   xt,F  , one can find constant  

0M   verifying  

 
 

         .)(,
1 1

dssxssstxtx
t

a
a F













Journal of Computational Analysis and Applications                                                      VOL. 34, NO. 2, 2025 

                                                 194                                 Lilia Zenkoufi et al 190-203 

     . ,,:,max MNxTatxt F  

 Once more, allow 

 
   

 ,max:,
,,




a
hathaCah xxxxhaCxS  

 where       
   .,min

1
1 Tah 





   

Clearly, the non-empty set  hS   is a closed bounded convex subset of   ., haC   Notice 

that for  ,Th     Sh   and   haC ,   can be respectively regarded as restrictions of  S   and  

 TaC ,  . 

Now let's define an operator 

 
 

           ., ,,
1 1

hatdssxssstxtx
t

a
a 






 FA



                       (3.1) 

 For   ,,haCx   we get 

 
 

         

 
      

 
     .

1

,

,,
1

1

1













at
M

dssst
M

dssxssstxtx

t

a

t

a
a






















 FA

 

 Therefore, we have 

 
 

.
,


haCaxtxA  

   

 The outcome demonstrates that,  .hh SS A   

Next we will prove the continuity of  A   is . Take  hn Sxx ,   such that  

 
 

0
,


haCn xx   as  .n   Then 

   
 

            

 
     

 
     .,,

1

1

,,,
1

,

1









stsxssxs

dssxssxsssttxtx

haCn

n

t

a
n














FF

FFAA

 

 Then, 

   
 

     
 

     .,,
1

1
,




stsxssxstxtx

haCnn 


 FFAA  

    

 Using the fact that  F   is continuous, we get       
 

0,,
,


haCn sxssxs FF   when  

.n   So      0 txtxn AA   as  .n   Hence proving the continuity of the 

operator  A   . 

    

The next step is to show that  hSA   is equicontinuous. It is obvious that 
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 Thus, from (3.2) and (3.3) one has    hSxtx :A   is equicontinuous. 

Furthermore, it is evident that    hSxtx :A   is uniformly bounded due to  hh SS A  . 

By using Lemma 2.11, we see that  hSA   is precompact and hence  A   is completely 

continuous.  Consequently from Lemma 2.12,    CFVP (1.1) has at least a local 

solution, and hence concluding our proof. 

 

To ensure the existence of a unique solution to    CFVP (1.1), we need the following 

assumptions: 

       ,R,:,:2 axtFH   in    CFVP (1.1) meet the Lipschitz condition in 

relation to the second variable,  i. e,   
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 Theorem 3.2.  When assumption   2H   is satisfied, the    CFVP (1.1) possesses a 

unique solution     ,,haCtx    with   .,Tah   

 

 Proof.  As    CFVP (1.1) is equivalent to equation (2.1), demonstrating the existence 

of a unique solution for (2.1) suffices. 

We know that  x   the unique solution to integral equation (2.1) if and only if  ,xx A    

 . ofpoint  fixed a is Ax   So we only need to show that the operator  A   defined by (3.1) 
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Let  ,hSx   we have  



Journal of Computational Analysis and Applications                                                      VOL. 34, NO. 2, 2025 

                                                 197                                 Lilia Zenkoufi et al 190-203 

 
 

         

 

 
    

 

 
 

 

.
1

1

,
1

,,
1

,

,

,

1

































haC

haC

haC

t

a
a

f

at

dssxssstxtx

F

F

FA

 

 So,  hSxA   if  .hSx   

For any  ,21 htta    

   
 

         

 
         

 
               

 
         

 

 
            

 

 
      

 

 
               .2

1

,

,,
1

,
1

,,
1

,
1

1212

,

1

2

,

1

2

1

1

,

1

2

1

2

1

1

1

2

1

121

2

1

1

2

1

1

2

1





























atattt

dssst

dssstst

dsssxsst

dsssxsstst

dssxssst

dssxsssttxtx

haC

t

t

haC

t

a

haC

t

t

t

a

t

a

t

a




























































F

F

F

F

F

F

FAA

 

 This outcome suggests the continuity of  Ax  . 
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 Through the Lipschitz condition and the assumption induction, we deduce that 
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 where  E   is the Mittag-Leffler function. Hence, we can employ Lemma 2.13 to infer 

the uniqueness of    CFVP (1.1). 

 

In the upcoming discussion, our focus lies on finding a continuous solution to    

CFVP (1.1) .   

To achieve this objective, we put forth and substantiate the following continuation result, 

drawing upon the fundamental concept found in [11]. 
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 By the continuity of   tG  , we see that the Cauchy sequence convergence criterion 



Journal of Computational Analysis and Applications                                                      VOL. 34, NO. 2, 2025 

                                                 200                                 Lilia Zenkoufi et al 190-203 

applies, and thus proving the following desired convergence 
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 Considering the uniform continuity of   tL   on   h ,   and (3.5), it a results that  

  hIytBy :   is equicontinuous. Therefore  B   is completely continuous. 

 By Lemma 2.12, the operator  B   has a fixed point    ,hItx 
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the interval   ,, ha    which contradicts the assumption that   tx   is non-continuable. 

Thus, the proving the desired result. 
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4. EXAMPLE 
Consider the following IVP 
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The exact solution of this equation is  tttx log)()(   . 

    

5. CONCLUTION 
In this work, we examined the existence and uniqueness of solution for nonlinear initial 

value problems of fractional differential equations incorporating    Caputo derivative. 

We employed both the Schauder fixed point theorem and Banach contraction theorem. 

Additionally we delved into the continuation theorem, To provide a tangible 

demonstration of our primary findings, we included an illustrative example. 
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