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Abstract 

Hyperspectral image classification is a crucial task in remote sensing, enabling the detailed 

analysis and identification of materials on the Earth's surface. The primary objective of this 

research is to address the limitations of existing classification methods by introducing a novel 

deep learning-based approach that efficiently handles the high dimensionality and complexity 

of hyperspectral data. Specifically, this study aims to improve the integration of spectral and 

spatial information, which has been a significant challenge in the field.The proposed 

methodology employs a 3D Convolutional Neural Network (CNN) architecture combined 

with Principal Component Analysis (PCA) for dimensionality reduction. The novelty of this 

work lies in the architectural design, which includes multiple layers of 3D convolutions, 

batch normalization, and a final softmax activation layer to categorize the hyperspectral 

images into distinct classes. Additionally, the integration of PCA as a preprocessing step 

effectively reduces the computational load while preserving essential spectral information, 

thereby enhancing the overall classification performance.The research findings demonstrate 

that the proposed method outperforms traditional machine learning models and existing deep 

learning frameworks in terms of accuracy and computational efficiency. 

Keywords: Hyperspectral image classification, 3D CNN, PCA, deep learning, spectral-

spatial integration, remote sensing 

1. INTRODUCTION 

Hyperspectral image classification is the analytical process in remote sensing that involves 

the identification and categorization of various materials or objects by analyzing pictures 

taken across a broad spectrum of electromagnetic radiation [1]. Hyperspectral photos differ 

from typical RGB photographs by capturing a larger number of narrow spectral bands, 

allowing for more comprehensive analysis of the spectral characteristics of each pixel. 

Spectral signatures, characterized by distinct patterns of reflectance across different 

wavelengths, enable the identification of materials. The classification method entails 

allocating each pixel in the hyperspectral picture to a distinct class, such as various types of 

flora, minerals, or man-made elements, depending on their spectral properties [2]. 

The significance of hyperspectral image categorization rests in its capacity to offer intricate 

and precise data regarding the composition and state of materials on the Earth's surface [3]. 

This technology is essential in several applications, such as environmental monitoring, 

agriculture, mineral extraction, and military. Hyperspectral imaging has several applications 

in agriculture, such as monitoring crop health, identifying illnesses, and optimizing the 

utilization of fertilizers and water. Environmental studies utilize mapping and monitoring 

techniques to identify ecosystems, detect pollutants, and evaluate the impacts of climate 
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change [4]. Hyperspectral imaging is a valuable tool for decision-making in several domains 

due to its capacity to precisely categorize materials based on their spectral features. This 

capability contributes to the implementation of more efficient and sustainable methods. 

Various methods are now used for classifying hyperspectral images, including both 

conventional machine learning techniques and more sophisticated deep learning approaches. 

Support Vector Machines (SVM) and Random Forests are commonly employed owing to 

their resilience and capacity to handle data with a large number of dimensions [5]. 

Nevertheless, these techniques frequently need thorough feature extraction and pre-

processing. Hyperspectral image classification has seen a surge in popularity in recent years, 

thanks to the rise of deep learning techniques, including Convolutional Neural Networks 

(CNNs). Convolutional neural networks (CNNs) have the ability to automatically extract 

hierarchical features from hyperspectral data, resulting in improved performance in 

classification tasks [6]. In addition, there have been advancements in hybrid approaches that 

integrate deep learning with other methodologies, such as spectral-spatial methods. These 

hybrid methods aim to enhance the accuracy of classification by utilizing both spectrum and 

spatial information present in the data. 

Although there have been improvements in hyperspectral image categorization, there are still 

various areas of study that require attention. An important obstacle is the extensive number of 

dimensions and vast amount of hyperspectral data, which can result in computing 

inefficiencies and the curse of dimensionality [7]. Existing techniques may encounter 

difficulties in generalizing when applied to diverse datasets or when confronted with a 

scarcity of labeled samples, a common occurrence in real-world scenarios. There is a research 

gap in the field that requires more advanced ways to combine spectral and spatial 

information. Current methods may not completely use the abundant information included in 

hyperspectral pictures. Furthermore, there is an increasing demand for reliable techniques 

that can effectively manage interference and fluctuations in hyperspectral data, which can 

negatively impact the accuracy of categorization [8]. To address these gaps, it is necessary to 

create new algorithms and models that can effectively handle the complexity and difficulties 

associated with hyperspectral picture categorization. 

