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Abstract: This article investigates the flow dynamics of an Eyring-Powell nanofluid over a 

radially stretching surface. A revised zero-mass flux condition is applied, along with the effects of 

convective heat transfer and viscous dissipation. The influence of thermophoresis and Brownian 

motion is also considered. The mathematical formulation is developed under the boundary layer 

approximation, where the governing partial differential equations are transformed into a system of 

nonlinear ordinary differential equations using appropriate similarity transformations. These 

resulting equations are then solved numerically using the bvp4c. The study examines the velocity, 

temperature, and concentration profiles for various governing parameters, including the magnetic 

parameter, fluid parameter, Prandtl number, Biot number, and Eckert number. The findings reveal 

that variations in the fluid parameter have a significant impact on velocity, temperature, and 

concentration distributions. 

 

1.Introduction 

Fluids are primarily classified into Newtonian and non-Newtonian categories. Non-

Newtonian fluids are commonly encountered in everyday life, with examples including toothpaste, 

ketchup, honey, mud, blood, paint, and shampoo. Over the past few years, these fluids have 

garnered significant attention from researchers and scientists due to their extensive applications in 

various industries, biological sciences, and manufacturing processes. Some notable applications 

include polymer solutions, nuclear fuel slurries, lubrication with heavy oils and greases, and blood 

flow. 

The study of non-Newtonian fluid dynamics and heat transfer is particularly important in 

power engineering. These fluids are widely used in polymer solutions, paints, specialized 

lubricants, certain oils, clay coatings, colloidal suspensions, and cosmetic products. However, no 

single constitutive equation can comprehensively describe all the characteristics of non-Newtonian 

fluids. To address this, researchers have developed various mathematical models to study their 

complex behavior. Among these models, the Powell-Eyring fluid model stands out as a significant 

non-Newtonian model. First introduced by Powell and Eyring [1] in 1944, this model, although 

mathematically complex, offers distinct advantages over other fluid models, particularly in 

characterizing shear-thinning behavior. Additionally, it is derived from the kinetic theory of liquids 

rather than an empirical approach, making it more fundamentally grounded. 

Several researchers have studied different aspects of Powell-Eyring fluid dynamics. Patel 

and Timol [2] examined its three-dimensional flow past a wedge. Jalil et al. [3] analyzed its heat 

transfer characteristics over a stretching sheet using Lie group analysis. Javed et al. [4] investigated 

the boundary layer flow of Powell-Eyring fluid induced by a stretching sheet, while Khader and 

Megahed [5] explored its unsteady flow and heat transfer with heat generation. Ara et al. [6] 

studied its boundary layer flow and heat transfer over an exponentially shrinking sheet. Recently, 
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Akbar et al. [7] analyzed the two-dimensional flow of an incompressible Powell-Eyring fluid 

toward a stretching sheet under the influence of a magnetic field, concluding that increasing the 

magnetic field strength and Powell-Eyring fluid parameter enhances flow resistance. Malik et al. 

[8] conducted an analytical investigation into the heat transfer properties of Eyring-Powell fluid. 

. 

The efficiency of a working fluid plays a critical role in various engineering and industrial 

applications, whether in motion or at rest. Traditionally, common heat transfer fluids such as oil, 

water, and ethylene glycol have been used. However, their thermal performance often falls short 

of meeting industrial cooling requirements. 

To overcome this limitation, researchers have introduced an innovative approach—suspending 

tiny solid particles within these base fluids. Since solid materials possess significantly higher 

thermal conductivity than liquids, the addition of nanoparticles enhances heat transfer efficiency. 

Conventional heat transfer fluids struggle with low thermal conductivity, which limits their 

effectiveness. To address this issue, Choi and Eastman [9] pioneered the concept of incorporating 

solid nanoparticles into base fluids, leading to the development of nanofluids with superior thermal 

properties. 

