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ABSTRACT 

Objectives: To find the monophonic pebbling number of some derived graphs. Methods: The 

monophonic pebbling number πµ(G) of a graph G is the least number of pebbles such that after 

a sequence of pebbling moves a pebble can be placed on any vertex through a monophonic 

path. Findings: We compute the monophonic pebbling number and monophonic t-pebbling 

number for generalised petersen graph, Kusudama flower graph  and sierpinski triangle.  
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1. INTRODUCTION 

 

The game of pebbling was originally presented by Lagarias and Saks to solve a particular 

number theory problem. Pebbling move involves choosing a vertex with at least two pebbles 

and removing two pebbles from that vertex and placing one of those pebbles on a neighbouring 

vertex. Lourdusamy et al. introduced monophonic pebbling in [4]. A chord in a cycle, C, or 

path, P, refers to an edge 𝑢𝑣 connecting two vertices, 𝑢 and 𝑣, that are not adjacent in C or P. 

Any longest chordless path in a graph is called as monophonic path. This paper includes a 

theorem which determines the monophonic pebbling number of Sierpinski triangle graph Sn 

which is a fractal. Fractals are geometric figures whose parts have the same statistical nature 

as a whole.  

 

2.Methodology  

Path Identification: Identifying all possible monophonic paths in a graph can be 

computationally challenging, especially for large or dense graphs. 

Move Sequences: Constructing valid sequences of pebbling moves that adhere to the 

monophonic constraint adds another layer of complexity to the problem. 
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3.Preliminaries  

Definition 3.1. The monophonic pebbling number πµ(G, v) of a vertex v is the least number 

such that from every distribution of  πµ(G, v) pebbles on the graph G, a pebble can be moved 

to any desired vertex v by a sequence of pebbling moves through a monophonic path. The 

monophonic pebbling number of the graph 𝐺, denoted by  πµ(G), is the maximum of  πµ(G, v) 

over all vertices of G.  

Definition 3.2. The monophonic pebbling number πµt(𝐺, 𝑣) of a vertex 𝑣 is the least number 

such that from every distribution of  πµ(𝐺) pebbles on the graph 𝐺, 𝑡 pebble(s) can be moved 

to any desired vertex 𝑣 by a sequence of pebbling moves through a monophonic path. The 

monophonic 𝑡- pebbling number of the graph 𝐺, denoted by πµt(𝐺) is the maximum is the 

maximum  of  πµt(𝐺, 𝑣) over all vertices of 𝐺 

Definition 3.3. A star polygon 
n

m
, with n, m  positive integers and m <

n

2
, is a figure formed by 

connecting every 𝑚th point out of 𝑛 regularly spaced vertices of a cycle 𝐶 with straight lines.  

Definition 3.3. A family of cubic graphs known as the generalized petersen graph 𝐺𝑃𝑛 is 

created by joining the vertices of a regular polygon with the corresponding vertices of a star 

polygon 
𝑛

2
. Let the vertex set of the graph 𝐺𝑃𝑛 be 𝑉 = 𝑣𝑖 , 𝑢𝑖, 0 ≤  𝑖 ≤  𝑛 −  1 and the edge set 

be 𝐸 =  {𝑣𝑖𝑣𝑖+1, 𝑣𝑖𝑢𝑖 , 𝑢𝑖𝑢𝑖+2} where 𝑖 ≡  𝑗 𝑚𝑜𝑑  𝑛, 𝑗 =  {0,1,2, . . . , 𝑛 − 1}. 

Definition 3.4. The Jahangir graph 𝐽𝑛,𝑚, (𝑛 ≥ 2, 𝑚 ≥ 3) is a graph consisting of a cycle 𝐶𝑛𝑚 

such that 𝑉(𝐶𝑛𝑚) = 𝑣0, 𝑣1, … 𝑣2𝑚−2, 𝑣2𝑚−1 and an additional vertex 𝑥 that is adjacent to 𝑚 

vertices of 𝐶𝑛𝑚 at a distance of 𝑛 on 𝐶𝑛𝑚. Let the center vertex be labeled as 𝑣𝑛𝑚+1, and the 

vertices of cycle 𝐶𝑛𝑚 be named as 𝑣1, 𝑣2, . . . , 𝑣𝑛𝑚.  

Definition 3.5. Kusudama flower graph consist of Jahangir graph 𝐽2,𝑚 with 5𝑚 + 1 vertices. 

Consider 𝑥 as the center vertex is connected to 𝑣1, 𝑣3, . . . , 𝑣2𝑚−1. The vertex 𝑢𝑖 which is 

connected to 𝑣𝑖 , 𝑖 =  0,2, . . . ,2𝑚 −  2 as well as 𝑥. There are two vertices 𝑢𝑖,1, 𝑢𝑖,2 on either 

sides of the vertex 𝑢𝑖. Both 𝑢𝑖,1, 𝑢𝑖,2 are connected to 𝑢𝑖 as well as 𝑥. 

