
Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 23 Gokul Chandra Purnachandra Reddy et al 23-43

Asymptotic Analysis in Cloud Resource Allocation: Scalability of Virtual

Machines, Scheduling Complexity, and Auto-Scaling Mechanisms

Gokul Chandra Purnachandra Reddy

Volterra, Inc.

Santa Clara, CA, USA

gokulchandrapr@gmail.com

ABSTRACT

This paper presents a comprehensive analysis of dynamic scaling and resource management in

cloud computing environments. It explores the asymptotic behavior of virtual machine (VM) and

container provisioning, the computational complexity of resource scheduling strategies, and the

performance of auto-scaling mechanisms under varying workload conditions. Using mathematical

models and complexity analysis, it provides important insights into the optimization of resource

allocation to minimize the trade-off in cost and performance. The key finding is that the scaling

exponent α is an important determinant of resource efficiency; the sublinear scaling (α<1) can

realized cost-effective utilization. To achieve a convenience between efficiency and speed for

resource-scheduling, the First-Fit Decreasing (FFD) algorithm has been introduced. This leads us

to hybrid auto-scaling models where a combination of threshold-based scaling and predictive

auto-scaling during varying workload scenarios offers a strong auto-scaling solution. Our findings

add to the literature understanding scaling laws in cloud systems, with practical recommendations

to design efficient resource management policies.

1. INTRODUCTION

The rise of cloud computing has fundamentally transformed the paradigm of resource

provisioning, where the need for dynamic scaling is matched with random workloads. This

flexibility guarantees performance resilience and cost efficiency under workloads through a self-

adaptation mechanism, but it also introduces notable challenges in scheduling and resource

allocation when large-scale systems are concerned. However, as cloud environments become more

complex, it is critical to understand the theoretical foundations of scaling and scheduling.

This paper addresses these challenges through a three-pronged analysis:

• Asymptotic Growth of Resource Provisioning: Modeling the scaling behavior of VMs and

containers. The scaling exponent α is introduced to characterize resource demands, with

implications for linear, sublinear, and superlinear scaling. Understanding the value of α is

crucial for predicting resource needs and maintaining efficiency.

mailto:gokulchandrapr@gmail.com

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 24 Gokul Chandra Purnachandra Reddy et al 23-43

• Computational Complexity of Scheduling: Evaluating the efficiency of resource allocation

algorithms. Due to the NP-hard nature of exact solutions, heuristic and approximation

algorithms are commonly employed. Notable approaches, including First-Fit Decreasing

(FFD), Bin Packing Approximations, and Genetic Algorithms, are analyzed for their

computational complexity and solution quality.

• Auto-Scaling Performance: Assessing mechanisms under peak loads. Auto-scaling

mechanisms are broadly categorized into reactive (threshold-based) and proactive (predictive)

approaches. The paper models auto-scaling performance, considering growth models for

allocated instances and the asymptotic behavior of threshold-based and predictive methods.

We use a novel approach based on mathematical modeling, asymptotic analysis and computational

complexity theory to obtain well-rounded yet insightful results. Cloud providers can strategically

allocate resources based on the insights they derive from understanding the long-term

performance behavior informatively, leading to cost and performance optimization. In particular,

it fills in a significant gap in our understanding of the asymptotic efficacy of scaling and scheduling

mechanisms in massively parallel cloud-like environments by developing a theoretical framework

for studying resource management strategies in the limit when the scales of workloads tend to

infinity.

Keywords: Asymptotic Analysis, Cloud Computing, Data Center, Resource Allocation, Dynamic

Scaling, Auto-Scaling, Virtual Machines (VMs), Bin Packing, Growth Models, Logistic Model,

Machine Learning, Resource Provisioning.

2. LITERATURE REVIEW

The literature on cloud resource management extensively covers provisioning, scheduling, and

auto-scaling [1]. Early studies often assumed linear scaling models for virtual machine (VM)

provisioning, where resource needs grow proportionally with workload size [2]. However, research

before 2020 highlighted the prevalence of non-linear scaling behaviors, especially in workloads

with high variability or complex interdependencies [3]. For example, data-intensive tasks may

exhibit sublinear scaling because of caching or parallelization, whereas compute-intensive tasks

often scale linearly [4].

