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Abstract: In this chapter we introduce minimal 𝐷𝛼̂-open sets, maximal 𝐷𝛼̂-closed sets, maximal 𝐷𝛼̂-

open sets, minimal  𝐷𝛼̂-closed sets, minimal  𝐷𝛼̂-continous function and maximal  𝐷𝛼̂-continous 

functions in topological spae as follows. The notions of this chapter are minimal  𝐷𝛼̂-closed set, maximal  

𝐷𝛼̂-open sets, minimal  𝐷𝛼̂-open set, maximal  𝐷𝛼̂-closed set,minimal  𝐷𝛼̂-continous, maximal  𝐷𝛼̂-

continuous,minimal  𝐷𝛼̂-irresolute,maximal  𝐷𝛼̂-irresolute, minimal-maximal  𝐷𝛼̂-continuous and 

maimal-minimal  𝐷𝛼̂-continuous and their basic properties are studied. 

1.Introduction: 

This section presents an overview of strong and weak forms of minimal closed sets, maximal 

open and minimal continuous map contributed by various topologists. Nakaoka and Oda [6] have 

introduced the concepts of minimal closed, maximal open and minimal continuous. Andrijevic [1] gave 

some properties of α - closure of a set A is denoted by αCl(A), and defined as intersection of all α -

closed sets containing the set A. Dr. Haji M. Hasan[2] introduced maximal α-open set. 

The author of this paper have introduced 𝐷𝛼̂-open sets [4] and  𝐷𝛼̂-closed sets [3] in topological 

spaces. Further we have introduced 𝐷𝛼̂ – continuous function[5] in a topological space. In this paper we 
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introduce minimal 𝐷𝛼̂-open sets, maximal 𝐷𝛼̂-closed sets, maximal 𝐷𝛼̂-open sets, minimal  𝐷𝛼̂-closed 

sets, minimal  𝐷𝛼̂-continous function and maximal  𝐷𝛼̂-continous functions in topological spae as 

follows. The notions of this chapter are minimal  𝐷𝛼̂-closed set, maximal  𝐷𝛼̂-open sets, minimal  𝐷𝛼̂-

open set, maximal  𝐷𝛼̂-closed set, minimal  𝐷𝛼̂-continous, maximal  𝐷𝛼̂-continuous, minimal 𝐷𝛼̂-

irresolute,maximal  𝐷𝛼̂-irresolute, minimal-maximal  𝐷𝛼̂-continuous and maimal-minimal  𝐷𝛼̂-

continuous and their basic properties are studied. 

2.Preliminaries: 

Definition 2.1. [6] A proper nonempty open subset U of X is said to be a minimal open set if any open 

set contained in U is φ or U.  

Definition 2.2. [6] A proper nonempty open subset U of X is said to be a maximal open set if any open 

set containing U is X or U.  

Definition 2.3. [6] A proper nonempty closed subset F of X is said to be a minimal closed set if any 

closed set contained in F is φ or F.  

Definition 2.4. [6] A proper nonempty closed subset F of X is said to be a maximal closed set if any 

closed set containing F is X or F.  

Theorem 2.5. [6] Let X be a topological space and F ⊂ X. F is a minimal closed set iff X − F is a 

maximal open set.  

Theorem 2.6. [6] Let X be a topological space and U ⊂ X. U is a minimal open set iff X − U is a 

maximal closed set.  

Definition 2.7. [6] Let X and Y be the topological spaces. A function f : X → Y is called a  

1. minimal continuous (briefly min-continuous) if f−1(U) is an open set in X for every   minimal 

open set U in Y . 

 2. maximal continuous (briefly max-continuous) if f−1(U) is an open set in X for every maximal 
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open set U in Y .  

3. minimal irresolute (briefly min-irresolute) if f−1(U) is minimal open set in X for every minimal 

open set U in Y .  

4. maximal irresolute (briefly max-irresolute) if f−1(U) is maximal open set in X for every 

maximal open set U in Y . 

 5. minimal-maximal continuous (briefly min-max-continuous) if f−1(U) is maximal open set in 

X for every minimal open set U in Y .  

6. maximal-minimal continuous (briefly max-min-continuous) if f−1(U) is minimal open set in 

X for every maximal open set U in Y . 

Definition 2.8: 𝐷𝛼̂-closed set [3] if cl(A) ⊂U whenever A ⊂U and U is D-open in (X, τ). 

