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Abstract 

Unsteady MHD Casson blood flow in porous media: impacts of radiation, chemical reactions, 

thermos-diffusion, and heat generation are discussed in this study. An example of a bio 

viscosity non-Newtonian fluid with an inclination angle and a vibration mode is blood. A 

dimensionless form of the governing equations is achieved by use of the similarity 

transformation. The governing equations are subjected to the Caputo-Fabrizio fractional 

ordered derivative in order to increase the influence of the physical viewpoint. The precise 

formulation of concentration profiles, energies, and momentum is determined by applying the 

Laplace and Finite Hankel transforms. The consequences of various physical parameters are 

illustrated through graphs for a better understanding. 

Keywords:  Magnetic field; Thermal diffusion; Casson fluid; Thermal radiation; fractional 

derivative; 

 

Nomenclature: 
𝛽0  Uniform magnetic field 

𝐵0 Systolic Pressure gradient 

𝐵1 Diastolic Pressure gradient 

𝜃𝑚 Metabolic Heat absorption 

𝑢 Velocity 

𝛽 Casson fluid parameter 

𝑟 Radial coordinator 

∅0 Phase angle 

𝜔 Pulsatile frequency 

𝐶 Concentration 
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𝜇𝐵 Plastic dynamic viscosity 

𝜃 Temperature 

𝜏𝑟 Yield stress 

𝐶𝑝 Specific heat at constant pressure 

2𝜋𝑐 A critical value of this model 

𝑆𝑐  Schmidt number 

𝐹 Inclination angle parameter 

𝑆𝑐 Schmidt number 

𝑀 Magnetic parameter 

𝑃 Oscillating pressure gradient 

𝑡 Dimensionless time 

𝑄𝑚 Metabolic Heat Source 

𝑅𝑒 Reynolds Number 

𝐶𝑝 Specific heat at constant pressure 

𝑃𝑒 Peclet Number 

𝑆𝑟 Soret Number  

𝐷𝑀 Mass diffusion coefficient 

𝐺𝑚 Mass Grashof number 

𝐺𝑟 Thermal Grashof number 

𝑁𝑟 Thermal Radiation 

𝐾𝑐 Chemical Reaction 

𝑃𝑟 Prandtl number 

 
Greek symbols: 

𝑣 Kinematic viscosity coefficient 

𝛽𝑇 Volumetric thermal expansion coefficient 

𝛽𝑐 Volumetric concentration expansion coefficient 

𝜌 Fluid density 

g Acceleration due to gravity 

𝜎 Electrical conductivity 

𝐾1 Thermal conductivity 
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1. Introduction: 

Non-Newtonian fluids include some materials with significant commercial applications that 

don't display Newtonian fluid behaviour. It is important to note that the subclass of non-

Newtonian fluid and the amount of shear stress exerted on it significantly affect how the fluid 

behaves. One basic model for non-Newtonian fluids is the Casson fluid which is introduced by 

Casson [1]. The Casson fluid model to forecast how pigment-oil suspensions would behave in 

terms of their flow characteristics. Human blood can also be considered a Casson fluid. 

Batchelor and George [2] is credited with being the first person to revolutionise the boundary 

layer behaviour of a continuously extending surface. Pramanik [3] studied Casson fluid flow 

is flowing exponentially with heat transfer effects. Study of Casson flow in temperature-

dependent walls done by Bhattacharyya et al. [4], who found an accurate solution for the 

thermal boundary layer. Mahanta and Shaw [5] considered 3D Casson blood flow past in linear 

extending sheet. Wall shear stress on unsteady MHD flow with heat and mass transfer effects 

explored by Alie al. [6]. However, Kataria and Patel [7] investigated a Casson fluid flow 

through a porous media while accounting for MHD effects, heat radiation, and chemical 

reactions. In this analysis, we assume that the thermal radiation impact is linear. Kataria and 

Patel [8] studied a vertically vibrating plate in an isothermal condition, mixed convection flow 

with a ramping wall temperature. Since the fluid's temperature is affected by the boundary 

conditions, it would change with time (t). On the other hand, Shukla et al. [9] looked at the 

effects of an MHD effect, radiation absorption, and heat production or absorption on the 

behaviour of a Casson fluid. Unsteady free convective MHD Casson fluid flow has been 

examined under a variety of situations by researchers including Nadeem [10] and Shehzad [11]. 

Understanding how a magnetic field, thermal diffusion, and acceleration of the body affect 

blood flow at the fractional-order derivative level is a novel and interesting research topic. 