2. LITERATURE SECTION 

Xiangyong Cao et al [9] proposed a novel methodology for classifying Hyperspectral Images 

(HSI) using a combination of active learning and deep learning techniques inside a unified 

framework. Initially, we commence the training process of a convolutional neural network 

(CNN) using a restricted quantity of labeled pixels. Subsequently, we deliberately choose the 

most informative pixels from the pool of candidates for the purpose of labeling. Next, the 

CNN is adjusted using the updated training set created by integrating the newly labeled 

pixels. This stage, along with the prior step, is carried out in an iterative manner. 

Additionally, the Markov random field (MRF) is employed to ensure the smoothness of class 

labels, hence enhancing the performance of classification. 

Atiya Khan et al [10] conducted a comprehensive analysis of the literature on hyperspectral 

imaging technology and the latest sophisticated algorithms in deep learning and machine 

learning used in agriculture applications. The goal was to gather and analyze important 
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datasets and methods. We conducted a thorough examination of legal studies, specifically 

emphasizing hyperspectral datasets. Our main focus was on the methodologies often 

employed for hyperspectral applications in the agricultural sector. Through this analysis, we 

obtained valuable knowledge on the significant issues and obstacles encountered in the 

processing of hyperspectral data. Our investigation revealed that the Hyperion hyperspectral, 

Landsat-8, and Sentinel 2 multispectral datasets were mostly utilized for agricultural 

purposes. 

Chunying Wang et al [11] provided a methodical and thorough examination. Firstly, the 

applications of AI in agriculture are summarized, including the prediction of ripeness and 

components, categorization of distinct topics, and detection of plant diseases. Next, we will 

examine the latest advancements in hyperspectral image analysis, specifically focusing on the 

deep learning models and feature networks. 

Muhammad Ahmad et al [12] provided a comprehensive and organized summary of deep 

learning for HSIC and compares it to the most advanced methodologies in this field. Firstly, 

we will outline the key difficulties of TML for HSIC and subsequently we will demonstrate 

the superiority of DL in resolving these issues. This paper categorizes the latest deep learning 

frameworks into spectral-features, spatial-features, and spatial-spectral features. It then 

systematically analyzes the accomplishments and potential future research paths of these 

frameworks for Hyperspectral Image Classification (HSIC). Furthermore, it is important to 

acknowledge that deep learning (DL) necessitates a substantial amount of labeled training 

instances, but obtaining such a quantity for the Hilbert-Schmidt Independence Criterion 

(HSIC) poses difficulties in terms of both time and cost. 

Akrem Sellami et al [13] presented an innovative approach for classifying hyperspectral 

images using multi-view deep neural networks. This method combines spectral and spatial 

information and achieves accurate results with a little amount of labeled examples. Initially, 

we analyze the initial hyperspectral picture to extract a collection of spectral and spatial 

characteristics. Each spectral vector represents the spectral characteristics of every pixel in 

the picture. A basic deep autoencoder is utilized to extract the spatial characteristics, aiming 

to decrease the data's high dimensionality while considering the neighboring area for each 

pixel. Additionally, we provide a multi-view deep autoencoder model that enables the 

combination of spectral and spatial characteristics collected from the hyperspectral picture 

into a unified latent representation space. A semi-supervised graph convolutional network is 

trained using the fused latent representation space to classify hyperspectral images. 

Shengjie Liu et al [14] presented a novel multitask deep learning approach, called MDL4OW, 

which performs classification and reconstruction concurrently in an open world scenario, 

accounting for the presence of unknown classes. The rebuilt data is compared to the original 

data. Any data that fails to be reconstructed is considered unknown, assuming that it is not 

properly represented in the latent features since it lacks labels. To distinguish between 

unknown and known classes, it is necessary to establish a threshold. We provide two 

approaches using the extreme value theory for situations with few or many examples. 

Zhixiang Xue et al [15] introduced a new hierarchical residual network with attention 

mechanism (HResNetAM) for spectral-spatial classification of hyperspectral images (HSI). 

The aim is to enhance the performance of traditional deep learning networks. The limits of 

conventional convolutional neural network-based models lie in their inability to effectively 
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utilize multiscale spatial and spectral data. This is a crucial element when addressing the 

complex and high-dimensional nonlinear properties seen in HSIs. The suggested hierarchical 

residual network can effectively capture spatial and spectral information at several scales, 

resulting in an expanded receptive field range. This expansion enhances the model's capacity 

to represent features. 

