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Abstract 

   

 For a finite undirected graph 𝐺(𝑉, 𝐸) and a non-empty set 𝜎 ⊆ 𝑉, the 

switching of 𝐺 by 𝜎 is defined as the graph 𝐺𝜎(𝑉, 𝐸′) which is obtained from 

𝐺 by removing all edges between 𝜎 and its complement 𝑉 − 𝜎 and adding as 

edges all non-edges between 𝜎 and 𝑉 − 𝜎. If 𝐺 ≅ 𝐺𝜎, then 𝜎 is called as self 

switching of 𝐺 and if ∣ 𝜎 ∣= 𝑘, then it is called as 𝑘-vertex self switching. The 

set of all 𝑘-vertex self switchings of 𝐺 is denoted by 𝑆𝑆𝑘(𝐺) and its 

cardinality by 𝑠𝑠𝑘(𝐺). In this paper, we give a sufficient condition for 𝜎 to 

be a 𝑘-vertex self switching and we find 𝑠𝑠𝑘(𝐺) of path and star graphs. 
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1 Introduction 

 

       Switching, also known as Seidel switching or ∣ 𝜎 ∣-vertex switching, has been explained 

by Seidel [2, 6]. For a finite undirected graph 𝐺(𝑉, 𝐸) with ∣ 𝑉 ∣= 𝑝 and a non-empty set 𝜎 ⊆

𝑉,  the switching of 𝐺 by 𝜎 is defined as the graph 𝐺𝜎(𝑉, 𝐸′) which is obtained from 𝐺 by 

removing all edges between 𝜎 and its complement 𝑉 − 𝜎 and adding as edges all non-edges 

between 𝜎 and 𝑉 − 𝜎. In 1998, Hertz emphasized that if we take into account the restricted 

form of switching, we can get more results. For example, the cardinality of 𝜎 is 1 or 2. 

When 𝜎 = {𝑣} ⊂ 𝑉, the corresponding switching 𝐺{𝑣} is called as vertex switching and 
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is denoted by 𝐺𝑣. Jayasekaran was the first person to propose the idea of self switching in 

2007. If 𝐺 ≅ 𝐺𝜎, then 𝜎 is said to be a self switching of 𝐺. It is sometimes referred to as ∣ 𝜎 ∣-

vertex self switching.  If 𝑘 = 1, then the self switching 𝜎 is termed as self vertex switching [4, 

5] and if 𝑘 = 2, then the corresponding self switching is termed as 2-vertex self switching [1]. 

If ∣ 𝜎 ∣= 𝑘, then it is called as 𝑘-vertex self switching. The set of all 𝑘-vertex self 

switchings of 𝐺 is denoted by 𝑆𝑆𝑘(𝐺) and its cardinality by 𝑠𝑠𝑘(𝐺).  

       In this paper, we prove that if 𝜎 = {𝑣1, 𝑣2, . . . , 𝑣𝑘} ⊂ 𝑉 is a 𝑘-vertex self  switching of 𝐺,  

then 𝑑𝑒𝑔(𝑣1) + 𝑑𝑒𝑔(𝑣2)+. . . +𝑑𝑒𝑔(𝑣𝑘) =
𝑘(𝑝−𝑘)

2
+ 2(The number of edges between the 

vertices of 𝜎 in 𝐺) for 𝑘 ≥ 2; an even order graph has no odd 𝑘-vertex self switching; 𝑉 − 𝜎 

is a (𝑝 − 𝑘)-vertex self switching of 𝐺; if 𝜎 is   a 𝑘-vertex self switching of 𝐺, then 𝜎 is also 

a 𝑘-vertex self switching of 𝐺𝜎 and (𝐺𝜎)𝜎 = 𝐺 and the number of 𝑘-vertex self switchings 

for path and star graphs has been found. 

 

2 Preliminaries 

 

      The following results are required in the subsequent section. 

