MAXIMAL-MINIMAL FUNCTIONS IN A TOPO-SPACE S.SUMITHRA DEVI¹ AND L.MEENAKSHI SUNDARAM²

¹Research Scholar (Reg No: 20212232092008),PG and Research Department of Mathematics, V.O.Chidambaram College, Tuticorin-628 008. Affliated by ManonmaniamSundaranar University, Tamil Nadu, India.

Mail Id: ssumithradevi27@gmail.com

²Assistant Professor, PG and Research Department of Mathematics, V.O.Chidambaram College, Tuticorin-628 008. Affliated by ManonmaniamSundaranar University, Tamil Nadu, India.

Mail Id: lmsundar79@gmail.com

Abstract: In this chapter we introduce minimal \widehat{D}_{α} -open sets, maximal \widehat{D}_{α} -closed sets, maximal \widehat{D}_{α} open sets, minimal \widehat{D}_{α} -closed sets, minimal \widehat{D}_{α} -continous function and maximal \widehat{D}_{α} -continous functions in topological spae as follows. The notions of this chapter are minimal \widehat{D}_{α} -closed set, maximal \widehat{D}_{α} -open sets, minimal \widehat{D}_{α} -open set, maximal \widehat{D}_{α} -closed set, minimal \widehat{D}_{α} -continous, maximal \widehat{D}_{α} continuous, minimal \widehat{D}_{α} -irresolute, maximal \widehat{D}_{α} -irresolute, minimal-maximal \widehat{D}_{α} -continuous and maimal-minimal \widehat{D}_{α} -continuous and their basic properties are studied.

1.Introduction:

This section presents an overview of strong and weak forms of minimal closed sets, maximal open and minimal continuous map contributed by various topologists. Nakaoka and Oda [6] have introduced the concepts of minimal closed, maximal open and minimal continuous. Andrijevic [1] gave some properties of α - closure of a set A is denoted by α Cl(A), and defined as intersection of all α - closed sets containing the set A. Dr. Haji M. Hasan[2] introduced maximal α -open set.

The author of this paper have introduced $\widehat{D_{\alpha}}$ -open sets [4] and $\widehat{D_{\alpha}}$ -closed sets [3] in topological spaces. Further we have introduced $\widehat{D_{\alpha}}$ – continuous function[5] in a topological space. In this paper we

1153

introduce minimal \widehat{D}_{α} -open sets, maximal \widehat{D}_{α} -closed sets, maximal \widehat{D}_{α} -open sets, minimal \widehat{D}_{α} -closed sets, minimal \widehat{D}_{α} -continous function and maximal \widehat{D}_{α} -continous functions in topological spae as follows. The notions of this chapter are minimal \widehat{D}_{α} -closed set, maximal \widehat{D}_{α} -open sets, minimal \widehat{D}_{α} open set, maximal \widehat{D}_{α} -closed set, minimal \widehat{D}_{α} -continous, maximal \widehat{D}_{α} -continuous, minimal \widehat{D}_{α} irresolute, maximal \widehat{D}_{α} -irresolute, minimal-maximal \widehat{D}_{α} -continuous and maimal-minimal \widehat{D}_{α} continuous and their basic properties are studied.

2.Preliminaries:

Definition 2.1. [6] A proper nonempty open subset U of X is said to be a minimal open set if any open set contained in U is φ or U.

Definition 2.2. [6] A proper nonempty open subset U of X is said to be a maximal open set if any open set containing U is X or U.

Definition 2.3. [6] A proper nonempty closed subset F of X is said to be a minimal closed set if any closed set contained in F is φ or F.

Definition 2.4. [6] A proper nonempty closed subset F of X is said to be a maximal closed set if any closed set containing F is X or F.

Theorem 2.5. [6] Let X be a topological space and $F \subset X$. F is a minimal closed set iff X – F is a maximal open set.

Theorem 2.6. [6] Let X be a topological space and $U \subset X$. U is a minimal open set iff X - U is a maximal closed set.

Definition 2.7. [6] Let X and Y be the topological spaces. A function $f: X \to Y$ is called a

1. minimal continuous (briefly min-continuous) if $f^{-1}(U)$ is an open set in X for every minimal open set U in Y .

