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ABSTRACT

This correspondence represents the codes having the nature of correcting the restricted key
errors occurring in the whole code length. A comparison is also established among the
restricted key errors and ordinary key errors.
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1. INTRODUCTION

The communication channels can be divided into two categories. First of them consists those
channels which transmit the information through the wires and the second has the wireless
communication channels. In both the cases the transmission may be effected due the internal
or external factors. For example, Due to the damaged wires a telephone user may face voice
break problem. In the case wireless communication channels transmission can be disrupted
due the lightning in the bad weather. Such type of disturbances during the transmission are
said to be noises or errors. There are many types of errors such as random errors [9], burst
errors [8], solid burst errors [12], repeated burst errors [6, 7], restricted solid burst errors [13],
restricted repeated burst errors [1] etc.

Sharma and Gaur in their paper [11] pointed out a different type of error while dealing with
typing error on a computer key board. Later, this error was named as " key error" by Das
[3]. When a person types on a key board and if by mistake, he presses a different key in
the left or right side of the intended key, then a word with no or different meaning appears.
In this case, a key error is created. The definition of a key error is given by Das [3] as “An
i-key error of length 2 (i = 1, 2,..., n) is an n-tuple such that the i"" component is non-zero
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and all other nonzero components are confined upto A consecutive positions (if exist)
immediately preceding and succeeding the i component.” The vectors,

( g 01000), (032 Ct% 10), (21 ? 3100) etc. are examples of key errors of length 2 over
entry entry entry

GF(4). These key errors are studied in the papers [3-5].

A restricted key error of given length is obtained by imposing a restriction on the field
elements occupying the places in a key error. The definition of a restricted key error is given
in the paper [2], as:

Definition 1.1. A restricted i-key error of length is a vector over GF(q) in which all the
non-zero components occur only at 4 or less consecutive positions either or both sides of i"
position. The last component of each side is non-zero and each non-zero component is same
element of GF(q). The i" component is called entry error of the restricted key.

In this research paper [2], the authors obtained the key error detecting and correcting codes.
In the following section, number of all vectors are determined in the different part of a vector
of length n.

2. RK ERROS OCCURRING IN A VECTOR
The RK errors of length 24 or less lying in a vector of length n can be figure out from the
key errors in Theorem 2.1 of [4] by multiplying (q-1) to the number of key errors

obtained in binary case for each corresponding case . A vector of length n can be divided
into three parts to find the exact number of RK errors.

(a).[2] In this case that the entry error i fluctuates between the first and the A" positions,
the total number of RK errors is determined by

2
3@ ~1)(2% -1). (2.1)
(b). [2] When i fluctuates between the (A+1)" place and the (n—A)" positions, the
total number of RK errors is as
(n-22) (24+1)
T(q—1)(2 +1). (2.2)

(c). [2] If i fluctuate between the (n—A+1)" place and the n™ position, the total
number of RK errors is as

(a —1)[§(22(“) S 2}
9 (2.3)
The sum of RK errors of length up to A in an n tuple is therefore,
Expr (2.1)+Expr (2.2)+Expr (2.3).
i.e.
a2 02 s, 2]
3 3 9 3 (2.4)
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3. CORRECTION OF RESTRICTED KEY ERRORS

In this section we provide the bounds for the codes capable to correct the RK errors. For these
codes, The syndromes corresponding to the RK errors satisfy the conditions given below.

(1) The syndromes corresponding to the RK errors in the whole code length must be different
from zero vector.

(if) The syndromes corresponding to the RK errors must be different from the syndromes
corresponding to the other RK errors occurring in the whole code length.

Theorem 3.1. To correct the restricted key errors of length A occurring in the whole code
length of an (n,k) code (n>421) over GF(q) with k information digits, the following

condition must be satisfied.

" 21+(q —1){2(2“ _q) (=28 _32/1) (2% +1)+g(22<“> 1)+ %*2}

Proof. The required result can be proved same as the Theorem 3.1 of [2] by caculating the
the number of all the restricted key errors occurring in the whole code length and are to be
corrected.
The expression (2.4) represents the number of all restricted key erors. We can get the
required result by puting this number less than or equal to the total number of all possible
cosets. i.e.

g >14(g 4)[%(2” 1) (2B ern 1) By _1)+%}

The following theorem provides the suficient conditon required to exist a code that can
correct the RK errors occurring in the whole code length. This theorem is verified by giving
an example.

