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1. Introduction 

According to experts, the renewal process (RP) and the non-homogeneous 
Poisson process (NHPP), of which the homogeneous Poisson process (HPP) is a specific 
case of these two models, are the most commonly used process models to simulate 
periodic events. We can use the arrival time between two events according to the 
independent and identical exponential distribution (i.i.d.) to determine the HPP. The 
fact that the HPP has independent and stationary increasing properties is its main 
feature. In RP, the arrival time is calculated by a random distribution with non-negative 
support. The independent increasing property is preserved in the NHPP while the 
stationary increasing property of the HPP is lost. This allows for clear results in various 
applications, which is one of the main advantages of NHPP. Several attempts have been 
made to generalize this simple counting procedure to more regular procedures. For 
example, NHPP or HPP are generalized using complex, filtered, high-dimensional, and 
remarkable Poisson procedures. Semi-Markovian procedures are studied in detail and 
used in many applications as generalized counting techniques. Although process 
counting trends are widely used, as mentioned previously, the number of technical 
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counting trends that can be used in different contexts is still very limited, and there is 
still a significant gap between the need for trending in many programs and the 
availability of actual trends. NHPP is not always suitable due to these limitations, but if a 
new version of the counting method that overcomes these limitations is properly 
developed, it could be used in practice. Counting, which tracks the number of events 
occurring at a given point in time, can be used in a variety of fields such as finance, 
epidemiology, and reliability analysis to study events such as customer arrivals, machine 
failures, or disease outbreaks. These models help us understand and predict the timing 
and frequency of these events, which is essential for decision making and risk 
assessment in many real-world situations. 

A non-uniform Poisson process is a stochastic model used in probability theory 
and statistics to describe the occurrence of events over time when the magnitude of the 
event is not constant. In a traditional Poisson process, events occur at a constant rate, 
but in a non-uniform Poisson process, the rate of events varies over time. This model is 
particularly useful in situations where events are more or less likely to occur over time. 
For example, it can be applied to model customer visits to a store, where the arrival rate 
may be higher during certain hours or days. 

By combining the Poisson and Lindley distributions in 1970, Sankaran [8]created 
the Poisson-Lindley distribution, of which the probability mass function is 

𝑓(𝜉; 𝜔) =
𝜀2(𝜉 + 𝜔 + 2)

(1 + 𝜔)𝜉+3
, 𝜉 = 0,1,… ,𝜔 > 0 

Several works (see Shanker ([12], [13], [14])), Grine and Zeghdoudi [3], 
Zeghdoudi and Nedjar ([15], [7]), Seghier et al. [9] introduce new discrete distributions 
by compound Poisson and others introduce new continuous distributions like Poisson-
Amarendra[12], Poisson-Sujatha[13], Poisson-Garima[14], Poisson Quasi-Lindley[3], 
Poisson Pseudo-Lindley[15], Poisson-Gamma Lindley[10], PoissonXLindley [11], and 
Poisson- new XLIndley.distributions [9] . 

This paper uses the following approach. The new process is designed as a Poisson 
process with an new XLindley mixture distribution. Based on this construction, the basic 
properties are determined. The new model allows for a wider range of possible process 
behaviors than the Poisson process and the Lindley Poisson process (Cha [2]), while 
remaining quite mathematically tractable. The Poisson-new XLindley (PNXL) process is 
a statistical model that combines elements of the Poisson process and the new XLindley 
distribution. This process is used to model random events or quantities in various 
applications, such as reliability analysis, computational science, and queuing theory. 

The motivations for undertaking this work are: 

 The Poisson new XLindley process is a statistical model that combines elements 
of Poisson and new XLindley distribution. 

 It is simple and easy to use and most properties can be calculated. 

 It is a more flexible model than the standard Poisson, Poisson-Lindley and 
Poisson-new XLindley processes. 
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 It is used to model random events and quantities in a variety of applications such 
as: reliability analysis, residual models, actuarial science and failure probability 
models. 

The paper is structured as follows: In Section 2, a new counting process model is 
defined and the distribution of the number of events in a certain time is derived. 
Furthermore, the variance and mean are derived from the number of occurrences in 
(0, t). The random strength of the modified counting process model is determined in 
Section 3. Finally, a simulation study is used to demonstrate the usefulness of the 
proposed processs in comparison with the Poisson, Poisson-Lindley, and Poisson-
XLindley processes. 

2 . Poisson NXLindley Process and its fundamental 

characteristics. 