2. maximal continuous (briefly max-continuous) if $f^{-1}(U)$ is an open set in X for every maximal

open set U in Y.

3. minimal irresolute (briefly min-irresolute) if $f^{-1}(U)$ is minimal open set in X for every minimal open set U in Y.

4. maximal irresolute (briefly max-irresolute) if $f^{-1}(U)$ is maximal open set in X for every maximal open set U in Y.

5. minimal-maximal continuous (briefly min-max-continuous) if $f^{-1}(U)$ is maximal open set in X for every minimal open set U in Y.

6. maximal-minimal continuous (briefly max-min-continuous) if $f^{-1}(U)$ is minimal open set in X for every maximal open set U in Y .

Definition 2.8: $\widehat{D_{\alpha}}$ -closed set [3] if $cl(A) \subset U$ whenever $A \subset U$ and U is D-open in (X, τ) .

Definition 2.9: A function $f: (X, \tau) \to (Y, \sigma)$ is said to be \widehat{D}_{α} -continuous if $f^{-1}(H)$ is \widehat{D}_{α} -closed in (X, τ) for every closed set H in Y.

3.Minimal $\widehat{D_{\alpha}}$ -open sets and maximal $\widehat{D_{\alpha}}$ -closed sets in Topo-space

Definition 3.1. A proper nonempty $\widehat{D_{\alpha}}$ -open subset U of X is said to be a minimal $\widehat{D_{\alpha}}$ -open set if any $\widehat{D_{\alpha}}$ -open set contained in U is φ or U.

Remark 3.2. Minimal open set and minimal $\widehat{D_{\alpha}}$ -open are independent. It show by the following example.

Example 3.3. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, b\}, X\}$. Since $\{a\}$ is minimal $\widehat{D_{\alpha}}$ -open set but not minimal open set and $\{a, b\}$ is minimal open set but not minimal $\widehat{D_{\alpha}}$ -open set.

Theorem 3.4. Every minimal open set is $\widehat{D_{\alpha}}$ -open set but not conversely.

Example 3.5. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, X\}$. Then the subset $\{a, b\}$ is $\widehat{D_{\alpha}}$ -open set but not minimal open set.

Theorem 3.6.

i) Let U be a minimal $\widehat{D_{\alpha}}$ -open set and W be a $\widehat{D_{\alpha}}$ -open set. Then $U \cap W = \varphi$ or $U \subset W$.

ii) Let U and V be minimal $\widehat{D_{\alpha}}$ -open sets. Then $U \cap V = \varphi$ or U = V.

Proof.

i) Let U be a minimal \widehat{D}_{α} -open set and W be a \widehat{D}_{α} -open set. If $U \cap W = \varphi$, then there is nothing to prove. If $U \cap W \neq \varphi$. Then $U \cap W \subset U$. Since U is a minimal \widehat{D}_{α} -open set, we have $U \cap W = U$. Therefore $U \subset W$.

ii) Let U and V be minimal $\widehat{D_{\alpha}}$ -open sets. If $U \cap V \neq \varphi$, then $U \subset V$ and $V \subset U$ by

(i). Therefore U = V.

Theorem 3.7. Let V be a nonempty finite $\widehat{D_{\alpha}}$ -open set. Then there exists at least one (finite) minimal $\widehat{D_{\alpha}}$ -open set U such that $U \subset V$.

Proof. Let V be a nonempty finite \widehat{D}_{α} -open set.

If V is a minimal $\widehat{D_{\alpha}}$ -open set, we may set U = V.

If V is not a minimal $\widehat{D_{\alpha}}$ -open set, then there exists (finite) $\widehat{D_{\alpha}}$ open set V1 such that $\varphi \neq V1 \subset V$.

If V1 is a minimal $\widehat{D_{\alpha}}$ -open set, we may set U = V1.

If V1 is not a minimal $\widehat{D_{\alpha}}$ -open set, then there exists (finite) $\widehat{D_{\alpha}}$ -open set V2 such that $\varphi \neq V2 \subset V1$.

Continuing this process, we have a sequence of $\widehat{D_{\alpha}}$ -open sets $V \supset V1 \supset V2 \supset V3 \supset \cdots \supset Vk \supset \cdots$

Since V is a finite set, this process repeats only finitely.