Definition 2.9: A function f : (X, τ ) → (Y, 𝜎) is said to be 𝐷𝛼̂-continuous if  f-1(H) is 𝐷𝛼̂-closed in 

(X, τ ) for every closed set H in Y . 

3.Minimal 𝐷𝛼̂-open sets and maximal 𝐷𝛼̂-closed sets in Topo-space 

Definition 3.1. A proper nonempty 𝐷𝛼̂-open subset U of X is said to be a minimal 𝐷𝛼̂-open set if any 

𝐷𝛼̂-open set contained in U is φ or U.  

Remark 3.2. Minimal open set and minimal 𝐷𝛼̂-open are independent. It show by the following 

example.  

Example 3.3. Let X = {a, b, c} and τ = {φ, {a, b}, X}. Since {a} is minimal 𝐷𝛼̂-open set but not 

minimal open set and {a, b} is minimal open set but not minimal 𝐷𝛼̂-open set.  

Theorem 3.4. Every minimal open set is 𝐷𝛼̂-open set but not conversely.  

Example 3.5. Let X = {a, b, c} and τ = {φ, {b}, X}. Then the subset {a, b} is 𝐷𝛼̂-open set but not 

minimal open set.  
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Theorem 3.6.  

i) Let U be a minimal 𝐷𝛼̂-open set and W be a 𝐷𝛼̂-open set. Then U ∩ W = φ or U ⊂ W.  

ii) Let U and V be minimal 𝐷𝛼̂-open sets. Then U ∩ V = φ or U = V .  

Proof.  

i) Let U be a minimal 𝐷𝛼̂-open set and W be a 𝐷𝛼̂-open set. If U ∩ W = φ, then there is nothing to 

prove. If U ∩ W ≠ φ. Then U ∩ W ⊂ U. Since U is a minimal 𝐷𝛼̂-open set, we have U ∩ W = U. 

Therefore U ⊂ W.  

ii) Let U and V be minimal 𝐷𝛼̂-open sets. If U ∩ V ≠φ, then U ⊂ V and V ⊂ U by  

(i). Therefore U = V . 

Theorem 3.7. Let V be a nonempty finite 𝐷𝛼̂-open set. Then there exists atleast one (finite) minimal 

𝐷𝛼̂-open set U such that U ⊂ V .  

Proof. Let V be a nonempty finite 𝐷𝛼̂-open set.  

If V is a minimal 𝐷𝛼̂-open set, we may set U = V .  

If V is not a minimal 𝐷𝛼̂-open set, then there exists (finite) 𝐷𝛼̂ open set V1 such that φ ≠ V1 ⊂ V .  

If V1 is a minimal 𝐷𝛼̂-open set, we may set U = V1.  

If V1 is not a minimal 𝐷𝛼̂-open set, then there exists (finite) 𝐷𝛼̂-open set V2 such that φ ≠ V2 ⊂ V1. 

Continuing this process, we have a sequence of 𝐷𝛼̂-open sets V ⊃ V1 ⊃ V2 ⊃ V3 ⊃ · · · ⊃ Vk ⊃ · · · 

Since V is a finite set, this process repeats only finitely.  

Then finally we get a minimal 𝐷𝛼̂-open set U = Vn for some positive integer n.  

We now introduce Maximal 𝐷𝛼̂-closed sets in topological spaces as follows. 

Definition 3.8. A proper nonempty 𝐷𝛼̂-closed set F ⊂ X is said to be maximal 𝐷𝛼̂-closed set if any 𝐷𝛼̂-

closed set containing F is either X or F.  
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Theorem 3.9. A proper nonempty subset F of X is maximal 𝐷𝛼̂-closed set iff X −F is a minimal 𝐷𝛼̂-

open set.  

Proof. Let F be a proper maximal 𝐷𝛼̂-closed set.  

Suppose X − F is not a minimal 𝐷𝛼̂-open set.  

Then there exists 𝐷𝛼̂-open set U ≠ X − F such that φ ≠ U ⊂ X − F.  

That is F ⊂ X − U and X − U is a 𝐷𝛼̂-closed set which is a contradiction for F is a maximal 𝐷𝛼̂-closed 

set.  

Conversely let X − F be a minimal 𝐷𝛼̂-open set.  

Suppose F is not a maximal 𝐷𝛼̂ closed set, then there exists 𝐷𝛼̂-closed set E ≠ F such that F ⊂ E ≠ X. 

