
Journal of Computational Analysis and Applications                                                   VOL. 33, NO. 4, 2024 

 

572                            Subodh Kumar et al   572-578 

 

Restricted Key Errors Correcting Linear Codes 
 

Subodh Kumar
1
, Hari Pratap

2*
, Sunit Kumar

 3
, Gajraj Singh

4
, Manoj Kumar

5
 

 

1
Department of Mathematics, Shyam Lal College, University of Delhi-110032, India. 

1
skumarmath@shyamlal.du.ac.in 

2*
Department of Mathematics, PGDAV (E) College, University of Delhi-110065, India. 

2*
haripratap@pgdave.du.ac.in” 

3
Department of Mathematics, Motilal Nehru College, University of Delhi-110021, India 

3
sunit@mln.du.ac.in” 

4
Discipline of Statistics, Indira Gandhi National Open University, Delhi-110068, India.” 

4
gajrajsingh@ignou.ac.in 

5
Department of Mathematics, Deshbandhu College, University of Delhi, India.” 

5
manojccs@gmail.com 

Corresponding author: - Hari Pratap 

Received: 21.06.2024                      Revised: 19.08.2024                      Accepted: 07.09.2024 

 

ABSTRACT      

This correspondence represents the codes having the nature of correcting the restricted key 

errors occurring in the whole code length. A comparison is also established among the 

restricted key errors and ordinary key errors.  
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1. INTRODUCTION 

The communication channels can be divided into two categories. First of them consists those 

channels which transmit the information through the wires and the second has the wireless 

communication channels. In  both the cases the  transmission may be effected due the internal 

or external factors. For example, Due to the damaged wires a telephone user may face voice 

break problem. In the case wireless communication channels transmission can be disrupted 

due the lightning in the bad weather. Such type of disturbances during the transmission are 

said to be noises or errors. There are many types of errors such as random errors [9], burst 

errors [8], solid burst errors [12], repeated burst errors [6, 7], restricted solid burst errors [13], 

restricted repeated burst errors [1] etc. 

SharmabandlGaur in their paper [11] pointed out a different type of error while dealing with 

typing error onba computer keybboard. Later, this error wasbnamed as ``key error" by Das 

[3]. When abperson typesbon a keybboard andbif bybmistake, hebpresses a different key in 

the left or rightbside of thebintended key, thenba word withbno or differentbmeaning appears. 

In this case, a key error is created. Thebdefinition of abkey error isbgiven bybDas [3]bas “An 

i-key error of length    (i = 1, 2,…, n) is an n-tuple such that the i
th

 component is non-zero 
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and all other nonzero components are confined upto   consecutive positions (if exist) 

immediately preceding and succeeding the i
th

 component."   The vectors, 

( 010002

error
entry

), ( 103032

error
entry

), ( 3100321

error
entry

) etc. are examples of key errors of length 2 over 

GF(4). These key errors are studied in the papers [3-5]. 

A restricted key error of given length is obtained by imposing a restriction on the field 

elements occupying the places in a key error. The definition of a restricted key error  is given 

in the paper [2], as: 

 

Definition 1.1. “A restricted i-key error of length   is a vector over GF(q) in which all the 

non-zero components occur only at    or less consecutive positions either or both sides of  i
th

 

position. The last component of each side is non-zero and each non-zero component is same 

element of GF(q). The i
th 

component is called entry error of the restricted key.”  

In this research paper [2], the authors obtained the key error detecting and correcting codes. 

In the following section, number of all vectors are determined in the different part of a vector 

of length n. 

 

2. RK ERROS OCCURRING IN A VECTOR 

The RK errors of length     or less lying in a vector of length n  can be figure out from the 

key errors in Theorem 2.1 of [4] by multiplying  )1( q   to  the number  of key errors 

obtained in  binary case for each corresponding case . A vector of length n  can be divided 

into three parts to find the exact number of RK errors. 