Then finally we get a minimal $\widehat{D_{\alpha}}$ -open set U = Vn for some positive integer n.

We now introduce Maximal $\widehat{D_{\alpha}}$ -closed sets in topological spaces as follows.

Definition 3.8. A proper nonempty $\widehat{D_{\alpha}}$ -closed set $F \subset X$ is said to be maximal $\widehat{D_{\alpha}}$ -closed set if any $\widehat{D_{\alpha}}$ -closed set containing F is either X or F.

Theorem 3.9. A proper nonempty subset F of X is maximal \widehat{D}_{α} -closed set iff X –F is a minimal \widehat{D}_{α} open set.

Proof. Let F be a proper maximal \widehat{D}_{α} -closed set.

Suppose X – F is not a minimal $\widehat{D_{\alpha}}$ -open set.

Then there exists $\widehat{D_{\alpha}}$ -open set $U \neq X - F$ such that $\varphi \neq U \subset X - F$.

That is $F \subset X - U$ and X - U is a $\widehat{D_{\alpha}}$ -closed set which is a contradiction for F is a maximal $\widehat{D_{\alpha}}$ -closed set.

Conversely let X – F be a minimal $\widehat{D_{\alpha}}$ -open set.

Suppose F is not a maximal $\widehat{D_{\alpha}}$ closed set, then there exists $\widehat{D_{\alpha}}$ -closed set $E \neq F$ such that $F \subset E \neq X$.

That is $\varphi \neq X - E \subset X - F$ and X - E is a $\widehat{D_{\alpha}}$ -open set which is a contradiction for X - F is a minimal $\widehat{D_{\alpha}}$ -open set. Therefore F is a maximal $\widehat{D_{\alpha}}$ -closed set.

4. Minimal $\widehat{D_{\alpha}}$ -closed sets and maximal $\widehat{D_{\alpha}}$ -open sets in Topo space

Definition 4.1. A proper nonempty $\widehat{D_{\alpha}}$ -closed subset F of X is said to be a minimal $\widehat{D_{\alpha}}$ -closed set if any $\widehat{D_{\alpha}}$ -closed set contained in F is φ or F.

Remark 4.2. Minimal closed set and minimal $\widehat{D_{\alpha}}$ -closed set are independent. It shown by the following example.

Example 4.3. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, X\}$. Since $\{a\}$ is minimal \widehat{D}_{α} closed set but not minimal closed set but not minimal \widehat{D}_{α} -closed set.

Definition 4.4. A proper nonempty $\widehat{D_{\alpha}}$ -open subset U of X is said to be a maximal $\widehat{D_{\alpha}}$ -open set if any $\widehat{D_{\alpha}}$ -open set containing U is either X or U.

Remark 4.5. Maximal open set and maximal $\widehat{D_{\alpha}}$ -open set are independent. It is shown by the following example.

Example 4.6. Let X and τ be defined as in the Example 4.2.3. Then {a, b} is maximal \widehat{D}_{α} -open set but not maximal open set and {b} is maximal open set but not maximal \widehat{D}_{α} -open set.

Theorem 4.7. A proper nonempty subset U of X is maximal $\widehat{D_{\alpha}}$ -open set iff X – U is a minimal $\widehat{D_{\alpha}}$ closed set.

Proof. Let U be a maximal proper $\widehat{D_{\alpha}}$ -open set.

Suppose X – U is not a minimal \widehat{D}_{α} -closed set.

Then there exists a $\widehat{D_{\alpha}}$ -closed set $F \neq X - U$ such that $\varphi \neq F \subset X - U$.

That is $U \subset X - F$ and X - F is a $\widehat{D_{\alpha}}$ -open set which is a contradiction for U is a maximal $\widehat{D_{\alpha}}$ -open set.

Conversely, let X – U be a minimal $\widehat{D_{\alpha}}$ -closed set.

Suppose U is not a maximal $\widehat{D_{\alpha}}$ -open set.

Then there exists a $\widehat{D_{\alpha}}$ -open set $E \neq U$ such that $U \subset E \neq X$.

That is $\varphi \neq X - E \subset X - U$ and X - E is a $\widehat{D_{\alpha}}$ -closed set which is a contradiction for X - U is a minimal

$\widehat{D_{\alpha}}$ -closed set.