Leibniz introduced the idea of a derivative of a fractional order in 1695, and Liouville 

developed this concept further in 1832. Time derivatives of fractional orders have found useful 

applications in a wide variety of disciplines, from fluid mechanics to biology to mathematics 

to economics, etc. The velocity of blood and magnetic particles was slowed by an external 

magnetic field, as predicted by Caputo fractional derivatives, Laplace, and finite Hankel 

transforms. Some of the most widely used definitions to this day are those of Riemann-

Liouville, Grunwald-Letnikov, and Caputo [12] Recently, Atangana and Ilknu [13] published 

one of the most up-to-date definitions of a fractional derivative. In their expanded work, Sheikh 

et al. [14] accounted for the results of a chemical reaction, heat absorption, and heat production. 
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The current research replicated the previous one, establishing the same conclusion on the 

behaviour of fluids with varying fractional definitions. Maiti et al. [15] investigated the heat 

and mass transport of a Casson fluid via a porous cylindrical tube under the influence of 

magnetohydrodynamic (MHD) and thermal radiation. The scientists investigated how a 

magnetic field and thermal radiation affect heat and mass transfer in an accelerated arterial 

segment. Jamil et al. [16] conducted a study on the flow of non-Newtonian magnetic Casson 

blood in an inclined stenosed artery. They utilized Caputo-Fabrizio fractional derivatives in 

their analysis. The numerical flow of a non-Newtonian fluid through an axisymmetric stenosis 

was investigated by Nakamura et al. [17]. Sud and Sekhon [18] discussed flow in a stenosed 

artery. The fractional derivative concepts are very important role in engineering applications. 

Recently, many researchers considered fractional time derivative model in fluid flow problems 

[19-21]. Ramesh and Devakar [22] obtained analytical results of Casson fluid flow problems 

whereas, Akbar [23] studied blood flow problems with Prandtl fluid model in tapered stenosed 

arteries. The work of MHD flow of Casson fluid with different physical and boundary 

conditions done by Kataria and Patel [24] and Mittal et al. [25]. 

After going over the literature review that was indicated before, we came to the conclusion that 

the impacts of thermal radiation, chemical reaction, thermos-diffusion, and heat generation 

were not specifically discussed on unsteady MHD Casson blood flow in porous medium. To 

determine the precise expression of momentum, energy, and concentration profiles, the Laplace 

transform and the finite Hankel transform are utilized. 

Mathematical Formulation: 

Let us consider thermal radiation, chemical reaction, thermos-diffusion and heat generation 

effects on unsteady free convective Casson Blood flow in the presence of magnetic field with 

periodic vibration. The focus of the current research is on unsteady fluid flow in artery, which 

is outlined in Figure 1 and 𝑧 − 𝑎𝑥𝑖𝑠 is axial direction, while 𝑟 − 𝑎𝑥𝑖𝑠 indicates radial direction. 

An oscillating pressure gradient was utilized to create a non-Newtonian Casson fluid, which 

was subsequently used as a model for blood (Jamil et al. [16]). Blood flow can be increased by 

applying a magnetic field 𝐵0  perpendicular to the z-axis. The induced magnetic field is not 

taken into consideration over the course of this endeavour. Both laminar flow and unstable free 

convection flow are characteristics of our flow behaviour. Due to the fact that we are unable to 

take into account the force convection phenomenon, it is impossible for us to extend our study 

to include both turbulent and steady flow. 
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     Magnetic Particle 

 

 

 

 

 

 

Figure 1: Physical Sketch of the Problem 

The constitutive equations of bio viscosity rheology of Casson fluid model gives Nakamura 

and Sawada [17] 

τij = {
2 (μB +

Py

√2π
) eij             π > πc

2 (μB +
Py

√2πc
) eij             π < πc

       (1) 

In this formula 𝜇𝐵 is the plastic dynamic viscosity, 𝑃𝑦 is fluid’s yield stress, 𝜋 = (𝑒𝑖𝑗)
2
 where 

𝑒𝑖𝑗 is the deformation rate of the (𝑖, 𝑖)𝑡ℎ component. 𝜋𝑐 is the critical value of 𝜋. 

In the equation (1) 𝑃𝑦 is given by 

𝑃𝑦 =
𝜇 𝐵 √2𝜋

𝛾
                                                                                                                           (2) 

According to the Batchelor’s [2] viscosity for the Newtonian system is written as, 

𝜏∗ = 𝜇 
𝜕𝑢

𝜕𝑦
                                                                                                                             (3) 

For the Non-Newtonian Casson fluid flow, we consider 𝜋 > 𝜋𝑐. 