Resource scheduling in cloud environments is commonly approached as an optimization problem

to minimize costs or maximize resource utilization, but the NP-hard nature of exact solutions leads

to the use of heuristic and approximation algorithms [5]. Notable methods include First-Fit

Decreasing (FFD), known for its balance of solution quality and computational efficiency, and

metaheuristic methods like Genetic Algorithms, which offer near-optimal solutions at a higher

computational cost [6]. Auto-scaling mechanisms are broadly divided into reactive (threshold-

based) and proactive (predictive) approaches [7]. Threshold-based auto-scaling is widely used

because of its simplicity, though it may cause delayed responses during sudden demand spikes;

predictive auto-scaling uses machine learning to anticipate workload changes, but its effectiveness

depends on the accuracy of workload forecasts [8]. Despite these advances before March 2020, a

gap remained in understanding the asymptotic behavior of scaling and scheduling mechanisms in

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 25 Gokul Chandra Purnachandra Reddy et al 23-43

large-scale cloud environments, which this paper aims to address by providing a theoretical

framework for analyzing resource management strategies as workload sizes approach infinity [9].

3. ASYMPTOTIC ANALYSIS OF DYNAMIC SCALING

Dynamic scaling in cloud computing involves adjusting computational resources—like virtual

machines (VMs) or containers—to match fluctuating workload demands. This section examines

how resource needs grow as workloads increase (asymptotic behavior) and the trade-offs between

provisioning too few or too many resources.

Figure 1: Comparing optimal resource allocation with under and over-provisioned scenarios

3.1 GROWTH MODEL FOR VM AND CONTAINER PROVISIONING

3.1.1 ASYMPTOTIC GROWTH FUNCTION

To understand how resources scale with workload, we define R(w), the number of resources

needed, as a function of workload size w. Asymptotic analysis of dynamic scaling in cloud

computing has been explored to optimize resource allocation under varying workloads [10]:

Here, f(w) is the dominant growth term as w becomes very large (w → ∞). A common model is:

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 26 Gokul Chandra Purnachandra Reddy et al 23-43

• k > 0: A constant reflecting system efficiency or baseline resource needs.

• α: The scaling exponent, which describes how resource demands grow:

o Linear scaling (α=1): Resources grow directly with workload, common in

systems where each task needs a fixed amount of computing power (e.g., batch

processing).

o Sublinear scaling (α<1): Resources grow slower than workload, showing

efficiency gains from sharing or optimization (e.g., caching in big data systems).

o Superlinear scaling (α>1): Resources grow faster than workload, indicating

inefficiencies like bottlenecks (e.g., databases with heavy contention).

3.1.2 PRACTICAL IMPLICATIONS OF SCALING EXPONENTS

The value of α \alpha α shapes resource planning:

• α < 1: Efficiency improves with scale, reducing costs per workload unit—ideal for large

systems.

• α > 1: Efficiency drops, and costs rise disproportionately, challenging scalability.

Real-world examples include:

• Scientific simulations often show α ≈ 1 (linear) due to independent tasks.

• Web services with caching may have α < 1 (sublinear) because repeated requests use fewer

resources.

• Systems with high coordination overhead (e.g., concurrent databases) may exhibit α > 1

(superlinear).

Knowing α helps providers predict resource needs and maintain efficiency.

3.1.3 ESTIMATING SCALING EXPONENTS

To find α, historical data on workload w and resources R(w) is analyzed. A power-law fit is applied,

often using a log-log plot:

The slope of this line is α, enabling predictions for future resource demands and better provisioning

strategies.

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 27 Gokul Chandra Purnachandra Reddy et al 23-43

3.2 TRADE-OFFS IN PROVISIONING: UNDER-PROVISIONING VS. OVER-

PROVISIONING

3.2.1 PROBABILISTIC PROVISIONING MODEL

Cloud providers must avoid under-provisioning (causing performance issues) and over-

provisioning (raising costs). Task scheduling algorithms, such as the Heterogeneous Earliest Finish

Time (HEFT), have been developed to address the complexities of assigning tasks in

heterogeneous computing environments [11]. Assuming workload w follows a normal distribution

w∼N(μ,σ2) (mean μ, variance σ2), resources can be set to handle most scenarios (e.g., 99% of

cases):

z: A z-score for the desired confidence level (e.g., 2.33 for 99%). This ensures resources meet peak

demands with high probability.

3.2.2 ASYMPTOTIC BEHAVIOR OF PROVISIONING

As w→∞:

• α < 1: Variability in resource needs shrinks, allowing efficient provisioning with statistical

multiplexing.