Theorem 4.8.

i) Let F be a maximal $\widehat{D_{\alpha}}$ -open set and W be a $\widehat{D_{\alpha}}$ -open set. Then F \cup W = X or W \cup F.

ii) Let F and S be maximal \widehat{D}_{α} -open sets. Then $F \cup S = X$ or F = S.

Proof.

i) Let F be a maximal $\widehat{D_{\alpha}}$ -open set and W be a $\widehat{D_{\alpha}}$ -open set. If F \cup W = X, then there is nothing to prove. Suppose F \cup W 6 = X. Then F \subseteq F \cup W. Therefore F \cup W = F as F is a maximal $\widehat{D_{\alpha}}$ -open set in X. Hence F \cup W = W \cup F.

ii) Let F and S be maximal $\widehat{D_{\alpha}}$ -open sets. If $F \cup S \neq X$, then we have $F \subseteq S$ and $S \subseteq F$ by (i). Therefore F = S.

5.Minimal $\widehat{D_{\alpha}}$ -continuous functions and maximal $\widehat{D_{\alpha}}$ -continuous functions

Definition 5.1. Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is called

1. minimal $\widehat{D_{\alpha}}$ -continuous (briefly, min- $\widehat{D_{\alpha}}$ -continuous) if $f^{-1}(A)$ is $\widehat{D_{\alpha}}$ -open set in X for every minimal open set A in Y.

2. maximal $\widehat{D_{\alpha}}$ -continuous (briefly, max- $\widehat{D_{\alpha}}$ -continuous) if f⁻¹ (A) is $\widehat{D_{\alpha}}$ -open set in X for every maximal open set A in Y.

3. minimal $\widehat{D_{\alpha}}$ -irresolute (briefly, min- $\widehat{D_{\alpha}}$ -irresolute) if f⁻¹ (A) is minimal $\widehat{D_{\alpha}}$ -open set in X for every minimal $\widehat{D_{\alpha}}$ -open set A in Y.

4. maximal $\widehat{D_{\alpha}}$ -irresolute (briefly, max- $\widehat{D_{\alpha}}$ -irresolute) if f⁻¹ (A) is maximal $\widehat{D_{\alpha}}$ -open set in X for every maximal $\widehat{D_{\alpha}}$ -open set A in Y.

5. minimal-maximal \widehat{D}_{α} -continuous (briefly, min-max- \widehat{D}_{α} -continuous) if f⁻¹ (A) is maximal \widehat{D}_{α} -open set in X for every minimal open set A in Y.

6. maximal-minimal \widehat{D}_{α} -continuous (briefly, max-min- \widehat{D}_{α} -continuous) if f⁻¹ (A) is minimal \widehat{D}_{α} -open set in X for every maximal open set A in Y.

Theorem 5.2. Every continuous function is minimal \widehat{D}_{α} -continuous function but not conversely.

Proof. Let $f: X \to Y$ be a continuous function.

To prove that f is minimal $\widehat{D_{\alpha}}$ -continuous.

Let U be any minimal open set in Y.

Since every minimal open set is an open set and every open set is $\widehat{D_{\alpha}}$ -open set, U is a $\widehat{D_{\alpha}}$ -open set in Y

. Since f is continuous, $f^{-1}(U)$ is a $\widehat{\textit{D}_{\alpha}}\text{-open set in }Y$.

Hence f is a minimal $\widehat{D_{\alpha}}$ -continuous.

Example 5.3. Let $X = Y = \{a, b, c\}$ be with $\tau = \{\phi, \{a, b\}, X\}$ and $\mu = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$. Define a map $f : X \to Y$ by an f(a) = b, f(b) = a and f(c) = c. Then f is a minimal $\widehat{D_{\alpha}}$ -continuous function but it is not a continuous function, since for the open set $\{b\}$ in Y, $f^{-1}(\{b\}) = \{a\}$ which is not an open set in X.

Theorem 5.4. Let X and Y be topological spaces. A function $f: X \to Y$ is minimal $\widehat{D_{\alpha}}$ -continuous if and only if the inverse image of each maximal closed set in Y is a $\widehat{D_{\alpha}}$ -closed set in X.