Developing a novel counting process model with well-defined mathematical 
properties  is one of the primary objectives of this work. We use the idea that was used to 
generate the Poisson NXLindley distribution toward this goal. Let 𝑋 follow the 
NXLindley distribution with parameter 𝜃 with its probability density function (pdf) 

𝑓𝑁𝑋𝐿𝐷(𝑥; 𝜃) =
𝜃

2
(1 + 𝜃𝑥)𝑒−𝜃𝑥 , 𝑥, 𝜃 > 0 

The rth  moment about the origin of the NXLindley distribution is given by (see, e.g., 
Khodja et al. [6]). 

𝜇(𝑟)
′ =

(𝑟 + 2)𝑟!

2𝜃𝑟
, 𝑟 = 1,2, … 

A comprehensive treatment of the mathematical properties of the NXLindley 
distribution including estimation and simulation issues is also provided in [6]. The 
Poisson NXLindley distribution ([9]) is generated by the mixture of the Poisson 
distribution with mean Φ, resulting in the corresponding probability mass function 

𝑃𝑃𝑁𝑋𝐿𝐷= ∫  
∞

0

 
𝑒−𝜆𝜆𝑥

𝑥!
⋅ (−

Φ

2
) (1 − Φ𝜆)𝑒𝜆Φ𝑑𝜆

=
𝜃

2
[
𝜃𝑥 + 2𝜃 + 1

(1 + 𝜃)𝑥+2
]

 

The p.m.f. of the Poisson NXLindley distribution (PNXLD) with parameter 𝜃 can 
be obtained as 

𝑃𝑃𝑁𝑋𝐿𝐷(𝑥; 𝜃) =
𝜃(𝜃𝑥 + 2𝜃 + 1)

2(1 + 𝜃)𝑥+2
, 𝑥 = 0,1,2,… ; 𝜃 > 0 (1) 

The rth  factorial moment about origin of the PNXLD (1) can be obtained as 

𝜇(𝑟)
′ =

𝑟! (𝑟 + 2)

2𝜃𝑟
, 𝑟 = 1,2,3,… 
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The first four moments about origin and the variance of PNXLD obtained by 
Seghier et al. [9] are as follows 

𝜇1
′ =

3

2𝜃
, 𝜇2

′ =
8+3𝜃

2𝜃2
, 𝜇3

′ =
3𝜃2+24𝜃+30

2𝜃3
, 𝜇4

′ =
3𝜃3+56𝜃2+180𝜃+144

2𝜃4
 and Var =

6𝜃+7

4𝜃2
 

To broaden the scope of this Poisson NXLindley distribution into a model for 
counting processes, wherein the probability of the number of events is explicitly defined, 
the concept involves introducing an extra time-dependent component into the mean 
value of the Poisson distribution during the mixing process described in equation (1). 
Let us consider an orderly counting process {𝑁(𝑡), 𝑡 ≥ 0}. In this work, as in [2], we will 
using the notation 

{𝑁(𝑡), 𝑡 ≥ 0} ∼ 𝑁𝐻𝑃𝑃(𝜈(𝑡)) 

to indicate that the counting process {𝑁(𝑡), 𝑡 ≥ 0} follows the NHPP with its 
intensity function 𝜈. In addition, we will indicate that the continuous random variable 𝜃 
obeys the NXLindley distribution with parameter 𝜃 by using the notation Φ ∼ 𝑁𝑋𝐿𝐷(𝜃). 
The definition of the Poisson NXLindley process (PNXLP) is given below. 

Definition 1 (Poisson NXLindley Process). 
A counting process {𝑁(𝑡), 𝑡 ≥ 0} is called the Poisson NXLindley process (PNXLP) with 
the set of parameters (𝜆(𝑡), 𝜃), 𝜃 > 0, 𝜆(𝑡) ≥ 0, ∀𝑡 ≥ 0, if 

𝐼{𝑁(𝑡), 𝑡 ≥ 0} ∣ (Φ = 𝜙) ∼ 𝑁𝐻𝑃𝑃(𝜙𝜆(𝑡))

𝐼𝐼Φ ∼ 𝑁𝑋𝐿𝐷(𝜃)
 

During the entire document, the Poisson NXLindley process with the set of 

parameters (𝜆(𝑡), 𝜃) will be denoted by 𝑃𝑁𝑋𝐿𝑃(𝜆(𝑡), 𝜃) and we defineΛ(𝑡) = ∫0
𝑡
 𝜆(𝑥)𝑑𝑥.  

Now we will derive some basic properties ofPNXLP(𝜆(𝑡), 𝜃). First, the number(s) 
of events in a given time interval(s)may be of interest when working with a counting 
process model. 