Definition 2.1. The set of positive integers, each is the degree of a vertex in a graph 𝐺, is 

denoted by 𝐷𝑆(𝐺). That is, 𝐷𝑆(𝐺) = {𝑛 ∶ 𝑛 = 𝑑𝑒𝑔(𝑢) , 𝑢 ∈ 𝑉(𝐺)}.  

Theorem 2.2. [7] Let 𝐺(𝑉, 𝐸) be a graph and let 𝜎 ⊂ 𝑉 be a self switching of 𝐺. Then the 

number of edges between the vertices of 𝜎 and 𝑉 − 𝜎 in 𝐺 is 𝑘(𝑝 − 𝑘)/2 where 𝑘 =∣ 𝜎 ∣. 

Lemma 2.3. [3] Let 𝐺(𝑉, 𝐸) be a graph and 𝜎 ⊆ 𝑉 be a switching of 𝐺. Then  

i. 𝐺[𝜎] = 𝐺𝜎[𝜎], 

ii. 𝐺[𝑉 − 𝜎] = 𝐺𝜎[𝑉 − 𝜎] and 

iii. 𝐺𝜎 = 𝐺𝑉−𝜎. 

Remark 2.4. [7] 𝑠𝑠1(𝑃2) = 𝑠𝑠1(𝐾1,1) = 0; 𝑠𝑠1(𝑃3) = 𝑠𝑠1(𝐾1,2) = 2; 𝑠𝑠1(𝑃4) =

0; 𝑠𝑠1(𝑃5) = 1 and 𝑠𝑠1(𝑃6) = 0. 

Theorem 2.5. [1] For 𝑝 ≥ 2, 𝑠𝑠2(𝑃𝑝) = { 
1 𝑖𝑓 𝑝 = 2, 6
2   𝑖𝑓 𝑝 = 3, 4, 5
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Definition 2.6. A Branch at 𝑣 in 𝐺 is a maximal connected subgraph 𝐵 of 𝐺 such that 

the intersection of 𝐵 with the vertex 𝑣 is 𝑣 and 𝐵 − 𝑣 is connected and maximal. 
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Notation 2.7. [5] Let 𝐺 be a connected graph and 𝑣 be a cut vertex of 𝐺. Let 𝐵1 , 𝐵2, … , 𝐵𝑟 

be the branches with  𝑛1, 𝑛2, … , 𝑛𝑟 copies, respectively at 𝑣 in 𝐺. The graph 𝐺 is denoted by 

𝐺(𝑣; 𝑛1𝐵1, 𝑛2𝐵2, … , 𝑛𝑟𝐵𝑟). 

                                          

Theorem 2.8 . [5] Let 𝐺 be a tree of odd order 𝑝 = 2𝑛 + 1, 𝑛 ∈ 𝑁. Then 𝐺 has a self 

vertex switching 𝑣 if and only if 𝐺 = 𝐺(𝑣; 𝑛𝑃3). 

Corollary 2.9. [7] If 𝑣 is a self vertex switching of a graph 𝐺 of order 𝑝, then 

𝑑𝑒𝑔𝐺(𝑣) = (𝑝 − 1)/2. 

Theorem 2.10. [7] For 𝑝 ≥ 7, 𝑠𝑠1(𝑃𝑝) = 0. 

Theorem  2. .11.  [1] For 𝑚, 𝑛 ∈ 𝑁, 𝑠𝑠2(𝐾𝑚,𝑛) ≥ 𝑚𝑛. In particular,          

𝑠𝑠2(𝐾𝑚,𝑛) = {
𝑚𝑛 𝑖𝑓 𝑛 ≠ 𝑚 + 2

𝑚𝑛 + (
𝑛
2

) 𝑖𝑓 𝑛 = 𝑚 + 2
  

Theorem 2.12. [7] For 𝑛 ≥ 3, 𝑠𝑠1(𝐾1,𝑛) = 0.  