Proof. suppose $f: X \to Y$ is minimal $\widehat{D_{\alpha}}$ -continuous. Let F be a maximal closed set in Y. Then F^c is a minimal open set in Y. Therefore $f^{-1}(F^c)$ is $\widehat{D_{\alpha}}$ -open set in X. Since $(f^{-1}(F))^c = f^{-1}(F^c)$ and so $f^{-1}(F)$ is $\widehat{D_{\alpha}}$ -closed set in X.

Conversely, let U be a minimal open set in Y. Then U^c is maximal closed set in Y. By hypothesis, f⁻¹ (U^c) is a $\widehat{D_{\alpha}}$ -closed set in X. Since (f⁻¹ (U))^c = f⁻¹ (U^c), f⁻¹ (U) is $\widehat{D_{\alpha}}$ -open in X. Therefore f is minimal $\widehat{D_{\alpha}}$ -continuous.

Theorem 5.5. If $f: X \to Y$ is $\widehat{D_{\alpha}}$ -irresolute function and $g: Y \to Z$ is minimal $\widehat{D_{\alpha}}$ -continuous function, then $g \circ f: X \to Z$ is a minimal $\widehat{D_{\alpha}}$ -continuous.

Proof. Let U be any minimal open set in Z.

Since g is minimal $\widehat{D_{\alpha}}$ -continuous, g $^{-1}$ (U) is a $\widehat{D_{\alpha}}$ -open set in Y.

Again since f is $\widehat{D_{\alpha}}$ -irresolute, f⁻¹ (g⁻¹ (U)) = (g \circ f)⁻¹ (U) is a $\widehat{D_{\alpha}}$ -open set in X.

Hence $g \circ f$ is a minimal $\widehat{D_{\alpha}}$ -continuous.

Theorem 5.6. Let X and Y be the topological spaces. A function $f: X \to Y$ is maximal $\widehat{D_{\alpha}}$ -continuous if and only if the inverse image of each minimal closed set in Y is a $\widehat{D_{\alpha}}$ -closed set in X.

Proof. Obviously true by Theorem 5.4.

Theorem 5.7. If $f: X \to Y$ is $\widehat{D_{\alpha}}$ -irresolute function and $g: Y \to Z$ is maximal $\widehat{D_{\alpha}}$ -continuous functions, then $g \circ f: X \to Z$ is a maximal $\widehat{D_{\alpha}}$ -continuous.

Proof. Obviously true by Theorem 5.5.

Theorem 5.8. Let X and Y be the topological spaces. A function $f: X \to Y$ is minimal $\widehat{D_{\alpha}}$ -irresolute if and only if the inverse image of each maximal $\widehat{D_{\alpha}}$ -closed set in Y is a maximal $\widehat{D_{\alpha}}$ -closed set in X. **Proof.** Obviously true by Theorem 5.4.

Theorem 5.9. If $f: X \to Y$ and $g: Y \to Z$ are minimal $\widehat{D_{\alpha}}$ -irresolute functions, then $g \circ f: X \to Z$ is a minimal $\widehat{D_{\alpha}}$ -irresolute function.

Proof. Let U be any minimal \widehat{D}_{α} -open set in Z. Since g is minimal \widehat{D}_{α} -irresolute, g⁻¹ (U) is a minimal \widehat{D}_{α} -open set in Y. Again since f is minimal \widehat{D}_{α} -irresolute, f⁻¹ (g⁻¹ (U)) = (g \circ f)^{-1} (U) is minimal \widehat{D}_{α} -open set in X. Therefore g \circ f is minimal \widehat{D}_{α} -irresolute.

Theorem 5.10. If $f: X \to Y$ and $g: Y \to Z$ are maximal $\widehat{D_{\alpha}}$ -irresolute functions, then $g \circ f: X \to Z$ is a maximal $\widehat{D_{\alpha}}$ -irresolute function.

Proof. Obviously true by Theorem 5.9.

Theorem 5.11. Every min-max \widehat{D}_{α} -continuous function is minimal \widehat{D}_{α} -continuous function but not conversely.

Proof. Let $f: X \to Y$ be a min-max \widehat{D}_{α} -continuous function.

Let U be any minimal open set in Y.

Since f is min-max $\widehat{D_{\alpha}}$ -continuous, f⁻¹ (U) is a maximal $\widehat{D_{\alpha}}$ -open set in X.