Proposition 2 Let {𝑁(𝑡), 𝑡 ≥ 0} be the PNXLP(𝜆(𝑡), 𝜃). Then, for 𝑡 > 0and 0 ≡
𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑚, the following properties hold: 

I. 

𝑃(𝑁(𝑡) = 𝑛) =
𝜃

2
Λ(𝑡)𝑛 [

2𝜃 + Λ(𝑡) + 𝜃𝑛

(𝜃 + Λ(𝑡))𝑛+2
] 

II. 

𝑃(𝑁(𝑡2) − 𝑁(𝑡1) = 𝑛) =
𝜃

2
(Λ(𝑡2) − Λ(𝑡1))

𝑛
[
2𝜃 + (Λ(𝑡2) − Λ(𝑡1)) + 𝜃𝑛

(𝜃 + (Λ(𝑡2) − Λ(𝑡1)))
𝑛+2 ] 

III. 
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𝑃(𝑁(𝑡𝑖) − 𝑁(𝑡𝑖−1) = 𝑛, 𝑖 = 1,2, … ,𝑚)=
𝜃

2
[∏ 

𝑚

𝑖=1

 
(Λ(𝑡𝑖) − Λ(𝑡𝑖−1))

𝑛𝑖

𝑛𝑖!
] (∑  

𝑚

𝑖=1

 𝑛𝑖) !

∗ [
2𝜃 + ∑  𝑚

𝑖=1  (Λ(𝑡𝑖) − Λ(𝑡𝑖−1)) + 𝜃 ∑  𝑚
𝑖=1  𝑛𝑖

(𝜃 + ∑  𝑚
𝑖=1   (Λ(𝑡𝑖) − Λ(𝑡𝑖−1)))

∑  𝑚
𝑖=1  𝑛𝑖+2

]

 

Proof. see [1]. 
Proposition 3 Let {𝑁(𝑡), 𝑡 ≥ 0} be the PNXLP(𝜆(𝑡), 𝜃). Thus, the ensuing characteristics 
are true: 

i. 𝑁(𝑡) 's moment generating function is provided by 

𝜓(𝑠) =
𝜃

2
[

1

(𝜃 + Λ(𝑡) − 𝑒𝑠Λ(𝑡))
+

𝜃

(𝜃 + Λ(𝑡) − 𝑒𝑠Λ(𝑡))2
] , 𝑠 < 𝑙𝑛(

𝜃 + Λ(𝑡)

Λ(𝑡)
) 

ii. 𝑁(𝑡) 's mean and variance are provided by 

𝐸[𝑁(𝑡)] =
3

2𝜃
Λ(𝑡) 

and 

Var[𝑁(𝑡)] =
Λ(𝑡)(6𝜃 + 7Λ(𝑡))

4𝜃2
 

Proof. see [1]. 
Proposition 4 Let {𝑁(𝑡), 𝑡 ≥ 0} be the Poisson GD process. Then 

Var(𝑁(𝑡)) > 𝐸[𝑁(𝑡)] 

Proof. Since the proof is similar to that given in Cha and Mercier [4], it is omitted. 

3.  Compound PNXLP 

The compound Poisson NXLindley process of the stochastic process {𝑊(𝑡), 𝑡 ≥ 0} 
is defined as follows: 

{𝑊(𝑡) = ∑  

𝑁(𝑡)

𝑖=1

 𝑋𝑖 , 𝑡 ≥ 0} 

where{𝑁(𝑡), 𝑡 ≥ 0} is the PNXLP, and {𝑋𝑖, 𝑖 ≥ 1} is a family of identically distributed 
random variables that are independent of {𝑁(𝑡), 𝑡 ≥ 0}. Let 𝑀𝑥(𝑠) ≡ 𝐸[𝑒𝑠𝑋𝑖], the MGF of 
𝑋𝑖. The mean, variance, and moment generating function of 𝑊(𝑡) are shown in the 
following result. 
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Theorem (𝑡) 's moment generating function, represented by 𝑀𝑊(𝑡)(𝑠), is as follows: 

𝑀𝑊(𝑡)(𝑠) =
𝜃

2
[

1

(𝜃 + Λ(𝑡) − 𝑀𝑋(𝑠)Λ(𝑡))
+

𝜃

(𝜃 + Λ(𝑡) − 𝑀𝑋(𝑠)Λ(𝑡))
2] 

where (𝑡) 's mean and variance are 

𝐸[𝑊(𝑡)] =
3

2𝜃
𝐸[𝑋]Λ(𝑡) 

and 

Var[𝑊(𝑡)]=
3

2𝜃
𝐸[𝑋2]Λ(𝑡) +

9

4𝜃2
(𝐸[𝑋]Λ(𝑡))2

=
9(𝐸[𝑋]Λ(𝑡))2 + 6𝜃𝐸[𝑋2]Λ(𝑡)