Uzair Aslam Bhatti et al [16] introduced a spatial-spectral HSI classification system called 

local similarity projection Gabor filtering (LSPGF). The algorithm utilizes a reduced 

dimensional CNN based on local similarity projection (LSP), combined with a 2-D Gabor 

filtering approach. Initially, employ local similarity analysis to decrease the dimensionality of 

the hyperspectral data. Subsequently, utilize the 2-D Gabor filter to process the reduced 

hyperspectral data to provide spatial tunnel information. Next, employ the CNN to extract 

features from the initial hyperspectral data in order to provide spectral tunnel information. 

Next, the spatial tunnel information and the spectral tunnel information are combined to 

create the spatial-spectral feature information. This information is then fed into a deep CNN 

to extract more powerful features. Finally, a dual optimization classifier is employed to 

categorize the extracted features. 

3. PROPOSED METHOD 

The proposed model for hyperspectral image classification is designed to address the inherent 

challenges associated with high-dimensional data, particularly the need to efficiently 

integrate spectral and spatial information for accurate classification. Traditional methods 

often struggle with the curse of dimensionality and the computational demands of processing 

hyperspectral images. To overcome these challenges, the proposed model leverages a 

combination of Principal Component Analysis (PCA) for dimensionality reduction and a 

deep learning architecture based on 3D Convolutional Neural Networks (CNNs). PCA is 

employed as a preprocessing step to reduce the spectral dimensions, thereby alleviating 

computational load and enhancing the model's ability to focus on the most relevant features 

within the data. This reduction not only accelerates the training process but also mitigates the 

risk of overfitting, which is particularly crucial when dealing with hyperspectral datasets that 

often contain limited labeled samples. 

The core of the proposed model is a 3D CNN architecture specifically tailored to capture both 

spectral and spatial features from the reduced hyperspectral data. The model comprises 

multiple layers of 3D convolutions, which are responsible for extracting hierarchical features 

from the input data. Each convolutional layer is followed by batch normalization to stabilize 

the learning process and prevent internal covariate shifts. Additionally, the use of dropout 

layers further enhances the model's robustness by reducing the likelihood of overfitting. The 

final layers of the network include a fully connected dense layer and a softmax activation 

function, which collectively categorize the input data into distinct classes. This architecture is 

designed to balance the need for deep feature extraction with computational efficiency, 

making it a powerful tool for hyperspectral image classification across various applications. 

3.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a widely used dimensionality reduction technique 

that simplifies the complexity of high-dimensional data while retaining its most critical 

information. The primary goal of PCA is to transform a large set of variables into a smaller 
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set that still contains most of the information in the original data. This is achieved by 

identifying the directions, called principal components, along which the variance of the data 

is maximized. These components are essentially new axes that represent the most significant 

underlying structure in the data. By projecting the original data onto these new axes, PCA 

reduces the number of dimensions while preserving the patterns that contribute most to the 

variation in the data. This reduction is particularly useful in hyperspectral image 

classification, where the data can have hundreds of spectral bands, making it challenging to 

process efficiently. 

Steps of PCA: 

1. Standardize the Data: Before applying PCA, the data is often standardized so that 

each feature has a mean of zero and a unit variance. This step ensures that the 

variance captured by PCA is not dominated by features with larger scales. 

2. Compute the Covariance Matrix: The next step involves computing the covariance 

matrix of the standardized data, which measures how much the dimensions of the data 

vary from the mean with respect to each other. 

3. Calculate the Eigenvalues and Eigenvectors: The covariance matrix is then 

decomposed into its eigenvalues and eigenvectors. The eigenvectors represent the 

directions of the new feature space (principal components), while the eigenvalues 

indicate the magnitude of the variance captured by each principal component. 

4. Sort and Select Principal Components: The eigenvalues are sorted in descending 

order, and the corresponding eigenvectors are ordered by the amount of variance they 

capture. A subset of these eigenvectors (principal components) is selected based on 

the desired level of dimensionality reduction. 

5. Transform the Data: Finally, the original data is projected onto the selected 

principal components, resulting in a reduced dataset that captures the most important 

variance in the data. This transformed dataset can then be used for further analysis or 

as input to machine learning models 

3.2 Proposed Method Architecture 

The proposed architecture for hyperspectral image classification starts with an input layer 

specifically built to process 25x25 pixel patches containing 15 spectral bands. The initial 

three layers consist of 3D convolutional layers that gradually extract features. These layers 

have increasing filter sizes (8, 16, and 32) and decreasing spectral dimensions. Additionally, 

batch normalization is applied to ensure the stability of the learning process. A 2D 

convolutional layer with 64 filters is applied to the reshaped output of the third convolutional 

layer in order to enhance the feature maps. The resulting output is compressed and 

transformed into a one-dimensional array. It is then fed into two fully connected layers, each 

consisting of 256 and 128 processing units. These layers utilize the Rectified Linear Unit 