𝜇 = 𝜇𝐵 +
𝑃𝑦

√2𝜋
                                                                                                                        (4) 

As a result, the induced magnetic fields can be disregarded and the magnetic Reynolds 

numbers can be very minimal. Under above assumptions, the governing equations can be 

written as, 

Z 

r 

𝑹𝟎 

𝑩𝟎 ∅ 
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𝜌
𝜕𝑢

𝜕𝑡
=  − 

𝜕𝑝

𝜕𝑧
+ 𝜇 ( 1 +  

1

𝛽
 ) (

𝜕2𝑢

𝜕𝑟2
+  

1

𝑟

𝜕𝑢

𝜕𝑟
) + 𝐺(𝑡) −

𝜇

𝑘
𝑢 −  𝜎𝛽0

2𝑠𝑖𝑛𝜃1 𝑢 + 𝑔𝛽𝑇(𝑇 − 𝑇𝑤) +

𝑔𝛽𝐶(𝐶 − 𝐶𝑤) + 𝑔𝑠𝑖𝑛∅               (5) 

𝜕𝑇

𝜕𝑡
=

𝐾1

𝜌𝐶𝑝
(

𝜕2𝑇

𝜕𝑟2 + 
1

𝑟

𝜕𝑇

𝜕𝑟
) −

1

𝜌𝐶𝑝

𝜕𝑞

𝜕𝑟
+

𝑄𝑚+𝜃𝑚

𝜌𝐶𝑝
        (6) 

𝜕𝐶

𝜕𝑡
= 𝐷𝑚 (

𝜕2𝐶

𝜕𝑟2 +  
1

𝑟

𝜕𝐶

𝜕𝑟
) +

𝐷𝑚𝐾𝑇

𝑇∞
(

𝜕2𝑇

𝜕𝑟2 +  
1

𝑟

𝜕𝑇

𝜕𝑟
) − 𝐾2(𝐶 − 𝐶∞)    (7) 

The periodic vibration term, 𝐺(𝑡) which is appear in equation (5) can be put mathematically 

Sud et al. [18] as,  

𝐺(𝑡) = 𝐴0𝐶𝑜𝑠(𝐾𝑡 + ∅0)          (8) 

The pressure gradient can be express mathematically as, 

−
𝜕𝑝

𝜕𝑧
= 𝐵0 + 𝐵1 cos(𝜔𝑡)          (9) 

with I.C. and B.C. 

𝑢 = 𝑇 = 𝐶 = 0 𝑎𝑡 𝑡 = 0, ∀𝑟 ∈ [0, 𝑅0]                             (10) 

𝜕𝑢

𝜕𝑟
=

𝜕𝑇

𝜕𝑟
=

𝜕𝐶

𝜕𝑟
= 0, 𝑎𝑡 𝑟 = 0, 𝑡 > 0                                 (11) 

𝑢 = 0, 𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤 𝑎𝑡 𝑟 = 1, 𝑡 > 0                  (12) 

By introducing following similarity transformations, the set of revised form of governing 

equations which are dimensionless are as under. 

𝑟∗ =  
𝑟

𝑅0
 , 𝑡∗ =  

𝑡𝑢0

𝑅0
 ,  𝑢∗ =  

𝑢

𝑢0
 ,  𝑝∗ =  

𝑝

𝜌𝑢0
2 , 𝑧∗ =  

𝑧

𝑅0
, 𝜔∗ =  

𝑅0𝜔

𝑢0
 , 𝐾∗ =  

𝐾

𝑢0
, 𝐴0

∗ =
𝐴0𝑅0

𝑢0
2   

  𝜃 =  
𝑇− 𝑇𝜔

𝑇𝜔−𝑇∞
 ,    ∅ =  

𝐶− 𝐶𝜔

𝐶𝜔−𝐶∞
 , 𝑄𝑚 =  

𝑅0𝑄𝑚̅̅ ̅̅ ̅

𝑢0𝜌𝑐𝑝( 𝑇𝜔−𝑇∞)
 , 𝜃𝑚 =  

𝑅0𝜃𝑚
̅̅ ̅̅̅

𝑢0𝜌𝑐𝑝( 𝑇𝜔−𝑇∞)
, 𝑁𝑟 =  

4 𝛼1
2𝑅0

2

𝐾
  

In the equations (5-12) dropping out the " ∗  " notation (for simplicity) we get,  

𝜕𝑢

𝜕𝑡
=  𝐵0 + 𝐵1 cos(𝜔𝑡) +

1

𝑅𝑒
 ( 1 +  

1

𝛽
 ) (

𝜕2𝑢

𝜕𝑟2 +  
1

𝑟

𝜕𝑢

𝜕𝑟
) + 𝐴0𝐶𝑜𝑠(𝐾𝑡 + ∅0) −

1

𝐷𝑎𝑅𝑒
𝑢 −

 
𝑀2

𝑅𝑒
 𝑢 +

𝐺𝑟

𝑅𝑒
2 𝜃 +

𝐺𝑚

𝑅𝑒
2 𝐶 +

𝑠𝑖𝑛∅

𝐹
                                  (13) 