4𝜃2

 

Proof. Upon conditioning on 𝑁(𝑡) we get, 

𝑀𝑊(𝑡)(𝑠)= ∑  

∞

𝑛=0

 𝐸[𝑒𝑠𝑊(𝑡) ∣ 𝑁(𝑡) = 𝑛]𝑃(𝑁(𝑡) = 𝑛)

= ∑  

∞

𝑛=0

 𝐸[𝑒𝑠(𝑋1+𝑋2+⋯+𝑋𝑛) ∣ 𝑁(𝑡) = 𝑛]𝑃(𝑁(𝑡) = 𝑛)

= ∑  

∞

𝑛=0

 𝐸[𝑒𝑠(𝑋1+𝑋2+⋯+𝑋𝑛)]𝑃(𝑁(𝑡) = 𝑛)

= ∑  

∞

𝑛=0

  (𝑀𝑋(𝑠))
𝑛𝑃(𝑁(𝑡) = 𝑛).

 

Subsequently, by employing analogous reasoning to that elucidated in the proof of 
Proposition 2, we obtain the anticipated outcomes. 
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4. Simulation Study: Ruin model 

We take the continuous-time model is one where the losses are modeled by a 
compound Poisson XLindley process: for > 0𝑈𝑡 = 𝑢 + 𝑐𝑡 −𝑊(𝑡), where 

𝑊(𝑡) = ∑∑ 𝑋𝑖, 𝑡 ≥ 0
𝑁(𝑡)

𝑖=1
 

Or 

 𝑢 represents the initial capital, 

 𝑐 is the premium per unit of time, 

 𝑊(𝑡)represents the aggregate losses up to time 𝑡, with 
𝑁(𝑡) is Poisson XLindley process of intensity 𝜆, 
the 𝑋𝑖 represent the individual losses, they are assumed to be i.i.d. of expectation 
𝐸[𝑋𝑖] and independent of 𝑁(𝑡). 
We have 

𝐸[𝑈𝑡] = 𝑢 + (𝑐 − (𝜃(2 + 𝜃) + 2)𝜆
𝐸[𝑋𝑖]

𝜃(1 + 𝜃)2
) 𝑡, Var(𝑈𝑡) = 𝑡Var[𝑊(𝑡)] 

For compound Poisson new XLindley process: 

𝐸[𝑈𝑡] = 𝑢 + (𝑐 − 3𝜆𝐸[𝑋𝑖]/2𝜃)𝑡, Var(𝑈𝑡) = 𝑡Var[𝑊(𝑡)] 

Remark 6 (Compound Poisson XLindley process) We can show that if 𝑐 ≤ (𝜃(2 + 𝜃) +

2)𝜆
𝐸[𝑋𝑖]

𝜃(1+𝜃)2
, then the company is sure to be ruined. 

We defined 𝐿(𝑢)𝑃 (it exists 𝑡 ≥ 0:𝑈𝑡 < 0/𝑈0 = 𝑢) = 1. In the case where 𝑐 > (𝜃(2 + 𝜃) +

2)𝜆
𝐸[𝑋𝑖]

𝜃(1+𝜃)2
, using the law of large numbers, we have 

𝑊(𝑡)

𝑡
=

𝑁(𝑡)

𝑡

1

𝑁(𝑡)
∑𝑖=1
𝑁(𝑡)

 𝑋𝑖 → (𝜃(2 + 𝜃) +

2)𝜆
𝐸[𝑋𝑖]

𝜃(1+𝜃)2
 when 𝑡 → ∞ and therefore 𝑈𝑡 = 𝑢 + 𝑡 (𝑐 −

𝑊(𝑡)

𝑡
) → +∞, when 𝑡 → +∞, 𝐿(𝑢) <

1. 

(Compound Poisson new XLindley process) We can show that if ≤ 3𝜆𝐸[𝑋𝑖]/2𝜃, 
then the company is sure to be ruined. 

We defined 𝐿(𝑢)𝑃(  it exists 𝑡 ≥ 0:𝑈𝑡 < 0/𝑈0 = 𝑢) = 1. In the case where > 3𝜆𝐸[𝑋𝑖]/2𝜃, 

using the law of large numbers, we have 
𝑊(𝑡)

𝑡
=

𝑁(𝑡)

𝑡

1

𝑁(𝑡)
∑𝑖=1
𝑁(𝑡)

 𝑋𝑖 → 3𝜆𝐸[𝑋𝑖]/2𝜃 when 𝑡 →

∞ and therefore 𝑈𝑡 = 𝑢 + 𝑡 (𝑐 −
𝑊(𝑡)

𝑡
) → +∞, when 𝑡 → +∞, 𝐿(𝑢) < 1. 