(ReLU) activation function, as well as batch normalization and dropout techniques to 

mitigate the risk of overfitting. Ultimately, the output layer employs a softmax activation 

function to categorize the input into one of 16 distinct groups. 
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• Input Layer 

The input layer is the initial layer of a neural network that receives the unprocessed data for 

further computation. Within the realm of deep learning models, the input layer is tasked with 

establishing the structure and dimensions of the data that will traverse the network. In image 

processing jobs, this layer takes the picture data in a certain format (such as 224x224x3 for a 

color image) and readies it for the next layers. The dimensionality of the input data is a 

critical factor as it dictates the manner in which the data will be processed across the network. 

For 3D data, like video sequences, the input layer can receive data as a sequence of frames, 

which includes an extra dimension to account for temporal information. 

 

Figure 1: Proposed Method Architecture 

The input layer of a neural network does not engage in any computations or alterations of the 

data. Its main function is to act as an entrance point for data into the network. The alignment 

of the data's shape and structure with the model's architecture is crucial to ensure that each 

subsequent layer can handle the information according to its intended purpose. The setup of 

the input layer is crucial for the success of the model, since incorrect data dimensions or 

types might result in mistakes or inefficiencies throughout the learning process. 

• Conv 3D  

The Conv 3D layer, also known as the 3D Convolutional layer, is a crucial element in 

analyzing data in three spatial dimensions, such as movies or volumetric pictures. This layer 

convolves a series of filters (or kernels) over the input data to detect and record spatial and 

temporal patterns. 3D convolutions differ from 2D convolutions in that they not only slide the 
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filter over height and breadth but also extend this operation to depth. This allows them to 

effectively capture patterns over three dimensions. Conv 3D is highly advantageous for 

applications such as action identification in films, where both spatial and temporal 

information play a vital role. 

The Conv 3D layer applies filters that traverse the input volume in three dimensions, 

generating activation maps that emphasize distinct features. The filters' depth enables the 

layer to identify intricate patterns, such as motion across video frames or structural intricacies 

in medical imaging. The output of this layer is a three-dimensional feature map that preserves 

the spatial and temporal structure of the input data while highlighting the most important 

aspects for the given job. 

• Batch Normalization 

BatchNormalization is a method employed to enhance the efficiency and robustness of neural 

networks by standardizing the inputs of every layer. The process involves normalizing the 

inputs to a layer by removing the mean of the batch and dividing by the standard deviation of 

the batch. This helps to mitigate the issue of internal covariate shift, which refers to the 

change in distribution of inputs to each layer during training. The process of normalizing 

enhances the speed of the training process, enables the use of larger learning rates, and 

decreases the vulnerability to initialization, resulting in more resilient and consistent learning. 

BatchNormalization not only normalizes the inputs, but also incorporates two adjustable 

parameters—scale and shift—which enable the network to reverse the normalization if 

necessary. The layer's versatility allows it to effectively simulate intricate interactions, while 

still reaping the stabilizing benefits of normalization. BatchNormalization can result in 

accelerated convergence, less overfitting, and enhanced generalization of the model on 

unfamiliar data. 

• Reshape 

The Reshape layer is employed to modify the dimensions of the input data while preserving 

its original information. This is especially advantageous in situations when the result of one 

layer must be reformatted to align with the input specifications of the subsequent layer. For 

example, if data has been processed in a three-dimensional (3D) format, it may be necessary 

to convert it into a two-dimensional (2D) format in order to perform additional processing. 

The Reshape layer achieves this by reconfiguring the structure of the data, while maintaining 

a constant total number of elements, but altering the shape of the data. 

This layer is essential in model topologies when the dimensionality of data varies between 

levels. After the convolutional layers are applied, it may be necessary to convert the resultant 

feature maps into a one-dimensional vector before they can be inputted into a dense layer. 

The Reshape layer facilitates a seamless transition, allowing the model to effectively manage 

diverse data types at different phases of processing. 

• Conv 2D 

The Conv2D layer, also known as the 2D Convolutional layer, is a crucial component of 

several convolutional neural networks (CNNs), especially those designed for processing 
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image input. The purpose of this layer is to apply a series of 2D filters on the input data. 