𝑃𝑒
𝜕𝜃

𝜕𝑡
= (

𝜕2𝜃

𝜕𝑟2 +  
1

𝑟

𝜕𝜃

𝜕𝑟
) + 𝑁𝑟𝜃 + 𝑃𝑒(𝑄𝑚 + 𝜃𝑚)                           (14) 

𝑅𝑒𝑆𝑐 
𝜕𝐶

𝜕𝑡
= (

𝜕2𝐶

𝜕𝑟2
+  

1

𝑟

𝜕𝐶

𝜕𝑟
) + 𝑆𝑟 𝑆𝑐 (

𝜕2𝜃

𝜕𝑟2
+ 

1

𝑟

𝜕𝜃

𝜕𝑟
) − 𝑆𝑐 𝐾𝑐 𝑅𝑒

2𝐶              (15) 
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with I.C. and B.C. 

𝑢 = 𝜃 = 𝐶 = 0 𝑎𝑡 𝑡 = 0, ∀𝑟 ∈ [0, 1]                 (16) 

𝜕𝑢

𝜕𝑟
=

𝜕𝜃

𝜕𝑟
=

𝜕𝐶

𝜕𝑟
= 0, 𝑎𝑡 𝑟 = 0, 𝑡 > 0                  (17) 

𝑢 = 0, 𝜃 = 0, 𝐶 = 0 𝑎𝑡 𝑟 = 1, 𝑡 > 0                                    (18) 

Where, 

  𝑅𝑒 =
𝑅0𝑢0

𝜈
, 𝐷𝑎 =

𝑘

𝑅0
2 , 𝑀2 =

𝜎𝐵0
2𝑅0

2

𝜌𝜈
𝑠𝑖𝑛𝜃1, 𝐺𝑟 =

𝑔𝛽𝑇(𝑇𝑤−𝑇∞)𝑅0
3

𝜈2
,    𝐺𝑚 =

  
𝑔𝛽𝐶(𝐶𝑤−𝐶∞)𝑅0

3

𝜈2
,  𝑃𝑟 =  

𝜇𝐶𝑝

𝑘1
,   𝑃𝑒 =  𝑅𝑒 . 𝑃𝑟 , 𝑆𝑐  =  

𝑣

𝐷𝑚
,   𝑆𝑟 =

𝐷𝑚𝐾𝑇(𝑇𝑤−𝑇∞)

𝜈𝑇∞(𝐶𝑤−𝐶∞)
,  𝐾𝑐 =  

𝐾0𝑣

𝑢0
2
   

To consider the form of Caputo-Fabrizio fractional time model, equation (13) to equation 

(18) can be written in fractional derivative form as  

𝐷𝑡
𝛼𝑢 =  𝐵0 + 𝐵1 cos(𝜔𝑡) +

1

𝑅𝑒
 ( 1 + 

1

𝛽
 ) (

𝜕2𝑢

𝜕𝑟2 +  
1

𝑟

𝜕𝑢

𝜕𝑟
) + 𝐴0𝐶𝑜𝑠(𝐾𝑡 + ∅0) −

1

𝐷𝑎𝑅𝑒
𝑢 −

 
𝑀2

𝑅𝑒
 𝑢 +

𝐺𝑟

𝑅𝑒
2 𝜃 +

𝐺𝑚

𝑅𝑒
2 𝐶 +

𝑠𝑖𝑛∅

𝐹
                           (19) 

𝑃𝑒𝐷𝑡
𝛼𝜃 = (

𝜕2𝜃

𝜕𝑟2 +  
1

𝑟

𝜕𝜃

𝜕𝑟
) + 𝑁𝑟𝜃 + 𝑃𝑒(𝑄𝑚 + 𝜃𝑚)                 (20) 

𝑅𝑒𝑆𝑐 𝐷𝑡
𝛼𝐶 = (

𝜕2𝐶

𝜕𝑟2 +  
1

𝑟

𝜕𝐶

𝜕𝑟
) + 𝑆𝑟 𝑆𝑐 (

𝜕2𝜃

𝜕𝑟2 + 
1

𝑟

𝜕𝜃

𝜕𝑟
) − 𝑆𝑐 𝐾𝑐 𝑅𝑒

2𝐶              (21) 

With initial and boundary conditions are as, 

𝑢 = 𝜃 = 𝐶 = 0 𝑎𝑡 𝑡 = 0, ∀𝑟 ∈ [0, 1]                            (22) 

𝜕𝑢

𝜕𝑟
=

𝜕𝜃

𝜕𝑟
=

𝜕𝐶

𝜕𝑟
= 0, 𝑎𝑡 𝑟 = 0, 𝑡 > 0                  (23) 

𝑢 = 0, 𝜃 = 0, 𝐶 = 0 𝑎𝑡 𝑟 = 1, 𝑡 > 0                 (24) 