• α > 1: Variability grows, requiring cautious over-provisioning to handle spikes.

If workload variance scales with the mean (e.g., σ2 ∝ μ), provisioning must adjust accordingly to

maintain performance.

3.2.3 COST IMPLICATIONS

Cost is modeled as:

• c: Cost per resource unit.

• α < 1: Cost per workload unit decreases, improving efficiency.

• α > 1: Cost per unit rises, posing financial challenges at scale.

Understanding α is key to cost-effective cloud management.

3.3 COMPARATIVE ANALYSIS OF GROWTH MODELS

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 28 Gokul Chandra Purnachandra Reddy et al 23-43

Section 3 discusses the asymptotic behavior of dynamic scaling, focusing on different growth

models characterized by the scaling exponent α. These models—linear (α=1), sublinear (α<1), and

superlinear (α>1) have distinct implications for resource provisioning. Below, we compare these

models based on their impact on resource efficiency, cost, and scalability.

Figure 2: Comparing growth models

The visualization demonstrates how different scaling patterns affect resource requirements and

cost efficiency as workload increases. Linear scaling provides predictable growth but may miss

optimization opportunities. Sublinear scaling shows improved efficiency at larger scales but

requires more complex system design. Superlinear scaling indicates potential system bottlenecks

that should be addressed through redesign.

Scaling

Behavior

Resource

Efficiency

Cost Implications Scalability Suitability

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 29 Gokul Chandra Purnachandra Reddy et al 23-43

Linear

(α=1)

Resources grow

proportionally with

workload.

Efficiency remains

constant.

Cost grows linearly

with workload.

Predictable but may

not leverage

economies of scale.

Scales well for

moderate

workload

increases but

may become

costly for very

large workloads.

Best for

workloads with

independent

tasks (e.g., batch

processing,

scientific

simulations).

Sublinear

(α<1)

Resources grow

slower than

workload,

indicating

efficiency gains

(e.g., caching,

parallelization).

Cost per unit of

workload decreases

as workload

increases, offering

economies of scale.

Highly scalable;

ideal for large

systems where

efficiency

improves with

size.

Suitable for

data-intensive

workloads (e.g.,

big data

analytics, web

services with

caching).

Superlinear

(α>1)

Resources grow

faster than

workload,

signaling

inefficiencies (e.g.,

contention,

overhead).

Cost per unit of

workload increases,

leading to

disproportionate

expenses.

Poor scalability;

may become

unsustainable for

large workloads

due to rising

marginal costs.

Problematic for

systems with

high resource

contention (e.g.,

databases under

heavy load).

Linear Scaling (α=1): Resources grow directly proportional to workload. Simple but may miss

optimization opportunities. Best used for: Independent tasks like batch processing or scientific

simulations where tasks don't share resources.

Sublinear Scaling (α<1): Resources grow more slowly than workload due to economies of scale

and optimization. Best used for: Systems that benefit from resource sharing and optimization, like

content delivery networks or big data processing.

Superlinear Scaling (α>1): Resources grow faster than workload, indicating potential system

inefficiencies. Best used for: Generally undesirable - indicates need for system redesign to achieve

better scaling characteristics.

Key Insights:

The scaling exponent α is critical for long-term capacity planning. Systems with α<1 are preferable

for cost-effective scaling, as they leverage efficiencies and reduce costs as workloads grow.

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 30 Gokul Chandra Purnachandra Reddy et al 23-43

Conversely, systems with α>1 require optimization to avoid unsustainable resource demands and

escalating costs.

4. COMPUTATIONAL COMPLEXITY OF RESOURCE SCHEDULING STRATEGIES

Resource scheduling in cloud computing involves assigning tasks (e.g., virtual machines or

containers) to physical hosts efficiently, often formulated as an optimization problem. This can be

expressed as an integer programming problem:

subject to:

where:

• ci is the cost of allocating resource i,

• xi is a binary decision variable (1 if resource i is allocated, 0 otherwise),

• aji represents the contribution of resource i to constraint j,

• bj is the minimum requirement for constraint j.

Since solving this problem exactly is NP-hard, cloud systems rely on heuristic and approximation

algorithms. In this section, we analyze three prominent scheduling strategies: First-Fit Decreasing

(FFD), Bin Packing Approximations, and Genetic Algorithms. Each subsection below provides a

detailed discussion of the algorithm’s mechanism, complexity, quality of solutions, and practical

applicability in cloud environments.