A nanofluid is a dilute suspension consisting of a base fluid and nanoparticles. In recent 

years, the significance of Nano fluids has grown considerably due to their wide-ranging industrial 

applications, including chemical processes, heating and cooling systems, power generation, and 

more. Following the pioneering work of Choi, Buongiorno [10] introduced a nanofluid model that 

incorporated the slip mechanism between the base fluid and nanoparticles. His study demonstrated 

that thermophoresis and Brownian motion have a significant impact on forced convection in 

nanofluids. The study of nanofluid flow over a stretching surface was initially conducted by Khan 

and Pop [11], who observed that the heat transfer rate decreases with increasing values of the 

Brownian motion parameter. Makinde and Aziz [12] extended this research by examining the 

effect of convective boundary conditions on the steady boundary layer flow of nanofluids. Further, 

Makinde et al. [13] investigated MHD stagnation point flow of nanofluids past a stretching surface 

and concluded that surface velocity increases with both the velocity ratio and Richardson number 

but decreases under the influence of a magnetic field. Wubshet et al. [14] numerically analyzed 

MHD stagnation point flow and heat transfer in nanofluids past a stretching surface, finding that 

velocity profiles increase with higher velocity ratio parameters. Mustafa et al. [15] applied the 

Homotopy Analysis Method to derive analytical solutions for stagnation point flow in nanofluids. 

Rana and Bhargava [16] used the Finite Element Method to analyze boundary layer flow caused 

by a nonlinearly stretching surface. 

Following these foundational studies, researchers have extensively investigated nanofluid 

dynamics in various contexts [17–25]. Recent literature highlights the growing importance of 

nanofluids, with comprehensive reviews available in [26–30]. Prabhakar et al. [31] analyzed the 

effect of an aligned magnetic field on non-Newtonian nanofluid flow with zero normal 

nanoparticle flux at the surface. Additionally, Prabhakar et al. [32] explored the influence of 

nonlinear radiation on MHD flow of Maxwell fluid in the presence of nanoparticles past a 

stretching sheet. 

Most studies in the literature have focused on flow induced by a stretching surface. 

However, in many practical applications, the stretching surface is not necessarily two-dimensional, 

as it can be stretched in different ways. In this context, Ariel [33] examined the flow of a second-
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grade fluid over a radially stretching sheet, obtaining both numerical and analytical solutions for 

the axisymmetric flow. Later, Ariel [34] extended this work by investigating the axisymmetric slip 

flow of a fluid past a stretching surface. Sajid et al. [35] derived analytical series solutions for 

unsteady axisymmetric flow over a non-linearly stretching sheet using the Homotopy Analysis 

Method. Sahoo [36] studied the effect of partial slip on the axisymmetric flow of an electrically 

conducting non-Newtonian second-grade liquid over a radially stretching sheet. The findings 

indicated that as the slip parameter increases, more fluid is allowed to slip past the sheet. 

Recent studies [37–39] have explored the flow and heat transfer characteristics of viscous 

fluids over a radially stretching sheet under various thermo-physical conditions. Khan et al. [40] 

investigated the MHD axisymmetric flow of a non-Newtonian Sisko liquid over a radially 

stretching surface, incorporating convective boundary conditions at the wall. Their study provided 

both numerical and analytical solutions. Additionally, Hayat et al. [41] examined the MHD 

axisymmetric stagnation point flow of Jeffrey fluid, considering the effects of Joule heating and 

viscous dissipation. 

  

In the above studies flow and heat transfer over a stretching sheet is confined to viscous 

fluids. Therefore, the purpose of this present study is to discuss the axisymmetric flow of non-

Newtonian Darcy-Forchheimer Eyring-Powell fluid with nanoparticles over a radially stretching 

surface with the effect of viscous dissipation.  

 

 

2. Mathematical formulation 

Consider a steady two dimensional(𝑟, 𝑧) convective boundary layer flow of Darcy-Forchheimer 

Powell-Eyring nanofluid past a radially stretching sheet placed at  𝑧 =  0. The flow is generated 

due to radially stretched surface with a velocity 𝑢 = 𝑢𝑤 = 𝑎𝑟, where 𝑎 is real number and fluid 

resides in the region 𝑧 ≥ 0. The sheet is kept at constant temperature 𝑇𝑤 and 𝑇∞, 𝐶∞ is the ambient 

temperature and nanoparticle volume fraction respectively with  𝑇𝑤 > 𝑇∞. Further considered the 

different external effects like thermal radiation, porous medium, magnetic field and viscous 

dissipation, Under the above assumptions the relevant governing equations of flow are as follows  

 
Fig. 1. Flow Configuration. 
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The corresponding boundary conditions are  