That is φ ≠ X − E ⊂ X − F and X − E is a 𝐷𝛼̂-open set which is a contradiction for X − F is a minimal 

𝐷𝛼̂-open set. Therefore F is a maximal 𝐷𝛼̂-closed set.  

4.Minimal 𝐷𝛼̂-closed sets and maximal 𝐷𝛼̂-open sets in Topo space 

Definition 4.1. A proper nonempty 𝐷𝛼̂-closed subset F of X is said to be a minimal 𝐷𝛼̂-closed set if 

any 𝐷𝛼̂-closed set contained in F is φ or F.  

Remark 4.2. Minimal closed set and minimal 𝐷𝛼̂-closed set are independent. It shown by the following 

example.  

Example 4.3. Let X = {a, b, c} and τ = {φ, {b}, X}. Since {a} is minimal 𝐷𝛼̂ closed set but not minimal 

closed set and {a, c} is minimal closed set but not minimal 𝐷𝛼̂-closed set.  

Definition 4.4. A proper nonempty 𝐷𝛼̂-open subset U of X is said to be a maximal 𝐷𝛼̂-open set if any 

𝐷𝛼̂-open set containing U is either X or U.  

Remark 4.5. Maximal open set and maximal 𝐷𝛼̂-open set are independent. It is shown by the following 

example.  
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Example 4.6. Let X and τ be defined as in the Example 4.2.3. Then {a, b} is maximal 𝐷𝛼̂-open set but 

not maximal open set and {b} is maximal open set but not maximal 𝐷𝛼̂-open set.  

Theorem 4.7. A proper nonempty subset U of X is maximal 𝐷𝛼̂-open set iff X − U is a minimal 𝐷𝛼̂-

closed set.  

Proof. Let U be a maximal proper 𝐷𝛼̂-open set.  

Suppose X − U is not a minimal 𝐷𝛼̂-closed set.  

Then there exists a 𝐷𝛼̂-closed set F ≠ X − U such that φ ≠ F ⊂ X − U.  

That is U ⊂ X − F and X − F is a 𝐷𝛼̂-open set which is a contradiction for U is a maximal 𝐷𝛼̂-open set.  

Conversely, let X − U be a minimal 𝐷𝛼̂-closed set.  

Suppose U is not a maximal 𝐷𝛼̂-open set.  

Then there exists a 𝐷𝛼̂-open set E ≠ U such that U ⊂ E ≠ X.  

That is φ ≠ X − E ⊂ X − U and X − E is a 𝐷𝛼̂-closed set which is a contradiction for X − U is a minimal 

𝐷𝛼̂-closed set.  

Theorem 4.8.  

i) Let F be a maximal 𝐷𝛼̂-open set and W be a 𝐷𝛼̂-open set. Then F ∪ W = X or W ∪ F.  

ii) Let F and S be maximal 𝐷𝛼̂-open sets. Then F ∪ S = X or F = S.  

Proof.  

i) Let F be a maximal 𝐷𝛼̂-open set and W be a 𝐷𝛼̂-open set. If F ∪ W = X, then there is nothing to 

prove. Suppose F ∪W 6 = X. Then F ⊆ F ∪W. Therefore F ∪ W = F as F is a maximal 𝐷𝛼̂-open set in 

X. Hence F ∪ W = W ∪ F.  

ii) Let F and S be maximal 𝐷𝛼̂-open sets. If F ∪ S ≠ X, then we have F ⊆ S and S ⊆ F by (i). Therefore 

F = S.  

5.Minimal 𝐷𝛼̂-continuous functions and maximal 𝐷𝛼̂-continuous functions  



Journal of Computational Analysis and Applications                                                              VOL. 33, NO. 2, 2024 

 

 

                                                                 1159                                               S.SUMITHRA DEVI et al 1153-1163 

 

Definition 5.1. Let X and Y be topological spaces. A function f : X → Y is called 

1. minimal 𝐷𝛼̂-continuous (briefly, min-𝐷𝛼̂-continuous) if f −1 (A) is 𝐷𝛼̂-open set in X for every minimal 

open set A in Y .  

2. maximal 𝐷𝛼̂-continuous (briefly, max-𝐷𝛼̂-continuous) if f −1 (A) is 𝐷𝛼̂-open set in X for every 

maximal open set A in Y .  

3. minimal 𝐷𝛼̂-irresolute (briefly, min-𝐷𝛼̂-irresolute) if f −1 (A) is minimal 𝐷𝛼̂-open set in X for every 

minimal 𝐷𝛼̂-open set A in Y .  