 

(a).[2] Inithisicase that theientry error i  fluctuates betweenithe first and the 
th  positions, 

theitotal number of RK errorsiis determinediby 

                                                        12)1(
3

2 2  q .                                                            (2.1) 

(b). [2] When i  fluctuateslbetween the 
th)1(   place and the 

thn )(   positions, the 

totalinumber of RK errors is as  

                                           12)1(
3

)2( )12( 
 

q
n

.                                                         (2.2) 

(c). [2] If i  fluctuatesbetween the  
thn )1(   placeiandithe thn  position, theItotal 

numberiof RK errorslisias 

                                       
  







 
 

3

2
12

9

8
)1( )1(2 q

.                                                       (2.3) 

TheIsumiof RK errorsIof lengthIup to   in an n tupleIisItherefore, 

 

                                           Expr (2.1)+Expr (2.2)+Expr (2.3). 

i.e. 
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2
12

9

8
12

3

)2(
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2
)1( )1(2)12(2   n

q

.                                            (2.4) 
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3. CORRECTION OF RESTRICTED KEY ERRORS 

In this section we provide the bounds for the codes capable to correct the RK errors. For these 

codes, The syndromes corresponding to the RK errors satisfy the conditions given below.  

(i) The syndromesicorresponding to the RK errorsiin theiwhole codeilength must beidifferent 

fromizero vector. 

(ii) Theisyndromes correspondinglto the RK errorsimust be differentlfrom thelsyndromes 

corresponding tolthe other RK errorsloccurring in thelwholelcode length. 

Theorem 3.1. To correct thelrestricted key errorslof length   occurring in thelwhole code 

lengthlof an ),( kn  code )4( n  overlGF(q) with k informationidigits, thelfollowing 

conditionlmust belsatisfied. 

                 

      .
3

2
12

9

8
12

3

)2(
12

3

2
)1(1 )1(2)12(2








 



    n

qq kn
 

  

Proof. The required result can be proved same as the Theorem 3.1 of [2] by caculating the 

the number of all the restricted key errors  occurring in the whole code length and are to be 

corrected. 

The expression (2.4) represents the number of all restricted key erors. We can get the 

required result by puting this number less than or equal to the total number of all possible  

cosets. i.e. 

 

                   

      .
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12
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)2(
12

3
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)1(1 )1(2)12(2








 



    n

qq kn

 
 

The following theorem provides the suficient conditon required to  exist a code that can 

correct the RK errors occurring in the whole code length. This theorem is verified by giving 

an example. 

Theorem 3.2. The construction of a PClmatrix islpossible thatlensures thelexistence of an (n 

k) code over GF(q) capableltolcorrect thelrestricted key errorslof length   orlless iflthe 

follwing conditionlislsatisfied. 
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    n

q  

Proof. Tolensure thelexistence of an (n, k) codelover GF(q) capableitolcorrect the 

restrictedlkey errors ofllength   or less welwill construct a paritylcheck matrixlfor the code 

by folowinglthe same techniquelused inlTheorem 4.16 [10] 

Let by suitabalelselectionlof n-k tupleslover GF(q),  we havelput  first 1  columnslof H. 

 Accordingitoithe conditionl(i),  

 i.e. 

                       huhuhuhuh .332211                                                     (3.1) 
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Where iu ’s  are samelfield elemnets of  GF(q). Inlexpression (3.1), thelcalculation of the iu  

coefficientslis same aslthe calculation of the number of thelthe 
th  column h  of  the PC 

matrix H can be added if column h  is not the linearlcombination of the   or fewer 

columnsljust preceding h .restrictedlkey errors occurring in last   possitionlof a vector. 