4.1 FIRST-FIT DECREASING (FFD)

Mechanism

First-Fit Decreasing (FFD) is a widely used heuristic adapted from the bin packing problem, where

"bins" represent physical hosts and "items" represent tasks such as VMs or containers. The

algorithm operates as follows:

1. Sort Tasks: Arrange the tasks in decreasing order of resource requirements (e.g., CPU,

memory).

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 31 Gokul Chandra Purnachandra Reddy et al 23-43

2. Assign Sequentially: For each task, place it in the first host (bin) that has sufficient

remaining capacity to accommodate it. If no host can accommodate the task, a new host is

instantiated.

This greedy approach prioritizes larger tasks, aiming to pack them tightly and reduce wasted

capacity. The bin packing problem, particularly with divisible item sizes, has been studied to

improve resource utilization in cloud environments [12].

Computational Complexity

The computational complexity of FFD consists of two main components:

• Sorting: Sorting n tasks requires O(n log n) time using efficient algorithms like quicksort

or mergesort. Energy-efficient scheduling models, like the YDS algorithm, aim to reduce

CPU energy consumption while maintaining performance [13].

• Placement: For each of the n tasks, the algorithm checks existing hosts to find the first fit.

In the worst case, it examines all previously used hosts, leading to O(n) checks per task.

With n tasks, this results in O(n2) time for placement.

Thus, the total time complexity is:

For large n, the n2 term dominates, so the complexity simplifies to O(n2). However, in practice,

the number of hosts is often much smaller than n, reducing the placement cost and making FFD

reasonably efficient.

Approximation Quality

FFD does not guarantee an optimal solution but offers a bounded approximation ratio. Theoretical

results from bin packing analysis show that FFD uses no more than:

where OPT is the optimal number of bins (hosts) required. This means FFD’s solution is within

approximately 22% of the optimal, plus a small constant, making it a practical choice for resource

utilization.

Suitability for Cloud Environments

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 32 Gokul Chandra Purnachandra Reddy et al 23-43

FFD is highly suitable for cloud systems due to several strengths:

• Scalability: Its polynomial time complexity ensures it can handle large numbers of tasks,

typical in cloud data centers.

• Dynamic Adaptability: FFD can incorporate new tasks or deallocate resources

incrementally, supporting real-time scheduling needs.

• Balance: It strikes an effective balance between computational overhead and resource

efficiency, avoiding the need for exhaustive searches.

For example, in a cloud hosting thousands of VMs, FFD can quickly assign resources during a

demand surge (e.g., a flash sale) while keeping host utilization high. However, its greedy nature

may lead to fragmentation over time, where small gaps in host capacity cannot accommodate larger

tasks, suggesting occasional re-optimization might be necessary.

4.2 BIN PACKING APPROXIMATIONS

Mechanism

Bin Packing Approximations refer to a family of simpler heuristics, including First-Fit (FF),

Best-Fit (BF), and Worst-Fit (WF), which do not require pre-sorting tasks. Their mechanisms

are:

• First-Fit (FF): Places each task in the first host with sufficient capacity, checking hosts in

the order they were opened.

• Best-Fit (BF): Assigns each task to the host with the smallest remaining capacity that can

still accommodate it, aiming to minimize unused space. Algorithm design principles are

essential for developing efficient resource scheduling strategies in cloud computing [14].

• Worst-Fit (WF): Places each task in the host with the largest remaining capacity,

attempting to keep more space available for future large tasks.

These algorithms are faster than FFD because they skip the sorting step, relying instead on

immediate placement decisions.

Computational Complexity

The complexity depends on the number of tasks n n n and hosts m m m:

• For each task, the algorithm scans the list of open hosts (up to m) to find a fit. In the worst

case, m≈n (if each task requires a new host).

• Thus, placing n tasks takes 𝑂(𝑛 . 𝑚)time.

In practice, m is typically much smaller than n (e.g., a few hundred hosts serving thousands of

tasks), so the runtime is often closer to linear. The worst-case complexity remains:

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 33 Gokul Chandra Purnachandra Reddy et al 23-43

but practical performance is usually better than FFD due to the absence of sorting.

Approximation Quality

The approximation ratios for these algorithms are less tight than FFD’s:

• First-Fit: Guarantees a solution within 17/10 OPT+2 (approximately 70% worse than

optimal).

• Best-Fit: Achieves 17/10 OPT+1, slightly better than FF due to its focus on minimizing

leftover space.

