
Journal of Computational Analysis and Applications                                                              VOL. 34, NO. 2, 2025 

                                          120                                         Lilia Zenkoufi et al 120-133 

WELL-POSEDNESS  ANALYSIS VIA GENERALIZED 

FRACTIONAL DERIVATIVES 
   

Lilia Zenkoufi, Hamid Boulares 

 

Abstract.  In this manuscript, we investigate the existence and uniqueness of solutions 

for nonlinear initial value problems of fractional differential equations within the 

framework of    -Caputo sense. We utilize two fixed point theorems: the Schauder fixed 

point theorem (SFPT) and the Banach fixed point theorem (BFPT). Furthermore, we 

establish the notion of continuation. To validate the credibility of our key findings, we 

provide an illustrative example. 
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1. INTRODUCTION 
Fractional calculus is a field within mathematical analysis that broadens the notions of 

differentiation and integration to include non-integer orders. Unlike traditional calculus, 

which deals exclusively with whole numbers, fractional calculus allows us to work with 

fractional or non-integer orders, opening up a rich field of mathematical exploration. Its 

applications span a wide range of scientific disciplines, from physics and engineering to 

biology and finance. Fractional calculus has proven to be a powerful tool for modeling 

complex systems with memory effects, non-local behavior, and fractal geometry. It has 

been employed in solving differential equations in physics, optimizing control systems, 

understanding anomalous transport phenomena, and even in designing novel financial 

models to better capture the dynamics of markets. In recent years, interest in fractional 

calculus and its applications has surged, as researchers and engineers recognize its 

potential to address a variety of real-world challenges and phenomena with greater 

accuracy and insight. Boundary value problems (BVPs) are widely used in various fields 

of science and engineering, including physics, heat transfer, fluid mechanics, quantum 

mechanics, and more. They often arise when studying physical systems where the 

behavior of the system is influenced by external conditions at its boundaries, for 

nonlinear fractional differential equations see [1-3], for predictor-corrector approach [4-

6], for the existence and uniqueness see [7-14] and references therein. 

In this work, we focus on investigating the following nonlinear    -Caputo fractional 

value problem (   -CFVP) 
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where  10    . Let Ψ be increasing function via Ψ’(t)≠0, Ɐt. ( )xt,F   from  

 ) +,a   to  R . 

Our paper is organized as follows: In Section 2, we give a concise review of fundamental 

definitions and essential preliminary information that will serve as a foundation for the 
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subsequent sections. In Section 3, we demonstrate the existence and uniqueness of the 

solution, employing both the SFPT and the BFPT and we also delve into the discussion of 

the continuation theorem. Finally, in the last section, we provide an illustrative example 

to showcase the practical application of the results we have derived. 

                               
2. ESSENTIAL PRELIMINARIES 

Within this section, we introduce fundamental definitions and initial facts that will serve 

as a foundational framework for the subsequent sections. 

 Definition 2.1  [15].   The fractional integral 
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 where  0  , is called Riemann-Liouville fractional integral of order     for a 

function  ( ) R,0: →+F   and  ( ).   is the gamma function defined by 
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 Definition 2.2  [15].   The Riemann-Liouville fractional derivative of order  0  , for 

a continuous function  ( ) R,0: →+F   is given by 
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  ( ).   is the gamma function, provided that the right side is point-wise defined on  

( )+,0   and    ,1+= n        stands for the greatest integer less than  .   where 

.1 nn −    

 Definition 2.3  [16].   The Caputo fractional derivative of order  0  , for a 

continuous function  ( ) R,0: →+F   is intended by 
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 Definition 2.4  [19, 20].  The Hadamard fractional integral of order  0  , for a 

continuous function   ) R,1: →+f   is given by 
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 Definition 2.5  [19, 20].  The Caputo-Hadamar fractional derivative fractional 

integral of order  0  , for a continuous function   ) R,1: →+F   is given by 
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 Definition 2.6  [17, 21].  The  −  Riemann-Liouville fractional integral of order  

0   for a continued function    R,: →taf   is referred to as 
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 Definition 2.7  [17, 21].  The  −  Caputo fractional derivative of order  0  , for a 

continuous function    R,: →taF   stands for of 
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 Lemma 2.8  [17, 21].   Let  ,0,      ( ).R,,baCF   Then   ,,bat   and by 
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 Lemma 2.10  [18].  Assuming the continuity of  ( ),,utF   the initial value problem for 

the nonlinear  −  Caputo fractional value problem (1.1) can be expressed as an 

equivalent Volterra integral equation in the following manner 
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 Lemma 2.11  [22].   Consider the subset  M   within the space  Ca,T→ . The subset  M   

is  precompact if, and only if, the following conditions are verified: 