Notation 3.7. Throughout this paper, the number of pebbles on the vertex v is denoted as p(v) 

and the target vertex is denoted as α. Any monophonic path is denoted by μ𝑖 where i is any 

positive integer. Let 𝑉(μ𝑖̃) be the set of vertices not in µi and monophonic distance be denoted 

by Dµ. The symbol A ⎯→⎯t
 B ⎯→⎯s

 C refers to the transfer of t pebbles from the set of 

vertices A to the set of vertices B and then s pebbles from the set of vertices of B to the set of 

vertices of C. 

4 Results and Discussion 

Theorem 4.1. For generalised petersen graph is  πμ(𝐺𝑃𝑛) = 2𝑛−1 + 2. 

Proof.  Let µ1: 𝑣0, 𝑣1, … , 𝑣𝑛−2, 𝑢𝑛−2 be one of the monophonic paths of length 𝑛 −  1 in graph 

𝐺𝑃𝑛.. 𝑉(𝜇1) = 𝑢0, 𝑢1, … , 𝑢𝑛−3, 𝑢𝑛−1, 𝑣𝑛−1 be the set of vertices not in µ1. Let 𝛼 =  𝑢𝑛−2. 

Placing 2𝑛−1  −  1 pebbles on 𝑣0, 0 ≤ 𝑝(𝑢𝑛−1), 𝑝(𝑣𝑛−1) ≤ 1 one pebble each on 

all the other vertices we cannot move a pebble to the 𝛼 through the monophonic path µ1. 
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Therefore, 𝜋µ(𝐺)  =  2𝑛−1  +  1. Let D be any configuration of 2𝑛−1  +  𝑛 pebbles on the 

vertices of 𝐺𝑃𝑛. 

Case 1: Let 𝛼 =  𝑣𝑖 or 𝑢𝑖  , 0 ≤  𝑖 ≤  𝑛 −  1. 

Without loss of generality, let 𝛼 =  𝑣𝑖 . Let  𝜇2: {𝑣𝑖 𝑚𝑜𝑑 𝑛, 𝑣(𝑖+1)𝑚𝑜𝑑 𝑛, … , 𝑣(𝑖+𝑛−2) 𝑚𝑜𝑑 𝑛 

𝑢(𝑖+𝑛−2) 𝑚𝑜𝑑 𝑛} be the monophonic path of length 𝑛 − 1 then 𝑉(𝜇̃2) =

𝑢𝑖 𝑚𝑜𝑑 𝑛, 𝑢(𝑖+1) 𝑚𝑜𝑑 𝑛, … , 𝑢(𝑖+𝑛−3) 𝑚𝑜𝑑 𝑛, 𝑢(𝑖+𝑛−1) 𝑚𝑜𝑑 𝑛. Clearly, 𝐷μ from 𝑣𝑖 𝑚𝑜𝑑 𝑛 to 

𝑢(𝑖+𝑛−2) 𝑚𝑜𝑑 𝑛 is 𝑛 −  1. If 𝑝(µ2) ≥ 2𝑛−1 and 0 ≤ 𝑝(𝑢(𝑖+𝑛−1) 𝑚𝑜𝑑 𝑛), 𝑝(𝑢(𝑖+𝑛−1) 𝑚𝑜𝑑 𝑛) ≤ 1 

and all the other pebbles have exactly zero pebbles each we are done. If 𝑝(µ2) ≤ 2𝑛−1 − 1 and 

𝑝(𝑉(µ̃2)) ≥ 3. If either 𝑝(𝑢𝑛−1)  ≥ 2 or 𝑝(𝑣𝑛−1)  ≥ 2 this will contribute at least one pebble 

to the considered monophonic path 𝜇2. If 𝑝(𝑉(𝜇̃2) − {𝑢(𝑖+𝑛−1) 𝑚𝑜𝑑 𝑛,  𝑣(𝑖+𝑛−1) 𝑚𝑜𝑑 𝑛}≥1 we 

can find an alternative monophonic path of length 𝑛 –  1 with the required number of pebbles 

to reach 𝛼. Similarly, we can prove for all 𝑢𝑖. 

 

Theorem 4.2. For Kusudama flower graph 𝜋𝜇(𝐾𝐹𝑚) = 22𝑚+2 + 3𝑚 − 2. 