• Worst-Fit: Lacks a constant approximation guarantee, as it can perform arbitrarily poorly

by leaving large unused capacities.

These ratios indicate that FF and BF sacrifice some optimality for speed, while WF is generally

less reliable for resource efficiency.

Suitability for Cloud Environments

Bin Packing Approximations are advantageous in specific cloud scenarios:

• Speed Priority: Their lower computational overhead makes them ideal for highly dynamic

environments with frequent task arrivals and departures, such as microservices

architectures.

• Simplicity: They require minimal setup and are easy to implement, suiting smaller-scale

or latency-sensitive systems.

• Trade-offs: BF’s tighter packing can enhance utilization in stable workloads, while FF’s

simplicity suits rapid scaling. WF, however, is rarely practical due to its poor performance.

For instance, during a sudden influx of short-lived container requests, FF or BF can allocate

resources faster than FFD, though at the cost of potentially needing more hosts. In resource-

critical systems, their suboptimal packing may necessitate periodic consolidation using a more

precise method like FFD.

4.3 GENETIC ALGORITHMS

Mechanism

Genetic Algorithms (GAs) are metaheuristic optimization techniques inspired by evolution. In

resource scheduling, GAs treat potential schedules as "individuals" in a population and evolve

them toward an optimal solution:

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 34 Gokul Chandra Purnachandra Reddy et al 23-43

1. Initialization: Create a random population of candidate schedules (e.g., mappings of tasks

to hosts).

2. Fitness Evaluation: Score each schedule based on a cost function, such as total resource

cost or utilization efficiency.

3. Selection: Choose high-fitness schedules (parents) using methods like tournament

selection.

4. Crossover: Combine parent schedules to produce offspring (e.g., swapping task

assignments between hosts).

5. Mutation: Randomly alter schedules (e.g., reassigning a task to a different host) to

maintain diversity.

6. Iteration: Repeat steps 2–5 for a set number of generations or until convergence.

This iterative process explores a vast solution space, seeking near-optimal allocations.

Computational Complexity

GA complexity depends on multiple factors:

• Population Size (p): Number of schedules evaluated per generation.

• Generations (g): Number of iterations.

• Fitness Function (f): Time to compute the cost of a schedule, often O(n) for n tasks.

The total time complexity is:

𝑂 (𝑔. 𝑝. 𝑓)

For a moderately complex fitness function (e.g., 𝑓 = 𝑂(𝑛), this becomes 𝑂(𝑔. 𝑝. 𝑛). In practice,

g and p can range from tens to thousands, making GAs significantly more expensive than FFD or

bin packing heuristics—potentially O(n3) or higher for large-scale problems.

Approximation Quality

GAs lack a formal approximation ratio because their performance depends on runtime and

parameter tuning (e.g., mutation rate, population size). Given sufficient iterations, they can

converge to near-optimal solutions, often outperforming heuristics like FFD in terms of resource

utilization. However, convergence is not guaranteed within a fixed time, and premature

termination may yield suboptimal results.

Suitability for Cloud Environments

GAs are less practical for real-time cloud scheduling due to their drawbacks:

• High Computational Cost: The iterative nature and repeated fitness evaluations make

GAs too slow for dynamic, time-sensitive environments.

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 35 Gokul Chandra Purnachandra Reddy et al 23-43

• Offline Use: They excel in static or long-term optimization, such as designing initial

resource plans or optimizing host layouts during off-peak periods.

• Complex Workloads: GAs can handle multi-objective optimization (e.g., balancing cost,

latency, and energy), which is valuable for complex cloud systems.

For example, a cloud provider might use a GA to pre-optimize VM placement across a data center

overnight, achieving near-perfect utilization. However, during a live traffic spike, the delay in

computation would render GAs impractical compared to faster heuristics

4.4 COMPARATIVE ANALYSIS

Figure 3: Comparing scheduling algorithms

The visualization demonstrates how different scheduling algorithms balance computation time,

resource efficiency, and solution quality. First-Fit provides fast, simple solutions at the cost of

optimization. First-Fit Decreasing achieves better resource utilization with moderate overhead.

Genetic Algorithms can find near-optimal solutions but require significant computation time,

making them suitable for offline planning rather than real-time scheduling.

The three scheduling models present distinct trade-offs:

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 36 Gokul Chandra Purnachandra Reddy et al 23-43

• FFD: Offers a strong compromise with O(n2) complexity, a reliable 11/9 OPT + 1

approximation, and adaptability for real-time, large-scale scheduling.