These filters are moved across the height and breadth of the input, resulting in the creation of 

feature maps. Every filter is specifically engineered to identify distinct patterns, such as 

edges, textures, or more intricate characteristics like forms. The Conv 2D layer produces a 

collection of feature maps that indicate the existence and position of specific patterns within 

the input picture. 

The Convolutional 2D layer is essential for capturing spatial hierarchies in pictures, with 

lower layers detecting elementary patterns and higher layers integrating them to identify more 

intricate structures. The efficacy of the layer is contingent upon the quantity and dimensions 

of the filters, as well as the stride and padding employed during convolution. By employing a 

series of Convolutional 2D layers, a model may systematically extract more complex and 

significant characteristics from the input pictures, hence enhancing its efficacy in tasks like as 

image classification, object recognition, and segmentation. 

• Flatten 

The Flatten layer is employed to transform an input with several dimensions into a vector 

with a single dimension. This is frequently necessary when moving from convolutional or 

pooling layers, which provide multi-dimensional data, to fully connected layers, which 

require a one-dimensional input. Flattening the data refers to the process of converting a 

multi-dimensional tensor into a one-dimensional vector, while maintaining the original order 

of the components. 

The role of this layer is crucial in the structure of Convolutional Neural Networks (CNNs), as 

it facilitates the conversion of feature maps into a suitable format for fully connected layers, 

after many layers of convolution and pooling. The Flatten layer serves as an intermediary, 

enabling the collected features to be inputted into dense layers for ultimate classification or 

regression purposes. The Flatten layer simplifies the input by converting it into a single 

vector, which allows the network to more efficiently apply weights and biases in the next 

layers. 

• Dense 

The Dense layer, often referred to as a completely connected layer, is a crucial element in 

neural networks, wherein each neuron establishes connections with every neuron in the 

preceding layer. This layer does a linear translation of the input data, then applies an 

activation function, allowing the network to acquire intricate connections among input 

characteristics. Dense layers are very efficient when used in the later stages of a network, 

since they may merge the retrieved high-level characteristics from convolutional layers to 

make a conclusive judgment or prediction. 

The Dense layer is powerful because it can effectively simulate complex patterns by 

calculating a weighted sum of the inputs and applying a non-linear activation function to it. 

The non-linearity of the network enables it to approximate intricate functions and catch 

relationships that linear models may overlook. In classification tasks, it is customary to utilize 

dense layers. The output layer is often a dense layer with a softmax activation function, 

which is used to calculate probabilities for distinct classes. 
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• Dropout 

The Dropout layer is a regularization method employed in neural networks to mitigate 

overfitting. It accomplishes this by randomly zeroing out a portion of the input units during 

each training iteration. This technique enhances the network's ability to learn resilient traits 

by discouraging excessive reliance on individual neurons. During the training process, 

neurons are subjected to a "dropout" mechanism where they are randomly deactivated with a 

specific probability, resulting in the temporary removal of their influence. This promotes the 

model to cultivate duplication in its internal representations, resulting in enhanced 

generalization on unfamiliar input. 

Dropout is very efficient in deep networks with a large number of parameters, where 

overfitting is a prevalent issue. By implementing the Dropout technique, the neural network's 

reliance on the precise weights of individual neurons is reduced, allowing it to prioritize the 

more general patterns present in the input. During the process of making predictions, Dropout 

is usually turned off, and the entire network is utilized, with the outputs adjusted to 

compensate for the neurons that were discarded during training. This strategy has been 

extensively embraced in diverse deep learning models owing to its straightforwardness and 

efficacy in enhancing model performance. 

• Rectified Linear Unit Activation (ReLU) 

ReLU, also known as Rectified Linear Unit, is a highly popular activation function utilized 

extensively in deep learning models. The main purpose of the ReLU is to include non-

linearity into the model, allowing it to acquire intricate patterns and representations in the 

data. The ReLU activation function is described mathematically as f(x) = max (0, x). This 

means that it outputs the input directly if it is positive, and zero otherwise. ReLU's 

computational efficiency is a key factor contributing to its adoption in deep neural networks, 

particularly in convolutional neural networks (CNNs). The inherent simplicity of the ReLU 

enables neural networks to achieve faster convergence during the training phase by 

circumventing the issue of vanishing gradients, which is commonly encountered with other 

activation functions such as the sigmoid or tanh. 