 1   ( ) Mxtv :   is uniformly bounded, 

 2   ( ) Mxtv :   is equicontinuous on   .,Ta   

 Lemma 2.12  [22, 23] .   U Give a closed, bounded, and convex subset    ( )SFPT  

within the Banach space  ,X   if we assume that the mapping  UUP →:   is completely 

continuous, then it follows that  P   possesses a fixed point within the set  .U   

 Lemma 2.13  [22, 23] . of a   U empty closed subset  -: Consider a non ( )BFPT  

Banach space  .X   Additionally, suppose that for every natural number  ,n   we have  

0nb  , and that the series  nn b

=0   is convergent. Furthermore, suppose that the 

mapping  UU →:A   verifies the following conditions: 

., , Uvxvxbvx n

nn −− AA  

 Then  A   possesses a uniquely determined fixed point denoted as  .x   Moreover, if  0x   

belongs to  U  , then  ( )
=10 n

n xA   tends to  .x   

    

3. WELL-POSEDNESS 
Now, let's examine the local existence and uniqueness of the solution to  −  CFVP 

(1.1). We make the following assumption: 

 ( ) :1H    ( )  )( ),R,,, + aCxtF   where  ,R   and that  ( )xt,F   is a bounded 

continuous map defined on    ,, 0Ta   where  0   is a supposed to be a bounded subset 

of  .   

     

 Theorem 3.1.  If assumption  ( )1H   is satisfied, then  −  CFVP (1.1) possesses at 

least one solution  ( )  haCtx ,   for a certain   .,Tah   
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Clearly, the non-empty set  hS   is a closed bounded convex subset of   ., haC   Notice 

that for  ,Th     Sh   and   haC ,   can be respectively regarded as restrictions of  S   and  

 TaC ,  . 

Now let's define an operator 
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( ) ( ) .221 − txtx AA  

 Thus, from (3.2) and (3.3) one has  ( ) hSxtx :A   is equicontinuous. 

Furthermore, it is evident that  ( ) hSxtx :A   is uniformly bounded due to  hh SS A  . 

By using Lemma 2.11, we see that  hSA   is precompact and hence  A   is completely 

continuous.  Consequently from Lemma 2.12,  −  CFVP (1.1) has at least a local 

solution, and hence concluding our proof. 
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 Theorem 3.2.  When f assumption  ( )2H   is satisfied, the  −  CFVP (1.1) possesses a 
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( ). ofpoint  fixed a is Ax   So we only need to show that the operator  A   defined by (3.1) 

has a unique fixed point. 

Let  ,hSx   we have  

( )
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( ) ( )( ) ( ) ( )( )
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 So,  hSxA   if  .hSx   

For any  ,21 htta    
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 This outcome suggests the continuity of  Ax  . 

Furthermore, for arbitrary  Nn   and   ,,hat   one have t 

  ( )
( ) ( )( )

 

.
1 ,, taC

n
n

taC

nn xxat
n

L
xx



−−
+

−



AA  

 The mentioned equation is evidently valid when  0=n  . Using induction, assume that 

the case for  1−n   is correct, we observe that 

  
 

( )
 

.
,

11

, taC

nn

taC

nn xxxx 







−=−


−−



AAAAAA                                                          (3.4) 

 

     
( )

( ) ( )( ) ( ) ( )( ) ( ) .,,max
1 111

dssxssxsss nn

ata








−−


=


−−−

  AFAF






 

 Through the Lipschitz condition and the assumption induction, we deduce that 
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 Consequently, we attain the desired outcome (3.4) .   This allows us to obtain the 

required result within   ha,   

 

( ) ( )( )( )
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 Referring to Lemma 2.13,  it is necessary to confirm the convergence of the series  

nn b

=0  . Notice that 

( ) ( )( ) ( )
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( ) ( )( ) ,
10











aLE

n

aL
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


=

 

 where  E   is the Mittag-Leffler function. Hence, we can employ Lemma 2.13 to infer 

the uniqueness of  −  CFVP (1.1). 

 

In the upcoming discussion, our focus lies on finding a continuous solution to  −  

CFVP (1.1) .   

To achieve this objective, we put forth and substantiate the following continuation result, 

drawing upon the fundamental concept found in [11]. 

     

 Theorem 3.3.  Assuming the fulfillment of hypothesis  ( )1H  , the function  ( ),txx =    

 ),at   , is non-continuable if and only if, for some  ( )
2

,  + aa  , and for every closed 

bounded subset   ) R, + V  , there exists   ) ,t   such that  ( )( ) Vtxt  ,  . 