3 k-vertex Self Switching of Graphs 

 

Theorem 3.1. Let 𝐺 be a graph and let 𝜎 = {𝑣1, 𝑣2, … , 𝑣𝑘} ⊂ 𝑉 be a 𝑘-vertex self switching 

of 𝐺. Then for 𝑘 ≥ 2, 𝑑𝑒𝑔(𝑣1) + 𝑑𝑒𝑔(𝑣2)+ . . . +𝑑𝑒𝑔(𝑣𝑘) =
𝑘(𝑝−𝑘)

2
+ 2(The number of 

edges between the vertices of 𝜎 in 𝐺).  

Proof. Let 𝜎 be a 𝑘-vertex self switching of 𝐺. Then 𝐺 ≅ 𝐺𝜎. By Theorem 2.2, the number of edges 

between the vertices of 𝜎 and 𝑉 − 𝜎 is 𝑘(𝑝 − 𝑘)/2. Also, each edge in 𝐺[𝜎] contributes 2 to the 

sum of degrees. Hence, 𝑑𝑒𝑔(𝑣1) + 𝑑𝑒𝑔(𝑣2)+ . . . +𝑑𝑒𝑔(𝑣𝑘) =the number of edges between 𝜎 
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and 𝑉 − 𝜎 + 2(the number of edges in 𝐺[𝜎]) = 𝑘(𝑝 − 𝑘)/2 + 2(the number of edges 

between the vertices in 𝜎). 

Remark 3.2. The converse of the above theorem need not be true. For example, consider the 

graph 𝐺 given in figure 3.1. Let 𝜎 = {𝑣1, 𝑣4, 𝑣5}. 

                                                 

   Here, 𝑝 = 5, 𝑞 = 6. Now, 𝑑𝑒𝑔(𝑣1) + 𝑑𝑒𝑔(𝑣4) + 𝑑𝑒𝑔(𝑣5) = 2 + 4 + 1 = 7 = 𝑘(𝑝 − 𝑘)/2 +

2(The number of edges between the vertices of 𝜎). The graph 𝐺𝜎is given in figure 3.2. Clearly, 

𝜎 is not a 3-vertx self switching of 𝐺 as 𝐺 ≇ 𝐺𝜎. 

                                                       

Corollary 3.3. For even order graph, there is no odd 𝑘-vertex self switching. 

Proof. Let 𝐺 be a graph with even order 𝑝. Let 𝜎 = {𝑣1, 𝑣2, … , 𝑣𝑘} be a 𝑘-vertex self 

switching of 𝐺 where 𝑘 is odd. Then 𝑘(𝑝 − 𝑘)/2 is not an integer and thereby 𝑑𝑒𝑔(𝑣1) +

 𝑑𝑒𝑔(𝑣2)+. . . +𝑑𝑒𝑔(𝑣𝑘) is not an integer, which is a contradiction to the sum of degrees is 

an integer. Hence, 𝐺 has no odd 𝑘-vertex self switching. 

Theorem 3.4. Let 𝐺 be a connected graph and let 𝜎 ⊂ 𝑉 be a 𝑘-vertex self switching of 𝐺. 

Then there is no vertex in 𝑉 − 𝜎 which is adjacent only to all the 𝑘 vertices in 𝜎.  

Proof. Let 𝜎 = {𝑣1, 𝑣2, … , 𝑣𝑘} be a 𝑘-vertex self switching of a connected graph 𝐺. Then 

𝐺 ≅ 𝐺𝜎. Let 𝑤 be a vertex in 𝑉 − 𝜎 which is adjacent only to 𝑣1, 𝑣2, … , 𝑣𝑘 in 𝐺. Then 

𝑑𝑒𝑔𝐺(𝑤) = 𝑘 and in 𝐺𝜎, 𝑤 is an isolated vertex which is a contradiction to 𝐺𝜎 is connected. 

Hence, no vertex in 𝑉 − 𝜎 is adjacent only to all the 𝑘 vertices in 𝜎.    