Whichlislgiven by 

                          

  






 
 

3

2
12

9

8
)1( )1(2 q                                                                      (3.2) 

Now , accordinglto the conditionl(ii), the 
th  column h  of  the PC matrix H can beladded if 

columnl h  is not the linearlcombination oflthe   or fewerlcolumns justbpreceding 

h togetherbwith the linearbcombination of anybset of 12   or lessbcolumns frombthebfirst 

 2   columns. 

i.e. 

                      huhuhuhuh .332211  

                          1212332211 .   hvhvhvhv                                                            (3.3) 

Where iu , iv  GF(q). Thebnumber of iu  cofficientsbin expression (3.3) isbsame asbin 

expression (3.2) whilebthe calculationbof the numberbof  coefficients iv ’s isbsimilar to the 

calculationbof the number ofbthe restricted keyberrors lyingbin abvector ofblength  2  

thatbis in absub-block. Thisbisbgivenbby 
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   q  (3.4)                                                                                                                                     

                                                                                                                   

Therfore,bduebto the expression (3.3), thebtotal numberbof l.c. (including thebvector of all 

zerobcomponents) that isbnot equalbto h  is givenbbyb 

                          1+Expr. (3.2) + Expr. (3.4) 

  Sincebtherebare 
knq 

 cosets,bTherefore 

                            Expr.(3.4) + Expr.(3.2)+1knq  

or 
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   q  

The requiredbresultbwillbbe obtainedbbybreplacing   by n  thisbexpression. 

Webconclude thisbbsection by giving anbexample of the codebthat locatesbthe RKberrors of 

lengthbupto  .  

Example3.1. Taking 3q , 2 , 22n  inbTheorem 3.2, we get abternary (22, 11) 

linearbcodeband its paritybcheck matrixbis given by 
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1101011021010000000000

1012121201101000000000

2211100011000100000000

1000111001100010000000

0020011121100001000000

0100020001200000100000

0221001011000000010000

0001101201200000001000

1002110021000000000100

2101121001100000000010

1011111111100000000001

H

 
 

By preparing error patterns syndrome table, we can verify that all the syndromes of RK errors 

of length upto 2 occurring in whole code  legth are non-zero and distinct. So, this  ternary 

code is capable to correct the restricted key errors of length upto 2. 

 

4. COMPARISON AMONG THE  PARITY CHECK DIGITS 

Table 4.1: Comparison on necessary number of check symbols 

S. N.   n n-k in Theorem 2.1 [3] n-k in Theorem 3.1 

1 2 7 6 5 

2 3 9 8 6 

3 4 11 10 7 

4 5 13 12 8 

5 6 15 14 10 

 

 
 

The Figure 4.1  obtained form the Table 4.1 compares the redundancy of the codes given  by 

the Theorem 2.1 in paper [3] with the redundancy of our codes given by the Theorem 3.1. 
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It can be observed that the codes obtained in this paper carry less PC digits in comparison of 

the PC digits required for the codes obtained in the Theorem 2.2 in paper [3]. In other words 

it can be said that the codes developed in this pape are more  efficient.  

Now, we will discuss the comparison of PC digits of ordinary key errors correcting codes and 

restricted key error correcting codes 

Table 4.2: Comparison on sufficient number of check symbols 

S. 

N. 
  n n-k in Theorem 2.1 [3] n-k in Theorem 3.2 

1 2 11 9 7 

2 3 15 13 9 

3 4 20 18 12 

4 5 24 22 15 

5 6 30 26 18 

 

 
The Figure 4.2 obtained from the Table 4.2 compares the redundancy of the codes given by 

the Theorem 2.2 in paper [3] with the redundancy of our codes given by the Theorem 3.2. 

It can be observed that the codes obtained in this paper carry less PC digits in comparison of 

the PC digits required for the codes obtained in the Theorem 2.2 in paper [3]. In other words 

it can be said that the codes developed in this paper are more efficient. 

 

5. CONCLUSION  

In this communication, we have derived the lower and upper bounds for the number of PC 

digits required for the codes having the capabilty of  correction of the restricted key errors 

and verified these codes by providing one example of PCM. It will be for further research if 

the repeated restricted key errors  and the codes that can deal with these errors can be 

obtained. 
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