• Bin Packing Approximations: Prioritize speed (O(n⋅m)) over precision (e.g., 11/9

OPT + 2 for FF), fitting dynamic, latency-sensitive scenarios but risking higher host

usage.

• Genetic Algorithms: Provide potential near-optimality at a steep cost (O(g⋅p⋅n)), best

for offline planning rather than live scheduling.

Scheduling

Strategy

Mechanism Computational

Complexity

Approximation

Quality

Suitability

First-Fit

Decreasing

(FFD)

Sorts tasks by

size, assigns to

first fitting host

Large-scale,

real-time

scheduling with

balanced

efficiency

Bin Packing

Approximations

Heuristic

placement

(e.g., FF, BF)

without sorting

Dynamic,

latency-

sensitive

environments

prioritizing

speed

Genetic

Algorithms

Evolutionary

optimization

via selection,

crossover

Near-optimal

with sufficient

iterations

Offline

optimization for

complex

workloads

Key Insights:

In practice, cloud providers might combine these approaches: using FF or FFD for immediate

decisions during workload fluctuations and GAs for periodic re-optimization to correct

fragmentation or inefficiencies. The choice depends on the system’s scale, dynamism, and

performance goals.

5: ASYMPTOTIC BEHAVIOR OF AUTO-SCALING MECHANISMS

Auto-scaling adjusts resources dynamically based on real-time workload changes. This section

analyzes two main approaches—threshold-based and predictive—and their performance under

heavy loads.

5.1 MODELING AUTO-SCALING PERFORMANCE UNDER PEAK LOADS

5.1.1 GROWTH MODEL FOR ALLOCATED INSTANCES

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 37 Gokul Chandra Purnachandra Reddy et al 23-43

The number of instances N(t) over time t is modeled as. Dynamic speed scaling algorithms have

been proposed to balance energy consumption and computational performance [15]:

• β: A coefficient setting allocation magnitude.

• γ: Growth exponent showing scaling speed:

o γ = 0: No scaling (constant resources).

o γ = 1: Linear growth, good for steady increases.

o γ > 1: Superlinear growth, aggressive scaling for sudden spikes.

• δ: Baseline resources.

5.1.2 ASYMPTOTIC BEHAVIOR AS T→∞

• If γ > 0, N(t)→∞, implying endless resource growth—impractical since workloads

typically peak and stabilize.

• A realistic alternative is a logistic model:

Here, Nmax is the maximum instances, and k and t0 adjust growth rate and timing, reflecting

resource limits.

5.2 THRESHOLD-BASED AUTO-SCALING MODELS

5.2.1 STEP-FUNCTION MODEL

This method scales resources based on workload thresholds. Optimal scheduling for

multiprocessor systems is crucial for energy efficiency and performance [16]:

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 38 Gokul Chandra Purnachandra Reddy et al 23-43

• wi: Workload thresholds.

• ni: Resource levels.

5.2.2 ADVANTAGES AND LIMITATIONS

• Advantages:

o Simple to implement.

o Predictable scaling rules.

• Limitations:

o Oscillations: Rapid workload changes near thresholds cause frequent scaling,

raising costs.

o Delays: Scaling lags until thresholds are hit, risking performance during spikes.

5.2.3 ASYMPTOTIC BEHAVIOR

As w→∞ w, N(w) reaches nk (the highest level). Fixed thresholds require updates for growing

workloads, and the step-like adjustments may waste resources or lag behind needs. Techniques

like hysteresis (delaying scale-down) help but add complexity.

5.3 PREDICTIVE AUTO-SCALING WITH MACHINE LEARNING

5.3.1 REGRESSION-BASED FORECASTING

This approach predicts future workload using historical data:

• f: A forecasting model (e.g., regression or neural networks).

• θ: Learned parameters.

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 39 Gokul Chandra Purnachandra Reddy et al 23-43

Resources are then allocated proactively:

5.3.2 ADVANTAGES AND CHALLENGES

• Advantages:

o Anticipates demand, reducing delays.

o Matches resources closely to needs.

• Challenges:

o Accuracy: Poor predictions misallocate resources.

o Overhead: Model training demands significant computation.