Since every maximal $\widehat{D_{\alpha}}$ -open set is a $\widehat{D_{\alpha}}$ -open set, f⁻¹ (U) is a $\widehat{D_{\alpha}}$ -open set in X.

Hence f is a minimal $\widehat{D_{\alpha}}$ -continuous.

Example 5.12. Let (X, τ) and (Y, σ) be defined as in example 3.5.7. Let $X = Y = \{a, b, c\}$ be with $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\varphi, \{a\}, \{a, b\}, Y\}$. Define a map $f : X \to Y$ by f(a) = a, f(b) = c and f(c) = b. Then f is a minimal $\widehat{D_{\alpha}}$ -continuous function but it is not a minimax $\widehat{D_{\alpha}}$ -continuous, since for the minimal open set $\{a\}$ in Y, $f^{-1}(\{a\}) = \{a\}$ which is not a maximal $\widehat{D_{\alpha}}$ -open set in X.

Theorem 5.13. Every max-min $\widehat{D_{\alpha}}$ -continuous function is maximal $\widehat{D_{\alpha}}$ -continuous

1161

function but not conversely.

Proof. Obviously true by theorem 5.11.

Example 5.14. Let (X, τ) and (Y, σ) be defined as in Example 3.6.3. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$. Define a map $f: X \to Y$ by f(a) = b, f(b) = c and f(c) = a. Then f is a maximal \widehat{D}_{α} continuous function but it is not a max-min \widehat{D}_{α} -continuous, since for the maximal open set $\{a, b\}$ in Y, $f^{-1}(\{a, b\}) = \{a, c\}$ which is not a minimal \widehat{D}_{α} -open set in X. **Theorem 5.15.** If $f: X \to Y$ is maximal \widehat{D}_{α} -irresolute and $g: Y \to Z$ is min-max \widehat{D}_{α} -continuous functions, then $g \circ f: X \to Z$ is a min-max \widehat{D}_{α} -continuous function.

Proof. Let U be any minimal open set in Z. Since g is min-max \widehat{D}_{α} -continuous, g⁻¹ (U) is a maximal \widehat{D}_{α} -open set in Y. Again since f is maximal \widehat{D}_{α} irresolute, f⁻¹ (g⁻¹ (U)) = (g \circ f)⁻¹ (U) is a maximal \widehat{D}_{α} -open set in X. Hence g \circ f is a min-max \widehat{D}_{α} -continuous.

Theorem 5.16. If $f: X \to Y$ is maximal $\widehat{D_{\alpha}}$ -irresolute and $g: Y \to Z$ is min-max $\widehat{D_{\alpha}}$ -continuous functions, then $g \circ f: X \to Z$ is a minimal $\widehat{D_{\alpha}}$ -continuous.

Proof. Let U be any minimal \widehat{D}_{α} -open set in Z. Since g is min-max \widehat{D}_{α} -continuous, g⁻¹ (U) is a maximal \widehat{D}_{α} -open set in Y. Again since f is maximal \widehat{D}_{α} -irresolute f⁻¹ (g⁻¹ (U)) = (g \circ f)⁻¹ (U) is maximal \widehat{D}_{α} -open. Since every maximal \widehat{D}_{α} -open set in \widehat{D}_{α} -open, (g \circ f)⁻¹ (U) is \widehat{D}_{α} -open set in X. Hence g \circ f is a minimal \widehat{D}_{α} -continuous.

References:

- [1] D. Andrijevic. Some properties of the topology of α-sets, Math. Vesnik, 36,1984, 1-10.
- [2] Dr. Haji M. Hasan Int. Journal of Engineering Research and Application, 5, 2015, 50-53.
- [3] S.Sumithra Devi and L. Meenakshi Sundaram, View on generalized closed set in topological spaces, Communicated.

- [4] S. Sumithra Devi and L. Meenakshi Sundaram, Some new findings on $\widehat{D_{\alpha}}$ open sets, communicated.
- [5] S.Sumithra Devi and L. Meenakshi Sundaram, Continuous on a generalized topo-space, Journal of computational analysis and applications, Commuicated.
- [6] F. Nakaoka and N. Oda, On minimal closed sets, Proceeding of Topological spaces theory and its applications, 5, 2003, 19-21.