 

Proof.   Consider the monophonic path  𝜇1 ∶  𝑢𝑖 𝑚𝑜𝑑 2𝑚,1, 𝑢𝑖 𝑚𝑜𝑑 2𝑚, 𝑣𝑖 𝑚𝑜𝑑 2𝑚, 𝑣(𝑖+1) 𝑚𝑜𝑑 2𝑚, 

v(i+2)mod 2m, v(i+3)mod 2m, . . . , v(i+2m−2) mod 2m, u(i+2m−2) mod 2m, u(i+2m−2) mod 2m,1 where 

i = 0, 2, . . .  ,2m − 2 . Then 𝑉(𝜇1) = {𝑢(𝑖+2) 𝑚𝑜𝑑 2𝑚, 𝑢(𝑖+4) 𝑚𝑜𝑑 2𝑚, . . . , 𝑢(𝑖+2𝑚−4) 𝑚𝑜𝑑 2𝑚,

𝑢(𝑖+2𝑚−2) 𝑚𝑜𝑑 2𝑚,2u(i+2) mod 2m,1, u(i+2) mod 2m, . . . , u(i+2) mod 2m,1, u(i+2) mod 2m, . . ..  , 

  u(i+2m−4) mod 2m,2}. Placing 22𝑚+2 − 1 pebbles on 𝑢𝑖𝑚𝑜𝑑 2𝑚,1  and one pebble each on the 

vertices in 𝑉(𝜇1) we cannot move a pebble to 𝑢(𝑖+2𝑚−2) 𝑚𝑜𝑑 2𝑚,1.  Therefore, 𝜇(𝐾𝐹𝑚) ≥

22𝑚+2 + 3𝑚 − 2.  Let us consider a configuration of  22𝑚+2 + 3𝑚 − 2 pebbles on the vertices 

of 𝐾𝐹𝑚.  To prove the sufficient conditions. 

 

Case 1:   Let 𝛼 = 𝑣𝑖, 𝑖 = 0, 2, … , 2𝑚 − 2. 

Consider the monophonic path 𝜇2: {𝑣𝑖 𝑚𝑜𝑑 2𝑚, 𝑣(𝑖+1) 𝑚𝑜𝑑 2𝑚,  𝑣(𝑖+2) 𝑚𝑜𝑑 2𝑚, … , 𝑣(𝑖+2𝑚−2) 𝑚𝑜𝑑 2𝑚, 

  𝑢(𝑖+2𝑚−2) 𝑚𝑜𝑑 2𝑚,1}.  𝐷𝜇 from 𝑣𝑖 𝑚𝑜𝑑 2𝑚 to any other vertex of 𝐾𝐹𝑚 is at most 2𝑚.  If  𝑝(𝑉(𝜇2)) ≥

22𝑚 pebbles we can transfer a pebble to 𝛼.  Let 𝑝(𝑉(𝜇2)) ≤ 22𝑚.  Suppose 𝑝(𝑉(𝜇2)) ≤ 22𝑚 − 1.  
By pigeonhole principle, if 22𝑚 + 3𝑚 − 1 pebbles are distributed on the remaining vertices which are 

not on 𝜇2, at least one vertex will receive two pebbles with which we could move at least one pebble 

to 𝜇2.  Thus, we can reach 𝛼.  If 𝑢𝑖,1 or 𝑢𝑖,2, 𝑖 = 0,2, … ,2𝑚 − 4,2𝑚 − 2 has 8 pebbles to 𝑣𝑖 using the 

path  𝜇3: {𝑢𝑖,1 or 𝑢𝑖,2, 𝑣𝑥 , 𝑣𝑖−1 or 𝑣𝑖+1, 𝑣𝑖}.  If the path 𝜇3 has eight pebbles we are done.  Suppose 

𝑢𝑖, 𝑖 = 0,2, … ,2𝑚 − 2 has at least 2 pebbles we can move a pebble to 𝛼.  In the monophonic path 𝜇3, 

either 𝑢𝑖,1 or 𝑢𝑖,2 and 𝑣𝑥 has two pebbles and either 𝑣𝑖−1 or 𝑣𝑖+1 has one pebble we could move a 

pebble to the target using the transmitting subgraph.  Also either 𝑢𝑖,1 or 𝑢𝑖,2 has 4 pebbles and 𝑣𝑥 has 

two pebbles the target could be pebbled. 

 

Case 2:  Let 𝛼 = 𝑣𝑗 , 𝑗 = 1, 3, … , 2𝑚 − 1. 