𝑢 = 𝑈�̂�, 𝑤 = 0, −𝑘
𝜕𝑇

𝜕𝑟
= ℎ𝑓(𝑇𝑓 − 𝑇),  𝐷𝐵

𝜕𝐶

𝜕𝑧
+ 𝐷𝑇

𝜕𝑇

𝜕𝑧
= 0, 𝑎𝑡 𝑧 = 0   (5a) 

𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞ at 𝑧 → ∞         (5b) 

Here u and w are the velocity components along r-and z-directions respectively, 𝛼 is thermal 

diffusivity, 𝜎 is electrical conductivity, 𝜐 is the kinematic viscosity, 𝜌 is the density of the base 

fluid, 𝐷𝐵 is the Brownian diffusion coefficient and  𝐷𝑇 is the thermophoresis diffusion 

coefficient, 𝜏 =
(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
 is the ratio of nanoparticle heat capacity and the base fluid heat capacity.  

We introduce the following similarity transformations 

𝜂 = 𝑧√
𝑎

𝜐
, 𝑢 = 𝑎𝑟2𝑓′(𝜂),  𝑤 = −2√𝑎𝜐𝑓(𝜂), 𝜃 =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝜙 =

𝐶−𝐶∞

𝐶∞
                          (6) 

Using transformations (6), equations (2)-(4) takes the form as: 

(1 + 𝜀)𝑓′′′ + 2𝑓𝑓′′ − 𝛿𝜀𝑓′′2𝑓′′′ − (1 + 𝐹𝑟)𝑓′2 − (𝑀 + 𝜆)𝑓′ = 0        (7) 

𝜃′′ + 2𝑃𝑟𝑓𝜃′ + 𝑃𝑟𝑁𝑏𝜃′𝜙′ + 𝑃𝑟𝑁𝑡𝜃2 + 𝑃𝑟𝐸𝑐 ((1 + 𝜖)𝑓′′2 −
𝜀𝛿

3
𝑓′′4) = 0         (8) 

𝜙′′ + 𝐿𝑒 𝑃𝑟 𝑓𝜙′ +
𝑁𝑡

𝑁𝑏
𝜃′′ = 0,         (9) 

Subject to the boundary conditions 

𝑓(0) = 0, 𝑓′(0) = 1, 𝜃(0) = 1, 𝑁𝑏𝜙′(0) + 𝑁𝑡𝜃′(0) = 0 𝑎𝑡 𝜂 = 0   (10a) 

𝑓′(∞) = 0, 𝜃(∞) = 0, 𝜙(∞) = 0.           (10b) 

where 𝜖 =
1

𝜌𝛽𝑑
, 𝛿 =

𝑎3𝑟2

2𝜈𝑐2 are fluid parameters, 𝐹𝑟 =
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2
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magnetic parameter, Pr =
𝜈

𝛼
 is Prandtl number, 𝑁𝑡 =

𝜏𝐷𝑇(𝑇𝑤−𝑇∞)

𝑇∞𝛼
 thermophoresis parameter, 𝛾 =

√
𝑣

𝑎

ℎ𝑓

𝑘
 is the Biot number, 𝑁𝑏 =

𝜏𝐷𝐵𝐶∞

𝛼
 is the Brownian motion parameter, 𝜆 =

𝜈

𝐾𝑎
 is local 

porosity parameter, and 𝐿𝑒 =
𝛼

𝐷𝐵
 the Lewis number, 

The physical quantities of interest are skin friction coefficient and local Nusselt number which 

are defined as: 
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3. Results and discussion: 

 

In this portion the impact of various physical parameters like fluid parameters 𝜀  and 𝛿 ,  , 

thermophoresis parameter Nt, Brownian motion parameter Nb, Prandtl number Pr, Lewis number 

Le and Eckert number Ec on velocity profile f′(η), temperature profile θ(η) and concentration 

profile φ(η) discussed graphically. Further the results were validated from previous data of 

Makinde [46]and AS. Butt [45] and which are in excellent agreement. 

Fig.2 represents the characteristics of fluid parameter 𝜀 on velocity, temperature and concentration 

profile for various values of 𝜀  .  It is noticed from the figure that an increase in fluid parameter 𝜀  

enhances the velocity of fluid. This is happened due to the higher values of fluid parameter 𝜀  (𝜀 

= 1/𝜇𝛽𝑐) viscosity of fluid 𝜇  decreases as a result of this fluid velocity increases. It is also 

observed that boundary layer gets thicker for larger values of 𝜀 . The graph also reveals that 

temperature and thermal boundary layer thickness reduced when the fluid parameter 𝜀  enhanced. 