4. maximal 𝐷𝛼̂-irresolute (briefly, max-𝐷𝛼̂-irresolute) if f −1 (A) is maximal 𝐷𝛼̂-open set in X for every 

maximal 𝐷𝛼̂-open set A in Y .  

5. minimal-maximal 𝐷𝛼̂-continuous (briefly, min-max-𝐷𝛼̂-continuous) if f −1 (A) is maximal 𝐷𝛼̂-open 

set in X for every minimal open set A in Y .  

6. maximal-minimal 𝐷𝛼̂-continuous (briefly, max-min-𝐷𝛼̂-continuous) if f −1 (A) is minimal 𝐷𝛼̂-open 

set in X for every maximal open set A in Y .  

Theorem 5.2. Every continuous function is minimal 𝐷𝛼̂-continuous function but not conversely.  

Proof. Let f : X → Y be a continuous function.  

To prove that f is minimal 𝐷𝛼̂-continuous.  

Let U be any minimal open set in Y .  

Since every minimal open set is an open set and every open set is 𝐷𝛼̂-open set, U is a 𝐷𝛼̂-open set in Y 

. Since f is continuous, f−1(U) is a 𝐷𝛼̂-open set in Y .  

Hence f is a minimal 𝐷𝛼̂-continuous.  

Example 5.3. Let X = Y = {a, b, c} be with τ = {φ, {a, b}, X} and µ = {φ, {a}, {b}, {a, b}, Y }. Define 

a map f : X → Y by an f(a) = b, f(b) = a and f(c) = c. Then f is a minimal 𝐷𝛼̂-continuous function but 
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it is not a continuous function, since for the open set {b} in Y , f −1({b}) = {a} which is not an open set 

in X.  

Theorem 5.4. Let X and Y be topological spaces. A function f : X → Y is minimal 𝐷𝛼̂-continuous if 

and only if the inverse image of each maximal closed set in Y is a 𝐷𝛼̂-closed set in X.  

Proof. suppose f : X → Y is minimal 𝐷𝛼̂-continuous. Let F be a maximal closed set in Y . Then F c is 

a minimal open set in Y . Therefore f −1 (Fc ) is 𝐷𝛼̂-open set in X. Since (f −1 (F))c = f −1 (F c ) and so f−1 

(F) is 𝐷𝛼̂-closed set in X.  

Conversely, let U be a minimal open set in Y . Then U c is maximal closed set in Y . By hypothesis, f−1 

(U c ) is a 𝐷𝛼̂-closed set in X. Since (f −1 (U))c = f −1 (U c ), f −1 (U) is 𝐷𝛼̂-open in X. Therefore f is 

minimal 𝐷𝛼̂-continuous.  

Theorem 5.5. If f : X → Y is 𝐷𝛼̂-irresolute function and g : Y → Z is minimal 𝐷𝛼̂-continuous function, 

then g ◦ f : X → Z is a minimal 𝐷𝛼̂-continuous.  

Proof. Let U be any minimal open set in Z.  

Since g is minimal 𝐷𝛼̂-continuous, g −1 (U) is a 𝐷𝛼̂-open set in Y .  

Again since f is 𝐷𝛼̂-irresolute, f −1 (g −1 (U)) = (g ◦ f) −1 (U) is a 𝐷𝛼̂-open set in X.  

Hence  g ◦f is a minimal 𝐷𝛼̂-continuous.  

Theorem 5.6. Let X and Y be the topological spaces. A function f : X → Y is maximal 𝐷𝛼̂-continuous 

if and only if the inverse image of each minimal closed set in Y is a 𝐷𝛼̂-closed set in X.  

Proof. Obviously true by Theorem 5.4.  

Theorem 5.7. If f : X → Y is 𝐷𝛼̂-irresolute function and g : Y → Z is maximal 𝐷𝛼̂-continuous functions, 

then g ◦ f : X → Z is a maximal 𝐷𝛼̂-continuous.  

Proof. Obviously true by Theorem 5.5.  
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Theorem 5.8. Let X and Y be the topological spaces. A function f : X → Y is minimal 𝐷𝛼̂-irresolute if 

and only if the inverse image of each maximal 𝐷𝛼̂-closed set in Y is a maximal 𝐷𝛼̂-closed set in X.  

Proof. Obviously true by Theorem 5.4.   

Theorem 5.9. If f : X → Y and g : Y → Z are minimal 𝐷𝛼̂-irresolute functions, then g ◦ f : X → Z is a 

minimal 𝐷𝛼̂-irresolute function.  