Consider the monophonic path 𝜇4: {𝑣𝑗 𝑚𝑜𝑑 2𝑚, 𝑣(𝑗+1) 𝑚𝑜𝑑 2𝑚, 𝑣(𝑗+2) 𝑚𝑜𝑑 2𝑚, … , 𝑣(𝑗+2𝑚−3) 𝑚𝑜𝑑 2𝑚,  

𝑢(𝑗+2𝑚−3) 𝑚𝑜𝑑 2𝑚, 𝑢(𝑗+2𝑚−3) 𝑚𝑜𝑑 2𝑚,1}. If 𝜇4 has 22𝑚−1 pebbles we are done.  Let 𝑝(𝑉(𝜇4)) ≤

22𝑚−1 − 1 and  𝑝(𝑉(𝜇̃4)) > 7. 22𝑚−1 + 3𝑚 − 1.  From 𝑉(𝜇̃4) we can move at least one pebble to 𝜇4 

and at most we can move 22𝑚+1 +
3

2
𝑚 − 1 pebbles.  If 𝑢(𝑗+1) 𝑚𝑜𝑑 2𝑚 or 𝑢(𝑗−1) 𝑚𝑜𝑑 2𝑚 has 4 pebbles 
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we could move a pebble to the 𝛼 using path 𝜇5: {𝑢(𝑗+1) 𝑚𝑜𝑑 2𝑚 or 𝑢(𝑗−1) 𝑚𝑜𝑑 2𝑚, 𝑥, 𝑣𝑖 𝑚𝑜𝑑 2𝑚}.  

Similarly, if 𝑢(𝑗+1) 𝑚𝑜𝑑 2𝑚,𝑘,𝑘 = 1,2  has 4 pebbles we can pebble 𝛼. 

 

 

 

Case 3:  Let 𝛼 = 𝑢𝑖 𝑚𝑜𝑑 2𝑚, 𝑖 = 0, 2, … , 2𝑚. 

Consider the path 𝜇6: {𝑢𝑖 𝑚𝑜𝑑 2𝑚, 𝑣(𝑖+2𝑚−2) 𝑚𝑜𝑑 2𝑚, … , 𝑢(𝑖+2𝑚−2) 𝑚𝑜𝑑 2𝑚, 𝑢(𝑖+2𝑚−2) 𝑚𝑜𝑑 2𝑚}.  

The monophonic distance 𝐷𝜇 from 𝑢𝑖 𝑚𝑜𝑑 2𝑚 to any other vertex of 𝐾𝐹𝑚 is at most 2𝑚 + 1.  

So, if the path 𝜇6 has 22𝑚+1 pebbles we are done.  If there is a vertex 𝑢𝑗 𝑚𝑜𝑑 2𝑚,𝑘, 𝑗 ≠ 𝑖, 𝑘 =

1,2 not on 𝜇6 at least 4 pebbles, then we can move a pebble to 𝛼.  If the center vertex 𝑥 has 

two pebbles or 𝑢𝑗 𝑚𝑜𝑑 2𝑚, 𝑗 ≠ 𝑖, has 2 pebbles we can move a pebble to 𝛼. 

Case 4:  Let 𝛼 = 𝑢𝑖 𝑚𝑜𝑑 2𝑚,𝑘, 𝑖 = 0,2, … ,2𝑚, 𝑘 = 1,2 

Consider the monophonic path 𝜇1.  If 𝑝(𝑉(𝜇1)) ≥ 22𝑚+2 we are done.  Suppose 𝑝(𝑉(𝜇1)) ≤

22𝑚+2 − 1 then, 𝑝(𝑉(𝜇1)) will be at lease 3𝑚 + 3 pebbles with which we can move at least 

one pebble to 𝜇1.  If  𝑢𝑖 𝑚𝑜𝑑 2𝑚,𝑝, 𝑘 ≠ 𝑝, 𝑘, 𝑝 = 1,2 has four pebbles we can put a pebble on 

𝛼.  If the center vertex 𝑥 has two pebbles we are done. 

Note 4.3.  In Sierpinski graph an equilateral triangle is divided in to four smaller equilateral 

triangles and the center part is removed.  This is denoted as 𝑆1, 𝑆2 is derived from  𝑆1 by 

dividing each triangle in 𝑆1 into four parts and the center part derived in each triangle is 

removed.  By induction we derive 𝑆𝑛 from 𝑆𝑛−1 by using the above process. 

 

Theorem 4.4.  For Sierpinski triangle graph 𝜋𝜇(𝑆𝑛) = 23𝑛−1
+ 3𝑛−1 − ⌊

3𝑛−1

2
⌋ 

Proof.  Step: 1 

Start with an equilateral triangle 𝑆1 = 𝐾3.  Therefore, 𝜋𝜇(𝑆1) = 3. 

Step: 2 
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To subdivide the equilateral triangle 𝑆1 we include three more additional vertices 𝑣4,  𝑣5, 𝑣6.  