Physically for large values of fluid parameter 𝜀 viscosity of fluid reduced and less heat is generated 

due to frictional forces. Hence, the temperature profile decreases. 

 

Table-1:Comparison of 𝑓′′(0) and variations of 𝑀, when 𝜆 = 0, 𝐹𝑟 = 0, 𝛿 = 0, 𝜖 = 0 

 

𝑀 Makinde[46] AS.Butt[45] Present results 

0.0 -1.17372 -1.17372 -1.173720882 

0.5 -1.36581 -1.36581 -1.365814496 

1.0 -1.53571 -1.53571 -1.535710521 

2.0 -1.83049 -1.83049 -1.830489675 

3.0 -2.08484 -2.08484 -2.084846568 

 

 

Fig.3 reflects the influence of fluid parameter 𝛿 on velocity profile for larger values of 𝛿. 

It is evident that from the figure that velocity profile decreases by raising the values of fluid 

parameter 𝛿. This is happened due to the increment in viscosity of fluid by enhancing the value of 

𝛿. Further it is observed that fluid velocity and momentum boundary layer thickness decrease for 

higher values of 𝛿. 

Fig-4 depicts the impact of magnetic parameter M on 𝑓′(𝜂), θ(η) and φ(η) profiles. As we 

increase magnetic parameter 𝑀 Lorentz force increases. Since it is resistive force to the fluid 

particles therefore velocity declines but temperature and concentration of fluid raises. Variation of 

λ on 𝑓′(𝜂), θ(η) and φ(η)  is exhibited in Fig-5. It is noticed that velocity is decreased with the 
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effect of λ, temperature and concentration of fluid raises. Variation of Fr on 𝑓′(𝜂), θ(η) and φ(η) 

is exhibited in Fig-6. Larger Fr indicates decline in velocity 𝑓′(𝜂) and escalates in temperature 

θ(η). Increase in Inertia Co-efficient 𝐹𝑟 has resulted in the thermal boundary layer becoming 

thicker and fluid could not move freely. 

 

 

 
Fig. 2. Variations of 𝜖 on 𝑓′(𝜂), 𝜙(𝜂) and 𝜃(𝜂). 

 

Figure.7 is captured to discuss the influence of Biot number  𝛾  on temperature and 

concentration profile. It is perceived that there is an increment in both temperature and 

concentration profiles with the effect of Biot number 𝛾.  From this figure we can observe that 

enhancement in the Biot number enhances the heat transfer coefficient, which is responsible in 

increment of temperature profile. 

Characteristics of thermophoresis parameter Nt on temperature and concentration profile is 

depicted in Fig-8.  It is noticed that for higher thermophoresis parameter more particles are pulled 

away from hot surface to cold surface which results in enhancement of temperature and 

concentration profile for large values of Nt. 
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Fig. 3. Variations of 𝛿 on 𝑓′, 𝜃 and 𝜙. 

 

 
Fig. 4. Variations of 𝑀 on 𝑓′, 𝜃 and 𝜙. 
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Fig. 5. Variations of 𝜆 on 𝑓′, 𝜃 and 𝜙. 

 

 
Fig. 6. Variations of 𝐹𝑟 on 𝑓′(𝜂), 𝜃(𝜂) and 𝜙(𝜂). 
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Fig. 7. Variations of 𝛾 on 𝜙(𝜂). 

 

Fig-9. is drawn to depict the variation of temperature and concentration profile for distinct 

values of Brownian motion parameter Nb. As the Brownian motion parameter Nb increases the 

fluid particles frequently hit with each other which generate more heat so it enhances the 

temperature but inverse nature is observed in the case of concentration profile. Therefore, for the 

large values of Nb leads to decrement in concentration profile. 

 

Impact of Prandtl number Pr on temperature profile is explored in Figure-10.  As we increase 

Prandtl number Pr, thermal conductivity of fluid reduced it leads to decreases temperature profile. 

Hence temperature profile is a decreasing function of Prandtl number Pr. 

