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Abstract 

In this paper we give inequalities involving the Hadamard product and arithmetic- 

harmonic means of matrices. Moreover, we prove the trace inequality of the 

product of the arithmetic and harmonic means. 
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1 Introduction 

Let Mn denote the set of all n × n complex matrices. The Hadamard product 

of two matrices A = [aij] and B = [bij] is their element-wise product which 

is given by 

A ◦ B = [aijbij]. 

If A ∈ Mn and all eigenvalues for A are real, λi(A) denotes the i th largest 
eigenmvalues of A. 

Let A and B be positive definite and t ∈ (0, 1). Then the weighted version 

of arithmetic, geometric and harmonic means are defined [8], respectively, by 

A▽tB = tA + (1 − t)B 
A♯ B = A

1 

(A
−1 

BA
−1 

)tA
−1 

t 2 2 2 2 

A!tB = [tA−1 + (1 − t)B−1]−1. 
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n 

n 

i=k i=k 

i=k i=k 

i=k i=k 

For t = 1/2, we simply put A♯B for A♯1/2B. The usual arithmetic, geomet- 

ric and harmonic means correspond to t = 1/2. The definitions extend to 

positive semidefinte matrices by continuity. For the rest of this paper, we 

assume that A and B are positive definite. It is well known that the following 

inequalities are valid: 

A!tB ≤ A♯tB ≤ A▽tB, 

 

(A ◦ B) ≥ (A♯B) ◦ (A♯B) 

 

(A!tB)♯(A▽1−tB) = A♯B 

Bapat and Sunder [2] proved that 
n n 
Y 

λi(A ◦ B) ≥ 
Y 

λi(A)λi(B), k = 1, . . . , n. (1) 

The Horn theorem [6] says that 
n n 
Y 

λi(AB) ≥ 
Y 

λi(A)λi(B), k = 1, . . . , n. (2) 

Bapat and Johnson [5] proved that 
n n 
Y 

λi(A ◦ B) ≥ 
Y 

λi(AB), k = 1, . . . , n. (3) 

In 2017 Hiai and Lin [4] gave a weighted extension of results of Ando [1] 
 

Y

i=k 

λi(A ◦ B) ≥ 

 

 

λi 
i=k 

(A♯1−tB)(A♯tB) 

 

 

≥ 
i=k 

λi(AB), k = 1, . . . , n. 

In this paper we have to prove the inequalities 

 

Y

i=k 

λi(A ◦ B) ≥ 

 

 

λi 
i=k 

(A▽1−tB)(A!tB) 

 

 

≥ 
i=k 

λi(AB), k = 1, . . . , n 

for 0 ≤ t ≤ 1. We also prove some trace inequality of the product of the 

n n 

n n 

Y Y 

Y Y 
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arithmetic and harmonic means. 
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" # 

" # 

t 

t 

    

        

" 

 
2 Main Results 

The following lemma are well know, we will apply it to prove the next theo- 

rem. 

Lemma 1. [4] Let X be a selfadjoint matrix. For any positive semidefinite 

A, B , the matrix 
A X 

is positive semidefinite if and only if XA−1X ≤ B. 
X B 

Lemma 2. [6] Let A, B be positive semidefinite. Then A♯B is the maximum 

of all selfadjoint matrix X for which 
A X 

is positive semidefinite. 
X B 

We have to prove some lemmas before proving the main theorem. 

Lemma 3. Let A, B be positive definite matrices.  Then for 0 ≤ t ≤ 1, 

A!tB A♯B 

A♯B A▽1−tB 

# 

is positive semidefinite. 

Proof. We have to show A♯B
 

A! B
 −1

A♯B ≤ A▽1−tB. Since we know that 

 

A♯B
 
A! B

 −1

A♯B = tA1/2
 
A−1/2BA−1/2

 1/2

A1/2A−1A1/2
 
A−1/2BA−1/2

 1/2

A1/2 

+ (1 − t)A1/2  A−1/2BA−1/2  
−1/2

A1/2B−1A1/2  A−1/2BA−1/2  
1/2

A1/2 

= tA1/2  A−1/2BA−1/2  A1/2 + (1 − t)A 

= A▽1−tB, 

 

by lemma 2 we have 
A!tB A♯B 

A♯B A▽1−tB 

# 

is positive semidefinite. 