Proof. Let U be any minimal 𝐷𝛼̂-open set in Z. Since g is minimal 𝐷𝛼̂-irresolute, g −1 (U) is a minimal 

𝐷𝛼̂-open set in Y . Again since f is minimal 𝐷𝛼̂-irresolute, f −1 (g −1 (U)) = (g ◦ f) −1 (U) is minimal 𝐷𝛼̂-

open set in X. Therefore g ◦ f is minimal 𝐷𝛼̂-irresolute. 

Theorem 5.10. If f : X → Y and g : Y → Z are maximal 𝐷𝛼̂-irresolute functions, then g ◦ f : X → Z is 

a maximal 𝐷𝛼̂-irresolute function.  

Proof. Obviously true by Theorem 5.9.   

Theorem 5.11. Every min-max 𝐷𝛼̂-continuous function is minimal 𝐷𝛼̂-continuous function but not 

conversely.  

Proof. Let f : X → Y be a min-max 𝐷𝛼̂-continuous function.  

Let U be any minimal open set in Y.  

Since f is min-max 𝐷𝛼̂-continuous, f −1 (U) is a maximal 𝐷𝛼̂-open set in X.  

Since every maximal 𝐷𝛼̂-open set is a 𝐷𝛼̂-open set, f −1 (U) is a 𝐷𝛼̂-open set in X.  

Hence f is a minimal 𝐷𝛼̂-continuous.  

Example 5.12. Let (X, τ ) and (Y, σ) be defined as in example 3.5.7. Let X = Y = {a, b, c} be with τ = 

{φ, {a}, {b}, {a, b}, X} and σ = {φ, {a}, {a, b}, Y }. Define a map f : X → Y by f(a) = a, f(b) = c and 

f(c) = b. Then f is a minimal 𝐷𝛼̂-continuous function but it is not a min-max 𝐷𝛼̂-continuous, since for 

the minimal open set {a} in Y , f −1 ({a}) = {a} which is not a maximal 𝐷𝛼̂-open set in X.  

Theorem 5.13. Every max-min 𝐷𝛼̂-continuous function is maximal 𝐷𝛼̂-continuous  
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function but not conversely.  

Proof. Obviously true by theorem 5.11.   

Example 5.14. Let (X, τ ) and (Y, σ) be defined as in Example 3.6.3. Let X = Y = {a, b, c}, τ = {φ, {a, 

b}, X} and σ = {φ, {a}, {b}, {a, b}, Y }. Define a map f : X → Y by f(a) = b, f(b) = c and f(c) = a. Then 

f is a maximal 𝐷𝛼̂ continuous function but it is not a max-min 𝐷𝛼̂-continuous, since for the maximal 

open set {a, b} in Y , f −1 ({a, b}) = {a, c} which is not a minimal 𝐷𝛼̂-open set in X. Theorem 5.15. If 

f : X → Y is maximal 𝐷𝛼̂-irresolute and g : Y → Z is min-max 𝐷𝛼̂-continuous functions, then g ◦ f : X 

→ Z is a min-max 𝐷𝛼̂-continuous function.  

Proof. Let U be any minimal open set in Z. Since g is min-max 𝐷𝛼̂-continuous, g −1 (U) is a maximal 

𝐷𝛼̂-open set in Y . Again since f is maximal 𝐷𝛼̂irresolute, f −1 (g −1 (U)) = (g ◦ f) −1 (U) is a maximal 

𝐷𝛼̂-open set in X. Hence g ◦ f is a min-max 𝐷𝛼̂-continuous.  

Theorem 5.16. If f : X → Y is maximal 𝐷𝛼̂-irresolute and g : Y → Z is min-max 𝐷𝛼̂-continuous 

functions, then g ◦ f : X → Z is a minimal 𝐷𝛼̂-continuous.  

Proof. Let U be any minimal 𝐷𝛼̂-open set in Z. Since g is min-max 𝐷𝛼̂-continuous, g −1 (U) is a maximal 

𝐷𝛼̂-open set in Y . Again since f is maximal 𝐷𝛼̂-irresolute f −1 (g −1 (U)) = (g ◦ f) −1 (U) is maximal 𝐷𝛼̂-

open. Since every maximal 𝐷𝛼̂-open set in 𝐷𝛼̂-open, (g ◦ f) −1 (U) is 𝐷𝛼̂-open set in X. Hence g ◦ f is a 

minimal 𝐷𝛼̂-continuous. 
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