 

Fig-11. is plotted to observe the nature of concentration profile with respect to Lewis Number Le. 

From the figure it is clear that concentration profile reduced with uplifting the Lewis number Le. 

Physically Le is depends on Brownian diffusivity, for large values of Lewis number Le causes 

weaker Brownian diffusivity. As a consequence of this reduction in concentration profile occurs. 

Fig-12 represents the variation of skin friction for different values of 𝜆 and 𝐹𝑟. It is clear from the 

figure that skin friction decreases with the values of 𝜆 and 𝐹𝑟 reverse trend is observe for 𝜖 . 

Figures 13-14 shows that Nusselt number is reduced with the effect of 𝜆 and 𝐹𝑟 but increased with 

the influence of 𝐸𝑐 and 𝛾. 
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Fig. 8. Variations of 𝐸𝑐 on 𝑓′(𝜂) and 𝜃(𝜂). 

 

 
Fig. 9. Variations of 𝑁𝑡 on 𝜙(𝜂) and 𝜃(𝜂). 

 

Conclusions 

 

Significant outcomes from this study are as follows. 

 Increase in magnetic field 𝑀, leads to occurrence of Lorentz force, due to this effect it 

decelerates the velocity profiles. 
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 An increment in fluid parameter increases fluid velocity whereas temperature and 

concentration profile decreases. 

 Temperature profile enhanced with an increment in Biot number and Eckert number. 

 As the thermophoresis parameter Nt increases both temperature and concentration profile 

increases. 

 Concentration profile reduced with the effect of Lewis number 𝐿𝑒. 

 Temperature and concentration profiles are enhanced for higher values of 𝜆 and 𝐹𝑟. 

 Heat transfer rate is enhanced via 𝛾 and reverse trend is seen via 𝜆 and 𝐹𝑟. 

 

 
Fig. 10. Variations of 𝑁𝑏 on 𝜙(𝜂). 

 

 
Fig. 11. Variations of 𝐿𝑒 on 𝜙(𝜂). 
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Fig. 12. Variations Skin friction for different values of 𝛽 and 𝐹𝑟. 

 

 
Fig. 13. Variations Nusselt number for different values of 𝜖, 𝜆 and 𝐹𝑟. 
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Fig. 14. Variations Nusselt number for different values of 𝑁𝑡, 𝛾 and 𝐸𝑐. 

 

References 

 

1) Powell RE, Eyring H (1944) Nature, London. 

2) M. Patel and M.G. Timol, Numerical treatment of Powell-Eyring fluid flow using Method 

of satisfaction of Asymptotic Boundary Conditions (MSABC),Applied Numerical 

Mathematics,59, 2584-2592 (2009). 

3) M.Jalil, and S.Asghar, Flow and heat transfer of Powell-Eyring fluid over a stretching 

surface: A Lie group analysis, J. Fluids Eng. ASME, 135(12), 121201,(2013). 

4) T.Javed,, N.Ali, Z.Abbas and M.Sajid, Flow of an Eyring-Powell non-Newtonian fluid 

over a stretching sheet. Chem. Eng. Commun., 200(3), 327-336,(2013). 

5) M. M.Khader, and A. M.Megahed, Numerical studies for flow and heat transfer of the 

Powell-Eyring fluid thin film over an unsteady stretching sheet with internal heat 

generation using the Chebyshev finite difference method. J. Appl. Mech.Tech. Phys., 

54(3), 440-450,(2013). 

6) Ara, N.A. Khan, H. Khan, and F. Sultan, Radiation effect on boundary layer flow of an 

Eyring-Powell fluid over an exponentially shrinking Sheet, Ain Shams Engineering 

Journal 5,1342 (2014). 

7) N.S. Akbar, A. Ebaid, and Z.H. Khan, Numerical analysis of magnetic field effects on 

Eyring-Powell fluid flow towards a stretching sheet, Journal of Magnetism and Magnetic 

Materials 382, 355-358 (2015). 



Journal of Computational Analysis and Applications                                                              VOL. 30, NO. 1, 2022 

 

                                                                             239                                             S Sandhya et al 226-242 

8) M.Y. Malik, A. Hussain, and S. Nadeem, Boundary layer flow of an Eyring-Powell model 

fluid due to a stretching cylinder with variable viscosity, Scientia Iranica Transactions 

B:Mechanical Engineering 20, 313-321,(2013). 