Let 𝑉(𝑆2) = {𝑣1, 𝑣2,  𝑣3,  𝑣4, 𝑣5, 𝑣6}.  The three copies of 𝑆1 in 𝑆2 are named as 𝑆2,𝐴, 𝑆2,𝐵 

and 𝑆2,𝐶.  Consider the path  𝜇1:  {𝑣4, 𝑣5, 𝑣3, 𝑣1}. Let 𝑉(𝜇̃1) = {𝑣2, 𝑣6} be the vertex set 

complement of  𝜇1.  If  7 pebbles are places on the vertex set 𝑣4 and one pebble each on all 

the vertices of  𝑉(𝜇1) we cannot pebble 𝑣1.  Therefore,  𝜋𝜇(𝑆1) ≥ 10. Consider the 

distribution of 10 pebbles on the vertices of  𝑆2. 

 

Subcase 2.1 

Let 𝛼 =  𝑣1.  If  𝑝(𝑣2 ≥ 2) or  𝑝(𝑣3 ≥ 2) we are done since 𝑣2, 𝑣3 ∈ 𝑁(𝑣1).  From 𝑣4 we 

could reach 𝛼 using  𝜇1:  {𝑣4, 𝑣5, 𝑣3, 𝑣1}.  Suppose if  𝑝(𝑣4) ≤ 23 − 1 then there must be 

vertex 𝑣𝑖 ∈ 𝑉(𝜇1)  such that  𝑝(𝑣𝑖 ≥ 2).  Similarly, from 𝑣6  we can reach 𝛼 using  𝜇1:  {𝑣6,
𝑣5, 𝑣2, 𝑣1}.  By symmetry, the proof is similar for the vertices 𝑣4 and 𝑣6. 

Subcase 2.2 

Let 𝛼 =  𝑣2.  𝑣1, 𝑣3, 𝑣4, 𝑣5 ∈ 𝑁(𝑣2).  If  𝑣𝑖 ∈ 𝑁(𝑣2) has two or more pebbles we are done.  

If 𝑣6 has four pebbles we can move a pebble to 𝑣2 using  𝜇3: {𝑣6, 𝑣5, 𝑣2}.  By symmetry the 

proof is similar for the vertices 𝑣3 and 𝑣5.  Therefore, 𝜋𝜇(𝑆2) ≤ 10. 

Step 3 

We repeat the same process as step 2 to obtain 𝑆3.  We divide the outer 3 triangles 𝑆2,𝐴, 𝑆2,𝐵 

and 𝑆2,𝐶 in  𝑆2 into 4 congruent equilateral triangles except for the central removed triangle.  

There are 12 smaller congruent triangles in 𝑆3.  In this graph except the removed center part 

the outer triangles are isomorphic to 𝑆2.  Let us name those outer triangles as 𝑆(3,𝐴), 𝑆 (3,𝐵) 

and 𝑆(3,𝐶).  The cases to move pebbles within 𝑆(3,𝐴), 𝑆(3,𝐵) and 𝑆(3,𝐶) are similar to what we 

have discussed in the previous step. Let (𝑆(3,𝐴)) = {𝑣1,   𝑣𝐴,1,   𝑣𝐴,2, 𝑣𝐴,3, 𝑣2, 𝑣3} , 

𝑉(𝑆(3,𝐵)) = {𝑣2,   𝑣𝐵,1,   𝑣𝐵,2,   𝑣𝐵,3, 𝑣4, 𝑣5} and  𝑉(𝑆(3,𝐶)) = {𝑣3,   𝑣𝐶,1,   𝑣𝐶,2, 𝑣𝐶,3, 𝑣5, 𝑣6}. 

Consider 𝜇4:  {𝑣1,   𝑣𝐴,3,   𝑣𝐴,2,   𝑣2,   𝑣𝐵,1, 𝑣𝐵,3, 𝑣5, 𝑣𝐶,1, 𝑣𝐶,3, 𝑣6} then 𝑉(𝜇̃4) = {𝑣𝐴,1, 𝑣3,

𝑣𝐵,2, 𝑣4, 𝑣𝐶,2} be its vertex set complement.  Placing 29 − 1 pebbles on 𝑣6 and one pebble 

each on the vertices of  𝑉(𝜇4) we cannot move a pebble to  𝑣1 through  𝜇4.  Therefore, 

𝜋𝜇(𝑆3) ≥ 29 + 5.  Consider the configuration of  29 + 5  pebbles on the vertices of  𝑆3. 