5.3.3 ASYMPTOTIC BEHAVIOR AND LONG-TERM PERFORMANCE

With more data, predictions improve, optimizing allocation. However, volatile workloads

challenge accuracy, and model complexity may not always justify benefits. For stable patterns, it

nears optimal scaling; for erratic ones, a hybrid approach may work better.

5.4 COMPARATIVE ANALYSIS OF AUTO-SCALING MECHANISMS

Section 5 explores the asymptotic behavior of auto-scaling mechanisms, which dynamically adjust

resources in response to workload changes. We compare two primary approaches—threshold-

based and predictive auto-scaling—based on their responsiveness, accuracy, computational

overhead, and suitability for different workload patterns. Additionally, we discuss the potential of

hybrid models.

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 40 Gokul Chandra Purnachandra Reddy et al 23-43

Figure 4: Auto-Scaling mechanisms analysis

The visualization reveals how threshold-based scaling provides robust but potentially inefficient

resource allocation, while predictive scaling achieves better efficiency but requires more complex

implementation and may be less responsive to unexpected changes. Under heavy loads, predictive

scaling generally maintains better efficiency, while threshold-based scaling ensures more

consistent availability at the cost of higher resource usage.

Auto-

Scaling

Approach

Responsiveness Accuracy Computational

Overhead

Suitability

Threshold-

Based

Reactive; scales

after workload

crosses thresholds.

May lag during

sudden spikes.

Simple but prone

to oscillations

and delayed

responses.

Low; minimal

computation

required.

Best for steady

or slowly

changing

workloads.

Predictive

(Machine

Learning-

Based)

Proactive;

anticipates demand

and scales in

advance.

High potential

accuracy but

depends on

forecast quality.

High; requires

model training

and real-time

prediction.

Ideal for

workloads with

predictable

patterns (e.g.,

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 41 Gokul Chandra Purnachandra Reddy et al 23-43

daily traffic

cycles).

Hybrid

(Threshold

+

Predictive)

Combines proactive

scaling with

reactive safety nets.

Balances

anticipation and

correction,

reducing risks of

misprediction.

Moderate;

integrates

prediction with

threshold checks.

Versatile;

handles both

predictable and

unpredictable

workload

changes.

Threshold-based Auto-scaling

This approach uses predefined thresholds to trigger scaling actions. Notice the step-wise pattern

in resource allocation, which provides quick but potentially inefficient responses to workload

changes. It excels in simplicity and low overhead but may struggle with sudden spikes.

Best For: Small-scale applications, static web servers, or systems where simplicity is prioritized

over perfect efficiency.

Predictive Auto-scaling

This approach uses historical data and pattern analysis to anticipate workload changes. Observe

how it provides smoother scaling patterns and better efficiency when workload follows expected

patterns, but may struggle with unexpected spikes. Best For: E-commerce platforms, business

applications with regular usage patterns, or systems where resource optimization is crucial.

Hybrid Auto-scaling

This approach combines predictive and threshold-based scaling, providing both proactive

adjustments and reactive safeguards. Notice how it maintains good efficiency while still

responding to unexpected changes. Best For: Complex applications with both predictable and

unpredictable workload components, such as social media platforms or streaming services.

Key Insights:

The visualization reveals how each scaling approach handles different workload patterns.

Threshold-based scaling provides robust but potentially inefficient resource allocation. Predictive

scaling achieves better efficiency for predictable workloads but may struggle with unexpected

changes. The hybrid approach offers a balance, combining the benefits of both strategies while

requiring more complex implementation. Threshold-based auto-scaling is simple and

computationally efficient but struggles with sudden workload changes. Predictive models offer

better responsiveness by anticipating demand, but they require accurate forecasts and higher

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 42 Gokul Chandra Purnachandra Reddy et al 23-43

computational resources. A hybrid approach provides a balanced solution, leveraging predictions

for proactive scaling and thresholds for reliability, making it versatile for complex workloads.