 Proof.  (The first part   )  Let's assume the continuity of the solution  ( )txx =   for  

−  CFVP (1.1). Then we have existence of  ( )tu


  a solution of  −  CFVP (1.1) 

defined on  ,, 





 

a    











   verifying  ( ) ( )txtx


=   for   ),,at   which implies that  
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( ) ( )




→
=− xtx

t
lim  . Now let   ) ,R, + K   be the compact subset given by  

( )( )    ,:, = ttxtK  . Note that there is no   ) ,t   such that  ( )( ) ., Ktxt    Hence 

we get a contradiction, and thus  ( )tx   is non-continuable. 

 ( ) second The   Assume the existence of a compact subset   ) R, + V   such that  

( )( )  )  .,:, Vttxt    

 The compact nature of  V   implies that     is finite. According to hypothesis  ( )1H  , one 

can find a  0K   verifying  ( ) ( ) .,max , KxtVxt  F   

Our theorem is demonstrated in the subsequent discussion through two distinct steps. 

Step  .1    First we start by demonstrating that  ( )tx
t −→

lim   exists. 

Let 

( ) ( ) ( )( ) ( )  ).,2 ,
1




−=
−

 tdsssttG
a

 

 

It is evident to see the uniform continuity of  )(tG   on   ).,2    For   ) ,2, 21 tt   and  

,21 tt    we have 

 ( ) ( ) =− 21 txtx   
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 By the continuity of  ( )tG  , we see that the Cauchy sequence convergence criterion 
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applies, and thus proving the following desired convergence 

( ) .lim 

→
=

−
xtx

t 
 

 Step  .2   Now we demonstrate that  ( )tx   can be extended to a continuous function. 

The fact that  V   is closed implies that  ( ) ., Vx    Define  ( ) .= xx    Clearly  

( )  .,aCtx    

Now we introduce the following operator  B  : 
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1 1
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( ) , ,1:, bytytQb +=   

 and  ( ) ( )ytM
bQyt ,max , F=   which exists by the continuity of  F   on  bQ  . Also we set  
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 where  ( ) ( ) ( )( ) .,1min
1

1  bh
M

++=+   

We assert that  B   is completely continuous on  .bQ   Set     ,, hCyn +     

 
0
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+hCn yy
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 Due to the continuity of  F  , it follows that  ( ) ( )( )( )
 hCn sxssxs

+
−

 ,
,, FF   approaches  

0   as  n   approaches infinity. This demonstrates the continuity of the operator  B .  

We  aim to establish the equicontinuity of  hBI  . For any  hIy  , it holds that  

( ) ( ) xBy =  , and  
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 Therefore  hh IBI   , indicating that  B   maps the set  hI   to itself. 

Take  ( ) ( ) ( ) ( )( ) ( ) ( )( ) .,
11 dssxsssttL

a
F−=

−





   Verifying the continuity of  ( )tL   on  

 h+ ,   is straightforward .   For all  ,hIy    ,21 htt +    we get 
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(3.5) 

 Considering the uniform continuity of  ( )tL   on   h+ ,   and (3.5), it a results that  

( ) hIytBy :   is equicontinuous. Therefore  B   is completely continuous. 

 By Lemma 2.12, the operator  B   has a fixed point  ( ) ,hItx 

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 where, 
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
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This implies that,  ( )  haCtx + ,
^

  and 

( )
( )

( ) ( )( ) ( ) ( ) .,
1 ^

1
^

dssxssstxtx
t

a
a 






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−


+=

−

 F
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
 

 Hence, in accordance with Lemma 2.12,  ( )tx
^

  constitutes a solution to equation (1.1) on 

the interval   ,, ha +   which contradicts the assumption that  ( )tx   is non-continuable. 

Thus, the proving the desired result. 

 

     



Journal of Computational Analysis and Applications                                                              VOL. 34, NO. 2, 2025 

                                          132                                         Lilia Zenkoufi et al 120-133 

4. EXAMPLE 
Consider the following IVP 

.0)1(

,1,10,))(())((
)2(

1
)()( 212)(

=

+
−

=+

+

+

u

ttttxtxD t 




 

 

Where  .log)( tt =   

The exact solution of this equation is  tttx log)()( ==  . 

    

5. CONCLUTION 
In this work, we examined the existence and uniqueness of solution for nonlinear initial 

value problems of fractional differential equations incorporating  −  Caputo derivative. 

We employed both the Schauder fixed point theorem and Banach contraction theorem. 

Additionally we delved into the continuation theorem, To provide a tangible 

demonstration of our primary findings, we included an illustrative example. 
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