9) Choi, S.U.S. and Eastman, J.A., Enhancing Thermal Conductivity of Fluids with 

Nanoparticles, Int. Mech. Eng. Cong. Exhib. Conf., San Francisco, CA, November 12-

17,1995. 

10) J.Buongiorno,Convective transport in nanofluids. J Heat Transfer 128,240-250,(2006). 

11) Khan WA, Pop I. Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat 

Mass Transf, vol53, pp2477-2483, 2010 

12) O.D.Makinde, A.Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a 

convective boundary condition, Int.J.Therm.Sci.50,1326-1332,(2011). 

13) Makinde OD, Khan WA, Khan ZH, Buoyancy effects on MHD stagnation point flow and 

heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int J Heat 

Mass Transf 62:526-533,(2013) 

14) Ibrahim. W, Shankar. B, Mahantesh M. M.,MHD stagnation point flow and heat transfer 

due to nanofluid towards a stretching sheet. Int J Heat Mass Transf 56(2013) 1-9. 

15) Mustafa, T.Hayat, I.Pop, S.Asghar, S.Obadiat, Stagnation-point flow of a nanofluid 

towards a stretching sheet, Int. J.HeatMassTransf.54,55885594,(2011). 

16) P.Rana, R.Bhargava, Flow and heat transfer of a nanofluid over a nonlinearly stretching 

sheet: a numerical study, Commun.NonlinearSci.Num.Simul.17,212-226,(2012). 

17) M.J.Uddin,W.A.Khan, A.I.Ismail, MHD free convective boundary layer flow of a 

nanofluid past a flat vertical plate with Newtonian heating boundary condition, PLoSOne 

(2012). 

18) H.R. Ashorynejad, M. Sheikholeslami, I.Pop, D.D.Ganji, Nano fluid flow and heat transfer 

due to a stretching cylinder in the presence of magnetic field, Heat MassTransf.49,427-

436,(2013). 

19) M.Mustafa, T.Hayat, A.Alsaedi,Unsteady boundary layer flow of nanofluid past 

impulsively stretching sheet an,J.Mech.29,423432,(2013). 

20) D. Nield, A. Kuznetsov, The Cheng-Minkowycz problem for natural convective boundary 

layer flow in a porous medium saturated by a nanofluid: a revised model, Int. J. Heat Mass 

Transf. 65, 682-685,(2013). 

21) A.V.Kuznetsov,D.A.Nield, Natural convective boundary-layer flow of a nanofluid past a 

vertical plate: a revised model, Int.J.Therm.Sci. 77, 126129,(2014). 



Journal of Computational Analysis and Applications                                                              VOL. 30, NO. 1, 2022 

 

                                                                             240                                             S Sandhya et al 226-242 

22) M.Sheikholeslami, M.Gori-Bandpy, D.D.Ganji, S.Soleimani, Natural convection heat 

transfer in a cavity with sinusoidal wall Q2 filled with CuO-water nanofluid in presence of 

magnetic field,J.Taiwan Inst. Chem. Eng.(2015). 

23) M.M.Rashidi, S.Abelman, N.F.Mehr, Entropy generation in steady MHD flow due to a 

rotating disk in a nanofluid, Int.J.Heat Mass Transf.62,515525,(2013) . 

24) M.Turkyilmazoglu, Nanofluid flow and heat transfer due to a rotating disk, Comp. 

Fluids,94,139-146,(2014). 

25) A.V.Kuznetsov,D.A.Nield, Natural convective boundary layer flow of a nanofluid past a 

vertical plate: a revised model,Int.J.Therm.Sci.77, 126129,(2014). 

26) Ramesh GK,Numerical study of the influence of heat source on stagnation point flow 

towards a stretching surface of a Jeffrey nanoliquid. J Eng 2015:10, (2015) 

27) Ibrahim W, Passive control of nanoparticle of micropolar fluid past a stretching sheet with 

nanoparticles, convectiveboundary condition and second-order slip. Proc Inst Mech Eng 

Part E J Process Mech Eng 231,704-719, 2016) 

28) Madhu M, Kishan N, Chamkha AJ , Unsteady flow of a Maxwell nanofluid over a 

stretching surface in the presence of magneto hydrodynamic and thermal radiation 

effects.,Propuls Power Res 6,31-40,(2017). 