6. CONCLUSION

In conclusion, this research paper has delivered an in-depth exploration of dynamic scaling and

resource management in cloud computing, underscoring the pivotal roles of asymptotic behavior

and computational complexity in optimizing resource allocation. Our analysis demonstrates that

the scaling exponent α \alpha α is a key determinant of resource efficiency: sublinear scaling (α<1)

provides cost-effective resource utilization, while superlinear scaling (α>1) highlights potential

inefficiencies that require careful management. In resource scheduling, strategies such as First-Fit

Decreasing (FFD) offer a practical compromise between efficiency and computational speed,

making them ideal for real-time applications, whereas Genetic Algorithms excel in delivering near-

optimal solutions for complex, offline optimization scenarios. Regarding auto-scaling

mechanisms, threshold-based approaches provide simplicity but falter under sudden workload

surges, while predictive methods enable proactive resource adjustments for predictable patterns,

albeit with higher computational demands; a hybrid model blending these approaches emerges as

a robust solution for diverse workload conditions. These insights enable the cloud providers to

adjust for particular workload profiles while providing resources, resulting in improved

performance with lower costs. Finally, future studies should investigate the advancement of

predictive auto-scaling models, embed machine learning models into dynamic scheduling systems,

and study the effects of new technology adoption, for example serverless computing, on resource

management approaches.

REFERNCES

[1] M. Mao and M. Humphrey, "A Performance Study on the VM Startup Time in the Cloud," in

2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA, 2012, pp.

423–430.

[2] A. Verma, P. Ahuja, and A. Neogi, "pMapper: Power and Migration Cost Aware Application

Placement in Virtualized Systems," in Proceedings of the 9th ACM/IFIP/USENIX International

Conference on Middleware, Leuven, Belgium, 2008, pp. 243–264.

[3] N. Bobroff, A. Kochut, and K. Beaty, "Dynamic Placement of Virtual Machines for Managing

SLA Violations," in Proceedings of the 10th IFIP/IEEE International Symposium on Integrated

Network Management, Munich, Germany, 2007, pp. 119–128.

[4] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, "Resource Pool Management: Reactive

versus Proactive or Let’s Be Friends," Computer Networks, vol. 53, no. 17, pp. 2905–2922, Dec.

2009.

[5] M. Mao, J. Li, and M. Humphrey, "Cloud Auto-Scaling with Deadline and Budget

Constraints," in 2010 11th IEEE/ACM International Conference on Grid Computing, Brussels,

Belgium, 2010, pp. 41–48.

[6] H. Khazaei, J. Misic, and V. B. Misic, "Performance Analysis of Cloud Computing Centers

Using M/G/m/m+r Queuing Systems," IEEE Transactions on Parallel and Distributed Systems,

vol. 23, no. 5, pp. 936–943, May 2012.

Journal of Computational Analysis and Applications VOL. 27, NO. 7, 2019

 43 Gokul Chandra Purnachandra Reddy et al 23-43

[7] P. Padala et al., "Adaptive Control of Virtualized Resources in Utility Computing

Environments," in Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer

Systems 2007, Lisbon, Portugal, 2007, pp. 289–302.

[8] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, "VCONF: A Reinforcement Learning Approach

to Virtual Machines Auto-Configuration," in Proceedings of the 6th International Conference on

Autonomic Computing, Barcelona, Spain, 2009, pp. 137–146.

[9] A. Gulati, G. Shanmuganathan, A. Holler, and I. Ahmad, "Cloud-Scale Resource Management:

Challenges and Techniques," in Proceedings of the 3rd USENIX Conference on Hot Topics in

Cloud Computing, Portland, OR, USA, 2011, pp. 3–3.

[10] K. Psychas and J. Ghaderi, "A Theory of Auto-Scaling for Resource Reservation in Cloud

Services," arXiv preprint arXiv:2005.13744, 2020.

[11] H. Topcuoglu, S. Hariri, and M. Wu, "Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing," IEEE Transactions on Parallel and Distributed

Systems, vol. 13, no. 3, pp. 260–274, 2002.

[12] E. G. Coffman Jr., M. R. Garey, and D. S. Johnson, "Bin Packing with Divisible Item Sizes,"

Journal of Complexity, vol. 3, no. 4, pp. 406–428, 1987.

[13] F. F. Yao, A. J. Demers, and S. Shenker, "A Scheduling Model for Reduced CPU Energy,"

in Proceedings of the 36th Annual Symposium on Foundations of Computer Science, Milwaukee,

WI, USA, 1995, pp. 374–382.

[14] J. M. Kleinberg and É. Tardos, Algorithm Design, Pearson, 2005.

[15] S. Albers, "Algorithms for Dynamic Speed Scaling," in Proceedings of the 36th International

Colloquium on Automata, Languages and Programming: Part II, Rhodes, Greece, 2009, pp. 1–

11.

[16] K. Li, "Energy Efficient Optimal Scheduling for Multiprocessor Computers," ACM SIGPLAN

Notices, vol. 46, no. 8, pp. 261–270, 2011.