Now, if 𝑋𝑖 ⇝ exponential distribution where 𝐸[𝑋𝑖] = 𝑉[𝑋𝑖] = 1 and 𝐸[𝑋𝑖
2] =2 . 
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Table 1: Compound Poisson New XLindley Process 

𝑢 𝑐 𝜆 𝜃 𝑇 𝐸[𝑈𝑡] 𝑉[𝑈𝑡] 

10 1 0.1 0.2 1 10.025 2.0625 

50 5 0.5 1 1 54.25 2.0625 

75 10 1 2 1 84.25 2.0625 

75 30 1 2 1 104.25 2.0625 

75 5 10 2 1 72.5 71.25 

100 20 2 5 2 138.8 3.12 

100 20 0.2 0.5 2 138.8 3.12 

150 50 1 3 2 249.0 2.5 

150 10 1 3 2 169.0 2.5 

150 1 5 1 2 137.0 142.5 

Table 2: Compound Poisson XLindley Process 

𝑢 𝑐 𝜆 𝜃 𝑇 𝐸[𝑈𝑡] 𝑉[𝑈𝑡] 

10 1 0.1 0.2 1 10.153 2.412 

50 5 0.5 1 1 54.375 1.64 

75 10 1 2 1 84.444 1.419 

75 30 1 2 1 104.44 1.419 

75 5 10 2 1 74.444 41.975 

100 20 2 5 2 139.18 0.991 

100 20 0.2 0.5 2 138.84 1.489 

150 50 1 3 2 249.29 0.833 

150 10 1 3 2 169.29 0.833 

150 1 5 1 2 139.5 51.563 
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Table 3: Compound Poisson Lindley Process 

𝑢 𝑐 𝜆 𝜃 𝑇 𝐸[𝑈𝑡] 𝑉[𝑈𝑡] 

10 1 0.1 0.2 1 10.083 2.326 

50 5 0.5 1 1 54.25 1.937 

75 10 1 2 1 84.333 1.722 

75 30 1 2 1 104.33 1.722 

75 5 10 2 1 73.333 52.222 

100 20 2 5 2 139.07 1.142 

100 20 0.2 0.5 2 138.67 1.635 

150 50 1 3 2 249.17 0.993 

150 10 1 3 2 169.17 0.993 

150 1 5 1 2 137 58.75 

Table 4: Compound Poisson Lindley Process 

𝑢 𝑐 𝜆 𝑇 𝐸[𝑈𝑡] 𝑉[𝑈𝑡] 

10 1 0.1 1 10.9 0.2 

50 5 0.5 1 54.5 1 

75 10 1 1 84.0 2 

75 30 1 1 104.0 2 

75 5 10 1 70 20 

100 20 2 2 139.6 8 

100 20 0.2 2 139.6 0.8 

150 50 1 2 248.0 4 

150 10 1 2 168.0 4 

150 1 5 2 142 20 
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Tables 1, 2, 3 and 4 presents the expectation and variance of 𝑈𝑡 using Poisson new 
XLindley, Poisson XLindley, Poisson Lindley process. 

According to tables 1-4, the compound Poisson new XLindley, compound Poisson 
Lindley and compound Poisson XLindley process gives satisfactory results with respect 
to compound Poisson process because the proposed process has more parameters which 
can overcome the disadvantage of compound Poisson process. Moreover, remark 6 has 
been affirmed. Also, the compound Poisson new XLindley process gives satisfactory 
results with respect to compound Poisson Lindley and compound Poisson XLindley 
process. 

5. Conclusion 

We proposed a Poisson NXLindley process in this work. Some properties for this new 
process are shown. In addition, a suggestion to apply this process using the ruin model 
and a simulation study to compare the proposal process with Poisson, Poisson Lindley 
and Poisson XLindley process are given. The proposed process provides efficient results 
as compared to a Poisson, Poisson Lindley and Poisson XLindley process. In future 
studies, We use the surplus process model of an insurance company. 

We have 

𝑈𝑡 = 𝑢 + 𝑃𝑡 −𝑊(𝑡) 

where: 

 𝑈𝑡 represents the surplus of the company at time 𝑡.; 

 𝑢 is the initial capital (𝑈0 = 𝑢); 

 𝑃𝑡 is the gain process (premiums received, interest from investments and all 
other sources); 

 𝑊(𝑡)is the loss process (compensation paid, interest from credits, etc.).. 
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