Where, Caputo-Fabrizio operator is  

𝐷𝑡
𝛼𝑢(𝑟, 𝑡) =

1

1−𝛼
 ∫ exp (−

𝛼(𝑡−𝜏)

1−𝛼
)

𝑡

0
 
𝜕𝑢(𝑟,𝜏)

𝜕𝜏
 𝑑𝜏                (25) 

The Laplace Transform of Caputo-Fabrizio operator Caputo and Fabrizio [12] can be express 

as  

𝐿{𝐷𝑡
𝛼𝑢(𝑟, 𝑡)} =

𝑠𝐿{𝑢(𝑟,𝑡)−𝑢(𝑟,0)}

(1−𝛼) 𝑠+𝛼
                  (26) 
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With 𝛼 (0 < 𝛼 < 1) being the fractional order parameter. 

2. Analytical Solution: 

Taking the Laplace transform and Finite Hankel transform of order zero of equations (13) to 

(15) with initial and boundary conditions (16) to (18), 

𝑆𝛼𝑢(𝑟, 𝑠) =  −
1

 𝑅𝑒
 ( 1 + 

1

𝛽
 ) (

𝜕2𝑢

𝜕𝑟2
+ 

1

𝑟

𝜕𝑢

𝜕𝑟
) −

1

 𝐷𝑎𝑅𝑒
𝑢 −

𝑀2

 𝑅𝑒
𝑢 +  𝐴0 (

𝑆.𝑐𝑜𝑠 ∅0− 𝐾.𝑠𝑖𝑛 ∅0

𝐾2+𝑆2
) +

𝐵0

𝑆
+

                           
𝐵1𝑆

𝐾2+𝜔2
+

𝐺𝑟

 𝑅𝑒
2 𝜃 +

𝐺𝑚

 𝑅𝑒
2 𝐶 +

𝑠𝑖𝑛𝜙

𝑆.𝐹
                (27) 

𝑃𝑒𝑆𝛼𝜃(𝑟, 𝑠) = (
𝜕2𝜃

𝜕𝑟2
+ 

1

𝑟

𝜕𝜃

𝜕𝑟
) + 𝑁𝑟𝜃 + 𝑃𝑒(

𝑄𝑚+𝜃𝑚

𝑆
 )                (28) 

𝑅𝑒𝑆𝑐𝑆𝛼𝐶(𝑟, 𝑠) = (
𝜕2𝐶

𝜕𝑟2 +  
1

𝑟

𝜕𝐶

𝜕𝑟
) + 𝑆𝑟 𝑆𝑐 (

𝜕2𝜃

𝜕𝑟2 +  
1

𝑟

𝜕𝜃

𝜕𝑟
) − 𝑆𝑐 𝐾𝑐 𝑅𝑒

2𝐶             (29) 

Where,  𝑅𝑒 = 
𝑅𝑧

2

𝜆𝑣
 is the Reynolds number, 𝐷𝑎 =

𝜌

𝜆𝑣
 is a porosity parameter, R = 

𝐾𝑁𝜆

𝜌
 is the 

particle Concentration parameter, 𝐻𝑎 =  𝛽0√𝜆√
𝜎𝑠𝑖𝑛𝜃

𝜌
  is the Hartman number, 𝐹 =  

𝑅0

𝜆𝑢0𝑔
 is 

the inclination angle parameter,  𝐾𝑐 =  
𝐾0𝑣

𝑢0
2  the chemical reaction parameter,  𝛽1 =

 
1

𝑅𝑒
[1 +

1

𝛽
]. 

The Boundary conditions (16) to (18) reduce to,  

𝜕𝑢

𝜕𝑟
=

𝜕𝜃

𝜕𝑟
=

𝜕𝐶

𝜕𝑟
= 0 𝑎𝑡 𝑟 = 0.          (30) 

𝑢 = 𝜃 = 𝐶 = 0 𝑎𝑡 𝑟 = 1              (31) 

Applying Finite Hankel transformation of order zero in equations (27) and (28) with 

boundary condition (30) to (31) the following equation can be obtained.  

1

 𝑅𝑒
 ( 1 +  

1

𝛽
 ) [−𝑟𝑛

2𝑢𝐻(𝑟𝑛, 𝑠)] = [ 𝑆𝛼 +
1

 𝐷𝑎𝑅𝑒
+

𝑀2

 𝑅𝑒
 ] 𝑢𝐻(𝑟𝑛, 𝑠) − [𝐴0 (

𝑆.𝑐𝑜𝑠 ∅0− 𝐾.𝑠𝑖𝑛 ∅0

𝐾2+𝑆2 ) +

𝐵0

𝑆
+

𝐵1𝑆

𝑆2+𝜔2
+

𝑠𝑖𝑛𝜙

𝑆.𝐹
] .