Let 𝜇5: {𝑣1,   𝑣𝐴,1,   𝑣𝐴,2,   𝑣3,   𝑣𝐶,3, 𝑣𝐶,2, 𝑣5, 𝑣𝐵,3, 𝑣𝐵,1, 𝑣4}.  Let 𝑣𝑖 ∈ 𝜇5 and 𝑣𝑗 ∈ 𝑆(𝑛,𝐵) ∩

𝜇5 where 𝑗 ≠ 𝑖.  𝐷𝜇(𝑣𝑖 , 𝑣𝑗) ≤ 9, 𝑉(𝜇̃5) ∈ 𝑆𝑛 − 𝑉(𝜇5).  If  𝑝(𝑉(𝜇5)) < 29  then there exist 

pebbles on  𝑝(𝑉(𝜇̃5)) from which we can transfer pebbles to the vertices of  𝜇5.  The following 

sequence of pebbling moves guarantees the reachability of a pebble to 𝛼. 

then  

𝑡 + 𝑝(𝑉(𝜇5)) ≥ 29 

If  𝑝(𝑉(𝜇5)) = 0 then 𝑝(𝑉(𝜇5)) > 29.  We can move the required number of pebbles to the 

vertices of 𝜇5 in order to reach 𝛼 by the following sequence of pebbling moves. 

𝑝(𝑉(𝜇5))
𝑡

→ 𝑉(𝜇5)
1
→ 𝛼 
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Otherwise, with the pebbles on 𝑉(𝜇5) we can have an alternative monophonic path of length 

9.  Similarly, Consider the monophonic path 𝜇6:  {𝑣1,   𝑣𝐴,3,   𝑣𝐴,2,   𝑣2,   𝑣𝐵,3, 𝑣𝐵,2, 𝑣5, 𝑣𝐶,1,
𝑣𝐶,3, 𝑣6}.  𝐷𝜇 from 𝑣𝑖 ∈ 𝜇6 to any other vertex 𝑣𝑗 ∈ 𝑆(𝑛,𝐶) ∩ 𝜇6 where 𝑗 ≠ 𝑖 and the vertex 

𝑣𝐵,2 can be deduced from the path 𝜇6. 

There are also two longest monophonic paths starting from 𝑆(3,𝐵)  and two other starting from 

𝑆(3,𝐶).  By symmetry the proof is similar. 

 

Step 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this step we divide the outer 3 triangles 𝑆(3,𝐴), 𝑆(3,𝐵) and 𝑆(3,𝐶) in  𝑆3 into 12 congruent 

equilateral triangles except the center part. 𝑉(𝑆(4,𝐴)) = {𝑣1,   𝑣𝐴,1,   𝑣𝐴,2, 𝑣𝐴,3,   𝑣𝐴,4,

𝑣𝐴,5,   𝑣𝐴,6, 𝑣𝐴,7,   𝑣𝐴,8, 𝑣𝐴,9, 𝑣𝐴,10, 𝑣𝐴,11, 𝑣𝐴,12,   𝑣2, 𝑣3}, 𝑉(𝑆(4,𝐵)) = {𝑣2,   𝑣𝐵,1,   𝑣𝐵,2,

  𝑣𝐵,3,   𝑣𝐵,4,  𝑣𝐵,5,   𝑣𝐵,6, 𝑣𝐵,7,   𝑣𝐵,8, 𝑣𝐵,9, 𝑣𝐵,10, 𝑣𝐵,11, 𝑣𝐵,12,   𝑣4, 𝑣5}, 𝑉(𝑆(4,𝐶)) =

{𝑣3,   𝑣𝐶,1,   𝑣𝐶,2, 𝑣𝐶,3,   𝑣𝐶,4, 𝑣𝐶,5,   𝑣𝐶,6, 𝑣𝐶,7,   𝑣𝐶,8, 𝑣𝐶,9, 𝑣𝐶,10, 𝑣𝐶,11, 𝑣𝐶,12,   𝑣5, 𝑣6}.   

Consider the monophonic path 𝜇4: {𝑣1, 𝑣𝐴,1, 𝑣𝐴,10, 𝑣𝐴,8, 𝑣𝐴,7, 𝑣𝐴,6, 𝑣𝐴,5, 𝑣𝐴,11, 𝑣𝐴,3,   𝑣2,

𝑣𝐵,9,  𝑣𝐵,10,  𝑣𝐵,2,  𝑣𝐵,3,  𝑣𝐵,4,   𝑣𝐵,5,  𝑣𝐵,12,  𝑣𝐵,7,   𝑣5,  𝑣𝐶,3,  𝑣𝐶,11,  𝑣𝐶,2  ,  𝑣𝐶,9,  𝑣𝐶,8,  𝑣𝐶,12,  𝑣𝐶,6,

𝑣6}then 𝑉(𝜇4): {𝑣𝐴,9, 𝑣𝐴,2, 𝑣𝐴,12, 𝑣𝐴,4,   𝑣3, 𝑣𝐵,1,   𝑣𝐵,8,  𝑣𝐵,11,  𝑣4,  𝑣𝐵,6,   𝑣𝐶,4,  𝑣𝐶,5,  𝑣𝐶,7,