Theorem 3.2. The construction of a PC matrix is possible that ensures the existence of an (n
k) code over GF(q) capable to correct the restricted key errors of length A or less if the
follwing condition is satisfied.

q"* >1+(q —1){2(2““) ~1)+ A ; 2} x

{1+ (q _1)[2(22/1 _1)+w(2(u+1) +1)+%(22(/1_1) _1)+ Z;LZHI

Proof. To ensure the existence of an (n, k) code over GF(q) capable to correct the
restricted key errors of length A or less we will construct a parity check matrix for the code
by folowing the same technique used in Theorem 4.16 [10]
Let by suitabale selection of n-k tuples over GF(q), we have put first o—1 columns of H.
According to the condition (i),
e
h,zuh, , +uh, , +uh ,+.--+uh (3.1)
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Where u,’s are same field elemnets of GF(q). In expression (3.1), the calculation of the u,
coefficients is same as the calculation of the number of the the p™ column h, of the PC
matrix H can be added if column h, is not the linear combination of the 2 or fewer
columns just preceding h .restricted key errors occurring in last o possition of a vector.
Which is given by

(@ —1)[2 220 -1)+

Now , according to the condition (ii), the pth column h_ of the PC matrix H can be added if

/1+2:| (3.2)

column h is not the linear combination ofthe A or fewer columns just preceding
h, together with the linear combination of any set of 24 +1 or less columns from the first
p—24 columns.
ie.
hp * ulhp_1 +u2hp_2 +u3hp_3 +.---+ulhp_l
+v,h, +v,h, +v,hy +.-+v,, 0, (3.3)
Where Ui Vv € GF(q). The number of u, cofficients in expression (3.3) is same as in
expression (3.2) while the calculation of the number of coefficients v;,s is similar to the

calculation of the number of the restricted key errors lying in a vector of length p—24
that isina sub-block. This is given by

(a —1)2[2(22“-1) )4 ; 2} x E (22* 1)+ @(2(244) +1)+§(22<H> )2 ;“ 2}. (3.4)

Therfore, due to the expression (3.3), the total number of l.c. (including the vector of all
zero components) that is not equal to h is given by

1+Expr. (3.2) + Expr. (3.4)
Since there are q"* cosets, Therefore
q"™* > 1+ Expr.(3.2) + Expr.(3.4)
or

q"* >1+(q —1){%(2““) 1)+ 2 ; 2} x

{1+ (q _1)E (224 _1)+(p_—34’1)(2(u+1> +1)+ g(zz(“) _1)+%ﬂ-

The required result will be obtained by replacing p by n this expression.

We conclude this section by giving an example of the code that locates the RK errors of
length upto A.

Example3.1. Takinggq=3,4=2, nN=22 in Theorem 3.2, we get a ternary (22, 11)
linear code and its parity check matrix is given by
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By preparing error patterns syndrome table, we can verify that all the syndromes of RK errors
of length upto 2 occurring in whole code legth are non-zero and distinct. So, this ternary
code is capable to correct the restricted key errors of length upto 2.

4. COMPARISON AMONG THE PARITY CHECK DIGITS
Table 4.1: Comparison on necessary number of check symbols

SSN. | 4 n n-k in Theorem 2.1 [3] n-k in Theorem 3.1
1 2 7 6 5
2 3 9 8 6
3 4 11 10 7
4 5 13 12 8
5 6 15 14 10

14 o || Therem 2.1 of [3

/// - I'herem 3.1
)
| >3
10 /-"/
/"//
) 10 12 14
Figure 4.1: Comparison on necessary number of check symbols

The Figure 4.1 obtained form the Table 4.1 compares the redundancy of the codes given by
the Theorem 2.1 in paper [3] with the redundancy of our codes given by the Theorem 3.1.
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It can be observed that the codes obtained in this paper carry less PC digits in comparison of
the PC digits required for the codes obtained in the Theorem 2.2 in paper [3]. In other words
it can be said that the codes developed in this pape are more efficient.
Now, we will discuss the comparison of PC digits of ordinary key errors correcting codes and
restricted key error correcting codes

Table 4.2: Comparison on sufficient number of check symbols

Ifll A n n-k in Theorem 2.1 [3] n-k in Theorem 3.2
1 2 11 9 7
2 3 15 13 9
3 4 20 18 12
4 5 24 22 15
5 6 30 26 18
[ s & Therem 2.2 of |3
- 'herem 3.2
2 '
l.‘ /
10 '
.
10 2 20 30
Figure 4.2: Comparison on sufficient number of check symbols

The Figure 4.2 obtained from the Table 4.2 compares the redundancy of the codes given by
the Theorem 2.2 in paper [3] with the redundancy of our codes given by the Theorem 3.2.

It can be observed that the codes obtained in this paper carry less PC digits in comparison of
the PC digits required for the codes obtained in the Theorem 2.2 in paper [3]. In other words
it can be said that the codes developed in this paper are more efficient.

5. CONCLUSION

In this communication, we have derived the lower and upper bounds for the number of PC
digits required for the codes having the capabilty of correction of the restricted key errors
and verified these codes by providing one example of PCM. It will be for further research if
the repeated restricted key errors and the codes that can deal with these errors can be
obtained.
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observation about the key errors and giving the method to calculate the number of key
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