𝐽1(𝑟𝑛)

𝑟𝑛
− 

𝐺𝑟

 𝑅𝑒
2 𝜃𝐻(𝑟𝑛, 𝑠) −

𝐺𝑚

 𝑅𝑒
2  𝐶𝐻(𝑟𝑛, 𝑠)    (32) 

𝑃𝑒
𝑆2 𝜃𝐻(𝑟𝑛,𝑠)

𝑆+ 𝛼(1−𝑠)
=  −𝑟𝑛

2𝜃𝐻(𝑟𝑛, 𝑠) − 𝑁𝑟𝜃𝐻(𝑟𝑛, 𝑠) +  𝑃𝑒
𝑄𝑚+𝜃𝑚

𝑆
.

𝐽1(𝑟𝑛)

𝑟𝑛
    (33) 

𝑅𝑒𝑆𝑐𝑆𝛼𝐶𝐻(𝑟𝑛, 𝑠) = −𝑟𝑛
2𝜃𝐻(𝑟𝑛, 𝑠) + (−𝑟𝑛

2) 𝑆𝑟 𝑆𝐶  𝜃𝐻(𝑟𝑛, 𝑠).
𝐽1(𝑟𝑛)

𝑟𝑛
− 𝑆𝑐 𝐾𝑐 𝑅𝑒

2𝐶𝐻(𝑟𝑛, 𝑠)  

(34) 
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Now, rearrange the equation (33)  

𝜃𝐻(𝑟𝑛, 𝑠) =  
𝑃𝑒 (𝑄𝑚+𝜃𝑚)

𝑆 [𝑟𝑛+𝑃𝑒
𝑆 

𝑆+ 𝛼(1−𝑠)
]
.

𝐽1(𝑟𝑛)

𝑟𝑛
       (35) 

𝜃𝐻(𝑟𝑛, 𝑠) =  [
1

𝑆+𝐵15
𝐵13 +

1

𝑆−𝐵15
𝐵14]

𝐽1(𝑟𝑛)

𝑟𝑛
       (36) 

𝐶𝐻(𝑟𝑛, 𝑠) =  −
𝑆𝑟 𝑆𝑐 𝑟𝑛𝑃𝑒 (𝑄𝑚+𝜃𝑚)

(𝑆 [𝑟𝑛+𝑃𝑒
𝑆 

𝑆+ 𝛼(1−𝑠)
])[

𝑅𝑒𝑆𝑐 .𝑆 

𝑆+ 𝛼(1−𝑠)
+𝑟𝑛+𝑆𝑐 𝐾𝑐 𝑅𝑒

2]
.

𝐽1(𝑟𝑛)

𝑟𝑛
    (37) 

𝐶𝐻(𝑟𝑛, 𝑠) =  ( 
𝐵29

𝑆
+

𝐵30

𝑆+ 𝐵27
+

𝐵29

𝑆+ 𝐵28
) .

𝐽1(𝑟𝑛)

𝑟𝑛
       (38) 

1

 𝑅𝑒
 ( 1 +  

1

𝛽
 ) [𝑟𝑛

2]𝑢𝐻(𝑟𝑛, 𝑠) + [ 𝑆𝛼 +
1

 𝐷𝑎𝑅𝑒
+

𝑀2

 𝑅𝑒
 ] 𝑢𝐻(𝑟𝑛, 𝑠) = − [𝐴0 (

𝑆.𝑐𝑜𝑠 ∅0− 𝐾.𝑠𝑖𝑛 ∅0

𝐾2+𝑆2
) +

𝐵0

𝑆
+

𝐵1𝑆

𝑆2+𝜔2 +
𝑠𝑖𝑛𝜙

𝑆.𝐹
] .

𝐽1(𝑟𝑛)

𝑟𝑛
+ 

𝐺𝑟

 𝑅𝑒
2 𝜃𝐻(𝑟𝑛, 𝑠) +

𝐺𝑚

 𝑅𝑒
2  𝐶𝐻(𝑟𝑛, 𝑠)    (39) 

Now, taking Inverse Laplace Transform and Inverse Finite Hankle transform of eqn. (36), 

(38) and (39), we get 

𝜃(𝑟, 𝑡) = 2 ∑
𝐽0(

𝑟

𝑟𝑧
𝑟𝑛)

𝑟𝑛𝐽1
2(𝑟𝑛)

∞
𝑛=1 × [𝐵13𝑒−𝐵15𝑡 +

𝐵14

𝐵15
(1 − 𝑒−𝐵15𝑡)]     (40) 

𝐶(𝑟, 𝑡) = 2 ∑
𝐽0(

𝑟

𝑟𝑧
𝑟𝑛)

𝑟𝑛𝐽1
2(𝑟𝑛)