 𝑣𝐶,10}. Placing 227 + 11 on 𝑣𝑐,1 and one pebble each on the vertices of 𝑉(𝜇4) we cannot 

move a pebble to 𝑣1 through 𝜇4.  Therefore, 𝜋𝜇(𝑆3) ≥ 227 + 11.  Consider the configuration 

of 227 + 11 pebbles on the vertices of  𝑆4.  The outer three triangles are isomorphic to 𝑆3.  Let 

𝜇5: {𝑣1, 𝑣𝐴,1, 𝑣𝐴,10, 𝑣𝐴,8, 𝑣𝐴,7, 𝑣𝐴,6, 𝑣𝐴,5, 𝑣𝐴,11, 𝑣𝐴,3, 𝑣2, 𝑣𝐵,9,  𝑣𝐵,2, 𝑣𝐵,3, 𝑣𝐵,4, 𝑣𝐵,5  
, 𝑣𝐵,12, 𝑣𝐵,7𝑣5, 𝑣𝐶,3, 𝑣𝐶,11, 𝑣𝐶,2, 𝑣𝐶,1, 𝑣𝐶,9, 𝑣𝐶,8, 𝑣𝐶,12, 𝑣𝐶,6, 𝑣6}. 𝜇4 and 𝜇5 are the longest 

monophonic paths starting from 𝑆(4,𝐴).  We arrive at having the monophonic path of length at 

most 27 from 𝑣1.  The monophonic distance between any two vertices in this graph can be 
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deduced using these two paths.  There are also two long monophonic paths starting from  𝑆(4,𝐵) 

and 𝑆(4,𝐶).   

If we go on iterating like this we will get a maximal monophonic path 𝜇𝑛 of length 3𝑛−1 and 

there will be 3n−1 − ⌊
3n−1

2
⌋ vertices which does not pass through the monophonic path.  We 

arrive at the result 23𝑛−1
+ 3𝑛−1 − ⌊

3𝑛−1

2
⌋ by induction.  Hence the proof. 

Theorem 4.5. For generalized Petersen graph 𝜋𝜇𝑡(𝐺𝑃𝑛) = 𝑡2𝑛−1 + 2. 

Proof. Without loss of generality, consider the monophonic path 𝜇1 = {𝑣0, 𝑣1, . . . , 𝑣𝑛−2, 𝑢𝑛−2} 

then  𝑉(𝜇̃1) = {𝑢0, 𝑢1, . . . , 𝑢𝑛−3, 𝑢𝑛−1, 𝑣𝑛−1}.  Suppose if  𝑝(𝑢𝑛−2) = 𝑡2𝑛−1 + 1, 𝑝(𝑢𝑛−1) =
𝑝(𝑣𝑛−1) = 1 and all the other vertices have exactly zero pebbles, we cannot transfer 𝑡 pebbles 

to 𝑢0.  Thus 𝜋𝜇𝑡(𝐺𝑃𝑛) ≥ 2𝑛−1𝑡 + 2. 

When 𝑡 = 1 Theorem 3.1 holds.  Assume that the finding is true for 2 ≤ 𝑡′ ≤ 𝑡 − 1.  

Evidently, 𝑉(𝐺𝑃𝑛) has at least  2𝑛 + 2 pebbles.  Hence, we can move a pebble to the target 

with a maximum expense of 2𝑛−1 pebbles.  Thus the remaining pebbles on 𝑉(𝐺𝑃𝑛) is 

𝜋(𝑡−1)𝜇(𝐺𝑃𝑛) = 𝑡2𝑛−1 + 2 − 2𝑛 = (𝑡 − 1)2𝑛−1 + 𝑛 and hence 𝑡 − 1 extra pebbles can be 

shifted to 𝛼 by the method of induction. Thus, 𝜋𝜇𝑡(𝐺𝑃𝑛) ≤ 2𝑛−1𝑡 + 2. 

Theorem 4.6. For Kusudama flower graph 𝜋𝜇𝑡(𝐾𝐹𝑚) = 𝑡22𝑚+2 + 3𝑚 + 2. 

Proof:  Without loss of generality, consider the monophonic path 𝜇1: {𝑢0,1,  𝑢0, 𝑣0, 𝑣1, 𝑣2,   
… , 𝑣2𝑚−2, 𝑢2𝑚−2, 𝑢2𝑚−2,1} then  𝑉(𝜇1) = {𝑢2, 𝑢4, …  , 𝑢2𝑚−4, 𝑢0,2, 𝑢2𝑚−2,1, 𝑢2,1,, 𝑢2,2 

 . . .  , 𝑢2𝑚−4,1, 𝑢2𝑚−4 𝑚𝑜𝑑 2𝑚,2} be the vertex set complement of 𝜇1.  Placing 𝑡22𝑚+2 − 1 

pebbles on 𝑢0,2 and one pebble each on 𝑉(𝜇̃1) we cannot move 𝑡 pebble(s) to 𝑢2𝑚−2,1.  

