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Abstract

In this paper we give inequalities involving the Hadamard product and arithmetic-
harmonic means of matrices. Moreover, we prove the trace inequality of the
product of the arithmetic and harmonic means.
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1 Introduction

Let M, denote the set of all n X n complex matrices. The Hadamard product
of two matrices A = [a;] and B = [bj] is their element-wise product which
is given by

A o B = [a;bj].
If A € M, and all eigenvalues for A are real, 1i(A) denotes the i th largest

eigenmvalues of A.

Let A and B be positive definite and t € (0, 1). Then the weighted version
of arithmetic, geometric and harmonic means are defined [8], respectively, by

AVB =tA+(1—t)B
A#B = A (ATBA A

AlB = [tA1+ (1 — t)B~1] 1,
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For t = 1/2, we simply put A#B for A#:,B. The usual arithmetic, geomet-
ric and harmonic means correspond to t = 1/2. The definitions extend to
positive semidefinte matrices by continuity. For the rest of this paper, we
assume that A and B are positive definite. It is well known that the following
inequalities are valid:

AliB < A#B < AV:B,

(A o B) = (4#B) o (4#B)

(A'B)#(AV1-B) = A#B
Bapat and Sunder [2] proved that

Y Y
AMA o B) =  A(A)A(B), k=1,...,n. (1)
i=k i=k

The Horn theorem [6] says that

n n

Y Y
Ai(AB) = Ai(A)L(B), k=1,...,n. (2)

i=k i=k

Bapat and Johnson [5] proved that

Y Y
Mi(A o B) =  4(AB), k=1,...,n. (3)
i=k i=k

In 2017 Hiai and Lin [4] gave a weighted extension of results of Ando [1]

Y n n
Ji(AoB) > A (4#4-B)4#B) >  A(AB), k=1,...,n.

i=k i=k i=k

In this paper we have to prove the inequalities

Y n n
JilAoB) = A (Avi-B)AIB) > A(AB), k=1,...,n

i=k i=k i=k

for 0 <t < 1. We also prove some trace inequality of the product of the
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arithmetic and harmonic means.
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2 Main Results

The following lemma are well know, we will apply it to prove the next theo-
rem.
Lemma 1. [4] Let: X be g selfadjoint matrix. For any positive semidefinite

A X
A, B, the matrix is positive semidefinite if and only if XA=*X < B.
X B

Lemma 2. [6] Let A, B be positive semidefiniﬁe. Then A#B is the maximum

A X
of all selfadjoint matrix X for which < B is positive semidefinite.

We have to prove some lemmas before proving the main theorem.
Lemma 3. Let %, B be positive definite matrices. Then for 0 <t < 1,

Al:B A#B
A#B AV1-B

is positive semidefinite.

-1
Proof. We have to show A#B AtB A#B < AVi1-B. Since we know that

A#B A;B _1A#B=tA1/2 A—l/ZBA—l/Z 1/2A1/2A_1A1/2 A—l/ZBA—l/Z 1/2'0\1/2

+(1 _ t)Al/Z A—l/ZBA—l/Z _1/2A1/ZB—1A1/2 A—l/ZBA—l/Z 1/2A1/2
=tAY2 ATY2BATY2 AV2 4+ (1 — H)A
- AV 1—tB,
m #
Al,B A#B
by lemma 2 we have is positive semidefinite. O
A#B AVi-B
Lemma4. Let A, B be positive definite matrices. Forall0 <t <1, AocB =
(A!:B) o (AV1-:B))

Proof. To prove this lemma, we will use the equation obtained from the

definition of the geometric mean (AB~tA)#B = A and the inequality AcB >
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(4#B) o (4#B). Then we have that,

(AlB) o (AV1-B) = ((tA1 + (1 — )B1)L o (1 — DA + tB)
A= (1—0A (1—tHA+tB Ao (1—t)A+tB
—[t{1—t)Ao A+Ao B
U 1—1A (1—0A+1B Ao (1—1A+1B
<[tY1—t)Ao A+AoB] —t-1(1 — Ao A

=AoB.
O]
Theorem 5. Let A, B be positive definite matrices. Then forO <t<1
Y n n
JilAoB) > A (AviB)AIB) > A(AB), k=1,...,n
i=k i=k i=k
Proof. By Lemma 4 and the inequality (2), we get
AilA o B) = A (A#1-B)o (Al:B) , i=1,...,n
and by the inequality (2) and (3) forany k=1, ...,n, we have
w n
Ji(AoB) > A (AVi-B)o (Al;B)
i=k i=k
> A (Avi-B)(AlB)
i=k
h'd
>  Ji(AV1-B)Li(A:B). (4)
i=k

We proceed to prove the second inequality of this theorem by using lemma

3 and theorem 2.5 of [4]. As for any k=1,...,n
Y N
Ji(AV1-B) = A (AlLB)™' A (4#B)(A#B)
i=k i=k
hd
> A(AlB)14(AB). (5)
i=k

i=k
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. Q
Thatis, ~_ A(AV1-B)L(AlB) = N Ai(AB).
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Next we will prove some trace inequality of the product of the arithmetic
and harmonic means.

Lemma 6. Let A, B be positive definite matrices. Then

det((A!:B)(AV1-B)) = det(AB).

Proof. For any the positive definite matrices A and B, det(4#B) can be
directly calculated as follows

det(4#B) = det AVZ(A~Y2BA-V2)1/2A1/2
= det(Al/z) det(Bl/z). (6)

Applying this result, it follows that
det((Al:B)#(AV1-B)) = det((A!:B)*2) det((AV1-:B)?).
But we know that (A!:B)#(AV1-B) = A#B. Thus

det((A!:B)(AV1-B)) = det(AB).

Theorem 7. Let A, B be positive definite matrices. Then

tr((Av1-:B)(Al:B)) < tr(AB).

Proof. Apply lemma 6 by using the relation of the determinant and eigen-

value, we get " "

Y Y
Ai((A:B)(AVi1i-:B)) = Ai(AB).

=1 i=1

Thus the second inequality of theorem 5 is equivalent to

k K
Y Y

Zi((AB)(AV1i-B)) =  A{(AB), k

=1 =1

1...n.

Next, we use the example 11.3.5(vii) of [3] implies

tr((Avi-:B)(A!:B)) < tr(AB).
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