∞
𝑛=1 × [𝐵29 + 𝐵30𝑒−𝐵27𝑡 + 𝐵31𝑒−𝐵31𝑡]   (41) 

𝑢(𝑟, 𝑡) = 2 ∑
𝐽0(

𝑟

𝑟𝑧
𝑟𝑛)

𝑟𝑛𝐽1
2(𝑟𝑛)

∞
𝑛=1 × 𝑢𝐻(𝑟𝑛, 𝑡) + 𝐺𝑟 2 ∑

𝐽0(
𝑟

𝑟𝑧
𝑟𝑛)

𝑟𝑛𝐽1
2(𝑟𝑛)

∞
𝑛=1 × 𝜃𝐻(𝑟𝑛, 𝑡) +

𝐺𝑚2 ∑
𝐽0(

𝑟

𝑟𝑧
𝑟𝑛)

𝑟𝑛𝐽1
2(𝑟𝑛)

∞
𝑛=1 × 𝐶𝐻(𝑟𝑛, 𝑡)              (42) 

The important characteristic for blood flow is the wall shear stress (skin friction), Nusselt 

Number and Sherwood Number can be expressed as,  

𝐶𝑓 = −
1

𝑅𝑒
 ( 1 +  

1

𝛽
 ) [

𝜕𝑢

𝜕𝑟
]

𝑟=1
       (43)  

𝑁𝑢 = − [
𝜕𝜃

𝜕𝑟
]

𝑟=1
           (44) 

𝑆ℎ = − [
𝜕𝐶

𝜕𝑟
]

𝑟=1
         (45) 

3. Results and Discussion 
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By analysing the effects of different parameter on blood and magnetic particle velocities, 

energy and concentration profiles, the numerical result is obtained and represent through the 

Fig. 2 to 13. Figure 2 to 3 show the effects of 𝐵0 and 𝐵1 on blood velocity where another 

parameter is fixed. In the process of increasing the parameters, it has been discovered that the 

blood flow is strengthened. When the pressure gradient is increased, the speed of the blood 

flow rises, which is a physical manifestation of this phenomenon. 

 
Fig. 2: 𝐵0 on Blood flow Velocity 
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Fig. 3: 𝐵1 on Blood flow Velocity 

 

Fig. 4: 𝑅𝑒 on Concentration 
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Fig. 5: 𝛽 on Blood flow Velocity 

 

Fig. 6: 𝑀 on Blood flow Velocity 
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Fig. 7: 𝑁𝑟 on Blood flow Velocity 

 

Fig. 8: 𝑁𝑟 on Temperature 
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Fig. 9: 𝑃𝑒 on Concentration 

 

Fig. 10: 𝑞𝑚 on Temperature 
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Fig. 11: 𝜃𝑚 on Temperature 

 

Fig. 12: 𝑆𝑟 on Concentration 
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Fig. 13: 𝐾𝑐 on Concentration 

The influence of the Reynolds number, Re, on the concentration profiles is illustrated in Figure 

4. When the Reynolds numbers are increased, it is observed that the velocity gradually drops. 

This has been observed. The influence that a single Casson fluid parameter has on velocity 

profiles is illustrated and discussed in Figure 5. Based on the findings, it can be deduced that 

the Casson fluid parameter has a tendency to speed up the flow of blood. Casson's behaviour 

is especially noteworthy in smaller arteries because of the risk of red blood cell spreading and 

collecting that occurs as a result of the rotation of the arterial axis. In Figure 6, we discuss the 

effects that an external magnetic field has on the mobility of fluids. The flow of motion is 

slowed down as a result of the effects provided by magnetic fields. A rotation of the charge 

particles would occur as a result of the magnetic field's impact. In addition to enhancing the 

Lorentz force, the magnetic field also has the effect of slowing down the standard flow rate. 

Fig. 7-8 show the effects of thermal radiation parameter on velocity and temperature profiles 

respectively. Physically, when we increase the radiation fluid become thin, due to this reason 

temperature as well as velocity of flow is increase. This result is strongly agreed with real 

situation. The influence of the Peclet Number on the concentration profiles is illustrated in 

Figure 9. As can be observed, the mass transfer process becomes more complicated as the 

parameters increase. The influence of heat generation and absorption parameter on temperature 

profile is seen in Figures 10 and 11, respectively. A better heat transfer process is achieved as 
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a result of an increase in heat. In light of the fact that increasing the value of heat generation 

causes the fluid to become thinner, these findings are consistent with the actual scenario. As a 

result, the fluid is accelerated more quickly. The thermos-diffusion effects on Concentration 

profiles discussed in Fig. 12. It is seen that the thermos-diffusion parameter improves the 

Concentration. The effects of Chemical reaction parameter on Mass transfer profiles are 

discussed through the Fig. 13. It is seen that the Mass transfer process improve with high values 

of chemical reaction parameter. 