29) Halim NA, Sivasankaran S, Noor NFM Active and passive controls of the Williamson 

stagnation nanofluid flow over a stretching/shrinking surface. Neural Comput Appl, 

28:1023-1033,(2017). 

30) Ramly NA, Sivasankaran S, Noor NFM Zero and nonzero normal fluxes 

of thermal boundary layer flow of nanofluid over a radially stretched surface. Sci Iran 

24,2895-2903,(2017) 

31) Prabhakar B, Bandari S, Haq RU, Impact of inclined Lorentz forces on tangent hyperbolic 

nanofluid flow with zero normal flux of nanoparticles at the stretching sheet, Neural 

Comput Appl, 29,805-814, (2018). 

32) Prabhakar B, Bandari S, Srinivas Reddy C, A revised model to analyzemhd flow of 

Maxwell nanofluid past a stretching sheet with nonlinear thermal radiation 

effect,Int.J.Fluid Mech Res, 46(2),151-165,(2019) 

33) Ariel, P.D. Axisymmetric flow of a second grade fluid past a stretching sheet. Int. J. Eng. 

Sci.,39, 529-553,(2001). 

34) Ariel, P.D. Axisymmetric flow due to a stretching sheet with partial slip. Appl. 

Math.Comput.54, 1169-1183, (2007). 



Journal of Computational Analysis and Applications                                                              VOL. 30, NO. 1, 2022 

 

                                                                             241                                             S Sandhya et al 226-242 

35) M. Sajid, I. Ahmad, T. Hayat, M. Ayub, Series solution for unsteady axisymmetric flow 

and heat transfer over a radially stretching sheet, Commun. Nonlinear Sci. 13, 2193,(2007). 

36) Sahoo, Effects of partial slip on axisymmetric flow of an electrically conducting 

viscoelastic fluid past a stretching sheet, Cent. Euro. J. Phys. 8, 498-508, (2010). 

37) Shahzad, R. Ali, M. Khan, On the exact solution for axisymmetric flow and heat transfer 

over a nonlinear radially stretching sheet, Chin. Phys. Lett. 29,084705, (2012) 

 

38) A.Shahzad et al., On heat transfer analysis of axisymmetric flow of viscous fluid over a 

nonlinear radially stretching sheet, Alexandria. Eng.J.55, 2423-2429, (2016). 

39) M. Khan, A. Munir, A. Shahzad, and A. Shah, MHD flow and heat transfer of a viscous 

fluid over a radially stretching power law sheet with suction/injection in a porous medium, 

J. of App. Mech and Tech. Phys, 56(2), 231-240,(2015). 

40) M. Khan, R. Malik, A. Munir, A. Shahzad, MHD flow and heat transfer of Sisko fluid over 

a radially stretching sheet with convective boundary conditions, J. Braz. Soc. Mech. Sci. 

Eng. 38,1279-1289,(2016). 

41) T. Hayat, M. Waqas, S.A. Shehzad, A. Alsaedi, MHD stagnation point flow of Jeffrey fluid 

by a radially stretching surface with viscous dissipation and Joule heating, J. Hydrol. 

Hydromech., 63, 311-317,(2015). 

42) R. E. Bellman and R. E. Kalaba, Quasi linearization and Nonlinear Boundary-Value 

Problems, Elsevier, New York, 1965. 

43) S. S. Motsa,A New Spectral Local Linearization Method for nonlinear Boundary Layer 

Flow Problems, Journal of Applied Mathematics 013,,423628,(2013). 

44) C.Canuto, M.Y.Hussaini, A.Quarteroni, and T.Zang, Spectral Method in Fluid Dynamics, 

Springer, New York USA 1998 

45) A.S. Butt, A. Ali, Entropy analysis of magnetohydrodynamic flow and heat transfer over a 

convectively heated radially stretching surface, J. Taiwan Inst. Chem. Eng. 45 (4) 1197-

1203, (2014). 

46) O.D. Makinde, F.Mabood, W.A. Khan, M.S. Tshehla,MHD flow of a variable viscosity 

nanofluid over a radially stretching convective surface with radiative heat,Journal of 

Molecular Liquids 219, 624-630, (2016) 

 