Lemma 4. Let A, B be positive definite matrices. For all 0 ≤ t ≤ 1, A ◦ B ≥ 

(A!tB) ◦ (A▽1−tB)) 

Proof. To prove this lemma, we will use the equation obtained from the 

definition of the geometric mean (AB−1A)♯B = A and the inequality A◦B ≥ 

" 
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n 

    

n Y 

Y 

Y 

n Y 

Y 

i=k 

Y Y 

 

(A♯B) ◦ (A♯B). Then we have that, 

(A!tB) ◦ (A▽1−tB) = ((tA−1 + (1 − t)B−1)−1 ◦ ((1 − t)A + tB) 

= t−1[A − (1 − t)A (1 − t)A + tB 
−1

A] ◦ (1 − t)A + tB 

= [t−1(1 − t)A ◦ A + A ◦ B] 

— t−1(1 − t)A (1 − t)A + tB 
−1

A ◦ (1 − t)A + tB 

≤ [t−1(1 − t)A ◦ A + A ◦ B] − t−1(1 − t)A ◦ A 

= A ◦ B. 
 

Theorem 5. Let A, B be positive definite matrices. Then for 0 ≤ t ≤ 1 

Y

i=k 

λi(A ◦ B) ≥ 

 

 

λi 
i=k 

(A▽1−tB)(A!tB) 

 

 

≥ 
i=k 

λi(AB), k = 1, . . . , n. 

Proof. By Lemma 4 and the inequality (2), we get 

λi(A ◦ B) ≥ λi (A♯1−tB) ◦ (A!tB) , i = 1, . . . , n 

and by the inequality (2) and (3) for any k = 1, . . . , n, we have 

 

Y

i=k 

λi(A ◦ B) ≥ 

 

≥ 

n 

λi 
i=k 
n 

λi 
i=k 
n 

(A▽1−tB) ◦ (A!tB) 

 

(A▽1−tB)(A!tB)
  

≥ λi(A▽1−tB)λi(A!tB). (4) 
i=k 

We proceed to prove the second inequality of this theorem by using lemma 

3 and theorem 2.5 of [4]. As for any k = 1, . . . , n 

Y

i=k 

λi(A▽1−tB) = 

n 

λi 
i=k 
n 

(A!tB)−1 λi (A♯B)(A♯B) 

≥ λi(A!tB)−1λi(AB). (5) 
i=k 

n n 
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i=k 
That is, 

Qn 
λi(A▽1−tB)λi(A!tB) ≥ 

Qn 
λi(AB). 
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i=1 i=1 

i=1 i=1 

 

 
Next we will prove some trace inequality of the product of the arithmetic 

and harmonic means. 

Lemma 6. Let A, B be positive definite matrices. Then 

det((A!tB)(A▽1−tB)) = det(AB). 

Proof. For any the positive definite matrices A and B, det(A♯B) can be 

directly calculated as follows 

det(A♯B) = det A1/2(A−1/2BA−1/2)1/2A1/2 

= det(A1/2) det(B1/2). (6) 

Applying this result, it follows that 

det((A!tB)♯(A▽1−tB)) = det((A!tB)1/2) det((A▽1−tB)1/2). 

But we know that (A!tB)♯(A▽1−tB) = A♯B. Thus 

det((A!tB)(A▽1−tB)) = det(AB). 
 

 

Theorem 7. Let A, B be positive definite matrices. Then 

tr((A▽1−tB)(A!tB)) ≤ tr(AB). 

Proof. Apply lemma 6 by using the relation of the determinant and eigen- 

value, we get n n 
Y 
λi((A!tB)(A▽1−tB)) = 

Y 
λi(AB). 

Thus the second inequality of theorem 5 is equivalent to 
k k 
Y 

λi((A!tB)(A▽1−tB)) ≤ 
Y 

λi(AB), k = 1 . . . n. 

Next, we use the example II.3.5(vii) of [3] implies 

tr((A▽1−tB)(A!tB)) ≤ tr(AB). 
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