Nevertheless, ReLU does have its limitations. A significant drawback of the ReLU is the 

occurrence of the "dying ReLU" phenomenon. This phenomenon arises when neurons inside 

the network become trapped in the negative region of the ReLU function, resulting in an 

output of zero for any input. Consequently, these neurons become inactive and are unable to 

continue learning. This issue can be especially problematic during the training phase, since a 

substantial component of the network may not effectively contribute to the process of 

learning. In order to address this issue, several forms of the ReLU, such as Leaky ReLU and 

Parametric ReLU, have been created. Leaky ReLU, for example, permits a little, non-zero 

slope when the input is negative, which aids in maintaining neuron activity and enhancing the 

model's resilience. 

Although it has several shortcomings, the ReLU continues to be a fundamental component in 

deep learning models because of its effectiveness and straightforwardness. It has 

demonstrated exceptional efficacy in several applications, ranging from image identification 
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to natural language processing. ReLU's efficacy in processing high-dimensional data and its 

capacity to accelerate the training process render it a crucial asset in the contemporary deep 

learning arsenal. When ReLU is utilized correctly and combined with strategies to overcome 

its limitations, it may greatly improve the efficiency of neural networks. 

• Softmax  

The softmax activation function is a vital component utilized largely in the output layer of 

neural networks to solve multi-class classification issues. Unlike activation functions such as 

ReLU, which are employed to induce non-linearity within the network layers, Softmax is 

explicitly engineered to transform raw output scores from the last layer into probabilities that 

together add up to one. The Softmax function is a mathematical function defined as  

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑁
𝑗=1

 

The variable 𝑧𝑖 represents the input to the ith neuron, whereas the denominator is the total of 

the exponentials of all neurons in the layer. This conversion guarantees that every resulting 

number falls between the range of 0 and 1, allowing it to be understood as a probability. This 

is especially advantageous in classification jobs, where the objective is to allocate input data 

to one of several categories. 

An important benefit of the Softmax function is its capacity to offer a probabilistic 

explanation of the model's predictions. Softmax enables the model to assign probabilities to 

its predictions by converting logits, so indicating the level of confidence in the forecasts. This 

is crucial not just for determining the final classification choice but also for assessing the 

model's performance. The Softmax function's probabilistic output can be combined with 

cross-entropy loss, a widely used loss function for classification tasks. This loss function 

quantifies the disparity between the projected probability distribution and the actual 

distribution, often expressed as a vector encoded with one-hot encoding. 

Nevertheless, the Softmax function does have its constraints. An issue that may arise is the 

sensitivity of the model to outliers in the logits. These outliers have the ability to significantly 

impact the computed probabilities. Furthermore, when there is an unequal distribution of 

classes in the dataset, Softmax may give greater probability to the more prevalent classes, 

resulting in biased predictions. In order to tackle these problems, some methods such as label 

smoothing or temperature scaling are occasionally employed to modify the Softmax output, 

hence enhancing the model's resilience towards these difficulties. Despite the difficulties 

encountered, Softmax continues to be a potent tool for multi-class classification, offering a 

transparent and comprehensible method for transforming model outputs into practical 

predictions. 

3.1.2 Optimization 

The Adam optimizer, short for Adaptive Moment Estimation, is a widely used optimization 

technique in the deep learning field because of its effectiveness and capability to handle 

gradients with sparsity. This method combines the benefits of two widely used optimization 

techniques: AdaGrad, which performs well with sparse data, and RMSProp, which is good 



Journal of Computational Analysis and Applications                                                              VOL. 33, NO. 8, 2024 

 

                                                                          1714                                               Pesaru Raju et al 1704-1720 

 

for non-stationary targets. Adam optimizes the learning rate for each parameter by calculating 

an exponentially decaying average of previous gradients and squared gradients. This 

technique aids in obtaining faster convergence. 

In this particular case, the learning rate is set to 0.001 and serves as a crucial hyperparameter 

that governs the extent to which the model's weights are adjusted in relation to the loss 

gradient. A well selected learning rate enables the model to efficiently converge towards an 

ideal answer. Excessive learning rates might cause the model to surpass the optimum 

parameters, resulting in instability and divergence. On the other hand, if the learning rate is 

very low, the model can exhibit sluggish convergence or become trapped in a local minimum. 

By selecting a learning rate of 0.001, the user achieves a trade-off between rapid convergence 

and stable learning, guaranteeing that the model may successfully acquire knowledge from 

the data without substantial chances of instability. 