 

4. Conclusion:  

Within the scope of this paper, the effects of radiation on Casson blood flow are investigated. 

The solution to the governing equations can be found by employing the Laplace transform 

method as well as the Hankel transform approach. After obtaining the data for velocity, 

temperature, and concentration, graphical representations of these values are created in order 

to facilitate a better understanding of their physics. The following are the most important 

findings from this research. 

 The magnetic field element tends to slow down the speed of blood flow.  

 A higher Peclet number indicates a higher blood concentration. This finding will be of 

interest to researchers studying the use of hyperthermia in cancer treatment. 

 The Casson fluid parameter tend to improve the motion of the fluid.  

 Both the systolic and diastolic pressure gradients have been shown to increase blood 

flow. These modifications may restore normal blood flow in the artery.  

 The generation of heat and thermal radiation has a tendency to enhance both the process 

of heat transfer and the flow of blood. 

 Mass transfer improve with high values chemical reaction parameter. 

 

Appendix:  

 

𝐵1 =  𝑅 + 𝐻𝑎2 + 𝐵1𝑟𝑛
2  

𝐵2 = 1 + 𝐺 − 𝛼 − 𝑅 − 𝑅𝛼2 + 2𝑅𝛼 + 𝐵1 + 𝐵1𝛼2 − 2𝛼𝐵1 + 𝐺𝐵1 − 𝐺𝛼𝐵1  

𝐵3 =  𝛼 + 2𝑅𝛼2 − 2𝑅𝛼 − 2𝐵1𝛼2 + 2𝛼𝐵1 + 𝐺𝛼𝐵1  

𝐵4 =  𝐵1𝛼2 −  𝑅𝛼2, 𝐵5 = 1 + 𝛼2 − 2𝛼 + 𝐺 + 𝐺𝛼 , 

 𝐵6 =  −2𝛼2 + 2𝛼 + 𝐺𝛼  

𝐵7 =   
−𝐵3±√𝐵3

2−4𝐵2𝐵4

2𝐵2
, 𝐵8 =

−𝐵3±√𝐵3
2−4𝐵2𝐵4

2𝐵2
,  
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 𝐵9 =
𝐵7

2𝐵5+𝐵7𝐵6+𝛼2

𝐵7−𝐵8
,     

𝐵10 =
𝐵8

2𝐵5 + 𝐵8𝐵6 + 𝛼2

𝐵8 − 𝐵7
, 𝐵11 = (𝑟𝑛)(1 − 𝛼) + 𝑃𝑒 , 

 𝐵12 =  (𝑟𝑛). 𝛼  

𝐵13 =   𝑃𝑒

(𝑄𝑚 + 𝜃𝑚)(1 − 𝛼)

𝐵11
, 𝐵14 = 𝑃𝑒

(𝑄𝑚 + 𝜃𝑚). 𝛼

𝐵11
,  

𝐵15 =  
𝐵12

𝐵11
,  

𝐵16 =  −𝑆𝑟 𝑆𝑐 𝑟𝑛𝑃𝑒 (𝑄𝑚 + 𝜃𝑚), 𝐵17 = 𝑟𝑛,  

𝐵18 = 𝑟𝑛 + 𝑆𝑐 𝐾𝑐 𝑅𝑒
2,  

𝐵19 = 𝑅𝑒𝑆𝑐 , 𝐵20 = 𝐵17 − 𝐵17𝛼 + 𝑃𝑒 ,  

𝐵21 = 𝐵19 +  𝐵18 − 𝐵18𝛼, 𝐵22 = 𝐵17𝛼 

𝐵23 = 𝐵18𝛼, 𝐵24 =
𝐵16

𝐵20. 𝐵21
, 𝐵25 = 2𝛼(1 − 𝛼),  

𝐵26 = (1 − 𝛼)2, 𝐵27 =
𝐵22

𝐵20
 

𝐵28 =
𝐵23

𝐵21
, 𝐵29 =

𝐵24(𝛼2)

𝐵27𝐵28
, 𝐵30 =

𝐵24(𝛼2+𝐵25(−𝐵27)+𝐵26(𝐵27)2)

(−𝐵27)(𝐵28−𝐵27)
,   

𝐵31 =
𝐵24(𝛼2+𝐵25(−𝐵28)+𝐵26(𝐵28)2)

(−𝐵28)(𝐵27−𝐵28)
 , 𝐵32 =  

1−𝛼

𝐺−𝛼+1
 ,  

𝐵33 =  
𝛼

𝐺 − 𝛼 + 1
 

𝑓 ∗ 𝑔 − convolution of 𝑓 & 𝑔 , 𝑓 ∗ 𝑔 =  ∫ 𝑓(𝑧)𝑔(𝑡 − 𝑧)𝑑𝑧
𝑡

0
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