Therefore, 𝜋𝜇(𝐾𝐹𝑚) ≥ 𝑡22𝑚+2 + 3𝑚 + 2. 

When 𝑡 = 1 the result is true by Theorem 3.2.  Assume that the finding is true for 2 ≤ 𝑡′ ≤
𝑡 − 1.  Evidently, the graph 𝐾𝐹𝑚 has at least 22𝑚+3 + 3𝑚 + 2 pebbles.  Hence we can move 

a pebble to the target with a maximum expense of 22𝑚+3 pebbles.  Then the remaining number 

of pebbles on 𝑉(𝐾𝐹𝑚) is 𝑡22𝑚+3 + 3𝑚 + 2 − 22𝑚−3 = (𝑡 − 1)22𝑚+2 + 3𝑚 + 2 =
𝜋(𝑡−1)𝜇(𝐾𝐹𝑚) and hence we can transfer 𝑡 − 1 extra pebbles to the target vertex by the method 

of induction.  Thus, 𝜋𝜇(𝐾𝐹𝑚) ≤ 𝑡22𝑚+2 + 3𝑚 + 2. 

Theorem 4.7. For seirpinski triangle graph 𝜋𝜇𝑡(𝑆𝑛) = 23𝑛−1
𝑡 + 3𝑛−1 − ⌊

3𝑛−1

2
⌋ 

Proof: Consider any one of the maximal monophonic path 𝜇𝑖 starting from 𝑣1 and ending with 

𝑣6 in 𝑆𝑛.  Let 𝛼 = 𝑣1 place 23𝑛−1
𝑡 − 1 pebbles on 𝑣6 and one pebble each on all the vertices 

of  𝜇𝑖 we cannot move 𝑡 pebbles to 𝛼.  Therefore, 𝜋𝜇𝑡(𝑆𝑛) ≥ 23𝑛−1
𝑡 + 3𝑛−1 − ⌊

3𝑛−1

2
⌋.  From 

Theorem 3.3 the result is true for 𝑛 = 1.  Assume that the statement is true for  2 ≤ 𝑡′ ≤ 𝑡 −

1.  Clearly, the graph 𝑆𝑛 has at least 23𝑛−1+1
𝑡 + 3𝑛−1 − ⌊

3𝑛−1

2
⌋ pebbles.  Hence, we can move 

a pebble to the target with a maximum expense of  23𝑛−1
+ 3𝑛−1 pebbles.  Then the remaining 

pebbles on 𝑉(𝑆𝑛) is 𝑡23𝑛−1
+ 3𝑛−1 − ⌊

3𝑛−1

2
⌋ − 23𝑛−1

= (𝑡 − 1)23𝑛−1
+ 3𝑛−1 − ⌊

3𝑛−1

2
⌋ =

𝜋(𝑡−1)𝜇(𝑆𝑛) and hence 𝑡 − 1 extra pebbles can be shifted to 𝛼.  Thus, 𝜋𝜇𝑡(𝑆𝑛) ≤ 23𝑛−1
𝑡 +

3𝑛−1 − ⌊
3𝑛−1

2
⌋. 
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5. Application 

Fractals are used to simulate many real-world features, including mountains, forests, clouds, 

and coastlines.  The graph 𝑆𝑛 is used in digital image processing.  Let 𝑆2 be the fixed point in 

this process.  We would want to present the mathematical version of the image processing.  

Let 𝑉 be the function which takes 𝑆𝑛 to 𝑉(𝑆2).  So we observe that 𝑉(𝑆𝑛) = 𝑆2.  A sequence 

of sets 𝑆𝑛 that is endless can be obtained by carrying out this method indefinitely.  The 

sequence {𝑆𝑛} converges to 𝑆2.  𝑆2 cannot be distinguished from 𝑆5.  The computer software 

uses 𝑆5 rather than 𝑆2 for improved resolution.  In addition, the application could quickly 

determine certain attributes of a digital image by using 𝑆2 in instead of 𝑆5. 

 

5. Conclusion 

The monophonic pebbling number πµ(𝐺) is a specialized variant of the pebbling number that 

incorporates the monophonic path constraint. It combines elements of traditional graph theory, 

path constraints, and optimization, making it a rich area for study in combinatorial and graph-

theoretic research. 
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