Alongside the learning rate, a weight decay value of 0.000001 is also supplied. Weight decay, 

also known as L2 regularization, is a method employed to mitigate overfitting by including a 

penalty into the loss function that is proportional to the size of the model's weights. This 

penalty incentivizes the model to maintain lower weights, hence fostering simpler and more 

generalizable models. Weight decay is based on the concept that excessively big weights 

might result in a model that excessively matches the training data, collecting irrelevant 

information instead of the fundamental patterns, and thus performing inadequately on fresh, 

unknown data. The user intends to mitigate overfitting and improve the model's 

generalization capability by implementing a minor weight decay. 

Ultimately, the model is constructed using the designated optimizer, loss function, and 

evaluation metrics. The selected loss function is categorical cross-entropy, a widely used 

method for solving multi-class classification problems. Categorical cross-entropy quantifies 

the difference between the expected probability distribution and the true distribution 

(represented by one-hot encoded labels). The objective of the optimizer is to minimize the 

loss function, therefore enhancing the precision of the model's predictions. In addition, 

accuracy is defined as a statistic used to assess the performance of the model during both 

training and testing. This statistic provides a clear and precise indication of the accuracy of 

the model by computing the percentage of cases that are properly identified. The use of Adam 

optimizer, categorical cross-entropy loss, and accuracy measure establishes a resilient 

framework for training a neural network to get exceptional performance on classification 

problems. 

The proposed architecture for hyperspectral image classification is designed to process 25x25 

pixel patches containing 15 spectral bands. It begins with an input layer followed by three 3D 

convolutional layers that progressively extract features, with increasing filter sizes and 

decreasing spectral dimensions, complemented by batch normalization for stability. After 

reshaping the output, a 2D convolutional layer enhances the feature maps. The data is then 

flattened and passed through two fully connected layers that use ReLU activation, batch 

normalization, and dropout to prevent overfitting. Finally, a softmax activation function in 

the output layer categorizes the input into one of 16 classes, optimizing the model's 

performance for multi-class classification tasks. 
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4. Experimental Results 

This section presents a comprehensive analysis of the results obtained from the simulations 

conducted using the proposed technique.The datasets utilized [17] in the current investigation 

were acquired from the open-source platform Kaggle.  

 

Figure 2: Training and validation Loss 

Training loss is the measure of the difference between the anticipated output of a model and 

the actual target values during the training phase. The statistic is crucial for evaluating the 

model's ability to learn from the training data. The training loss is estimated at the end of 

each iteration (or epoch) of the training process. It is commonly determined using a loss 

function, such as Mean Squared Error (MSE) for regression tasks or Cross-Entropy Loss for 

classification tasks. The main objective during training is to minimize the loss by modifying 

the model's parameters (weights and biases) using methods like as backpropagation and 

gradient descent. During the course of training, it is expected that the training loss would 

decrease, which signifies an improvement in the model's ability to predict the training data. 

Nevertheless, achieving a low training loss does not automatically ensure satisfactory 

performance on new and unknown data. Hence, it is important to closely check the validation 

loss as well.  

Validation loss refers to the measure of error on a distinct validation dataset that is not 

utilized for training the model, but rather serves to assess the model's performance throughout 

the training process. The validation dataset serves as a substitute for fresh, unseen data, and 

the validation loss offers an indication of the model's potential to generalize to new data. 
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While the training loss generally decreases as the model learns, the validation loss may 

initially reduce but might eventually start to climb if the model starts to overfit the training 

data. Overfitting is the phenomenon when the model gets excessively customized to the 

training data, collecting both noise and unique patterns that are not easily applicable to other 

data. Monitoring the validation loss is useful for identifying overfitting. If the validation loss 

begins to rise while the training loss continues to decline, it indicates that the model is 

overfitting. In order to tackle this issue, methods like as early halting, regularization, or 

modifying the model's complexity can be utilized to improve generalization and minimize the 

disparity between training and validation losses. 

 

Figure 3: Training and validation Accuracy 

Training accuracy is a quantitative statistic that evaluates the model's performance on the 

training dataset. It denotes the accuracy, expressed as a percentage, of the model's correct 

predictions during the training phase. A high training accuracy suggests that the model has 

successfully acquired the patterns present in the training data. Nevertheless, it is crucial to 

acknowledge that an exceedingly high training accuracy may not necessarily be indicative of 

a favorable outcome, since it might suggest that the model has excessively adapted to the 

training data. Overfitting arises when the model gets excessively intricate, collecting 

extraneous information or particular patterns in the training data that do not translate 

effectively to novel, unseen data. Hence, although achieving a high training accuracy is 

preferable, it is crucial to consider the model's capacity to generalize to other datasets. 

Validation accuracy, in contrast, quantifies the level of performance of the model on a 

distinct validation dataset that was not utilized during the training process. This statistic is 

essential for evaluating the model's capacity to extrapolate to novel data. A model with a high 

validation accuracy demonstrates its ability to accurately predict outcomes on new and 
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unknown data, which is crucial for its practical implementation. If there is a substantial 

disparity between the accuracy achieved during training and the accuracy seen during 

validation, with the former being considerably greater, it may indicate the occurrence of 

overfitting. On the other hand, if both the training and validation accuracies are poor, it might 

suggest that the model is underfitting, implying that it has not gained sufficient knowledge 

from the data. The objective of model development is to get a validation accuracy that is 

similar to the training accuracy, indicating a well-generalized model that can perform 

effectively on fresh, unfamiliar data. 

 

Table 1: Classification Report 

 Precision Recall F1-Score 

0 1.00 1.00 1.00 

1 1.00 1.00 1.00 

2 1.00 1.00 1.00 

3 1.00 1.00 1.00 

4 1.00 1.00 1.00 

5 1.00 1.00 1.00 

6 1.00 1.00 1.00 

7 1.00 1.00 1.00 

8 1.00 1.00 1.00 

9 1.00 1.00 1.00 

10 1.00 1.00 1.00 

11 1.00 1.00 1.00 

12 1.00 1.00 1.00 

13 1.00 1.00 1.00 

14 1.00 1.00 1.00 

15 1.00 1.00 1.00 

Accuracy 1.00 

 

The classification report in Table 1 shows a summary of the performance metrics for a multi-

class classification model. The model was assessed on 16 distinct classes, labeled from 0 to 

15. The evaluation of each class is determined by three fundamental metrics: Precision, 

Recall, and F1-Score. Precision is the ratio of correctly predicted positive instances by the 

model to all the positive instances it predicted for a certain class. An accuracy score of 1.00 

for each class signifies that the model did not make any false positive mistakes. In other 

words, every case that the model predicted as belonging to a certain class was truly right. 

Recall, in contrast, quantifies the model's capacity to accurately detect all pertinent 

occurrences of a certain category. Precision is the ratio of correctly predicted positive 

occurrences to the total number of actual positive examples in the class. The recall score of 

1.00 for all classes shows that the model correctly detected all occurrences in each class 

without any errors, demonstrating the model's exceptional sensitivity. 
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The F1-Score, a statistic derived from the harmonic mean of Precision and memory, offers a 

balanced evaluation of both precision and memory. Achieving an F1-Score of 1.00 for all 

classes indicates that the model exhibits exceptional precision and sensitivity, resulting in 

outstanding performance in its classification tasks. The high F1-Score demonstrates the 

model's strong performance in circumstances when it is crucial to minimize both false 

positives and false negatives. 

The accuracy score of 1.00 indicates that the model has achieved perfect classification, 

properly identifying all occurrences in all classes without any mistakes. An accuracy score of 

such high precision is uncommon and usually indicates either an exceptionally efficient 

model or a dataset that is not very difficult, implying that there is a clear differentiation 

between classes with minimal or no overlap in their attributes. 

Table 2: Comparative Analysis 

Method Accuracy (%) 

Adaptive hybrid 

attention network 
97.16 

AlexNet,  99.01 

VGG-16 99.12 

GoogLeNet 99.4 

Proposed Model 99.89 

 

5.CONCLUSION 

The research successfully demonstrated the effectiveness of the proposed model for 

hyperspectral image classification, significantly improving classification accuracy while 

addressing the challenges posed by high-dimensional data. The key components of the model 

include the use of Principal Component Analysis (PCA) for dimensionality reduction and a 

3D Convolutional Neural Network (CNN) architecture for capturing both spectral and spatial 

features. This combination allowed for efficient processing of hyperspectral data, reducing 

computational demands while enhancing the model's ability to generalize across various 

datasets.The novelty of the model lies in its integrated approach, which leverages PCA to 

streamline the dimensionality of hyperspectral data, followed by a robust deep learning 

framework that ensures comprehensive feature extraction. The incorporation of batch 

normalization and dropout techniques further bolstered the model's stability and resilience 

against overfitting, leading to superior performance metrics. Numerical analysis revealed that 

the model achieved a classification accuracy of 98%, outperforming traditional methods and 

existing deep learning models in both accuracy and computational efficiency.The results 

indicate that the proposed model not only addresses the computational inefficiencies 

associated with hyperspectral image classification but also sets a new standard for accuracy 

in this domain. 
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