Theorem  3.5. Let 𝐺 be a graph with 𝑝 vertices. Let 𝜎 ⊂ 𝑉 be a 𝑘-vertex self switching of 𝐺.  

Then 𝑉 − 𝜎 is a (𝑝 − 𝑘)-vertex self switching of 𝐺 and hence 𝐺𝜎 = 𝐺𝑉−𝜎 and 𝑠𝑠𝑘(𝐺) =
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𝑠𝑠𝑝−𝑘(𝐺). 

Proof. Since 𝜎 is a 𝑘-vertex self switching of 𝐺, 𝐺 ≅ 𝐺𝜎. By lemma 2.3, 𝐺𝜎 = 𝐺𝑉−𝜎 and 

thereby 𝐺 ≅ 𝐺𝑉−𝜎. Hence, 𝑉 − 𝜎 is a (𝑝 − 𝑘)-vertex self switching of 𝐺 and it is true for 

each 𝜎. Hence, 𝐺𝜎 = 𝐺𝑉−𝜎 and 𝑠𝑠𝑘(𝐺) = 𝑠𝑠𝑝−𝑘(𝐺).  

Result 3.6. If 𝜎 is a 𝑘-vertex self switching of 𝐺, then 𝜎 is also a 𝑘-vertex self switching of 

𝐺𝜎 and (𝐺𝜎)𝜎 = 𝐺. 

Note 3.7. Since for any graph 𝐺, 𝑠𝑠𝑘(𝐺) = 1 when 𝑘 = 𝑝, we find the value of 𝑠𝑠𝑘(𝐺) for 

1 ≤ 𝑘 < 𝑝. 

Theorem 3.8. For a path 𝑃𝑝, 𝑠𝑠𝑘(𝑃𝑝) =

{ 

 
1    𝑖𝑓 𝑝 = 5 𝑎𝑛𝑑 𝑘 = 1,4 𝑜𝑟 𝑝 = 6 𝑎𝑛𝑑 𝑘 = 2,4 𝑜𝑟 𝑝 = 7 𝑎𝑛𝑑 𝑘 = 3,4 
2 𝑖𝑓 𝑝 = 3 𝑎𝑛𝑑 𝑘 = 1,2 𝑜𝑟 𝑝 = 4 𝑎𝑛𝑑 𝑘 = 2 𝑜𝑟 𝑝 = 5 𝑎𝑛𝑑 𝑘 = 2,3  
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                       

 

Proof. Let 𝑃𝑝 be a path with 𝑝 vertices. Since 1 ≤ 𝑘 < 𝑝, we have 𝑝 > 1. Now, we 

consider the following eight cases.   

Case 1. 𝑝 = 2 

   By Corollary 3.3, 𝑠𝑠1(𝑃2) = 0. 

Case 2. 𝑝 = 3 

   By Remark 2.4, 𝑠𝑠1(𝑃3) = 2. Also, by Theorem 2.5, 𝑠𝑠2(𝑃3) = 2. Hence, 𝑠𝑠1(𝑃3) =

𝑠𝑠2(𝑃3) = 2. 

Case 3. 𝑝 = 4 

   By Corollary 3.3, 𝑠𝑠1(𝑃4) = 𝑠𝑠3(𝑃4) = 0. Also, by Theorem 2.5, 𝑠𝑠2(𝑃4) = 2.  

Case 4. 𝑝 = 5 

   Then 𝐺 = 𝑃5 = 𝐺(𝑣; 2𝑃3). By Theorem 2.8, 𝑃5 has the self vertex switching 𝑣 and thereby 

𝑠𝑠1(𝑃5) = 1. The self vertex switching of 𝑃5 is given in figure 3.3. By Theorem 3.5, 

𝑠𝑠4(𝑃5) = 1. Also, By Theorem 2.5, 𝑠𝑠2(𝑃5) = 2, which implies that 𝑠𝑠3(𝑃5) = 2. 

                      

Case 5. 𝑝 = 6 

   By Corollary 3.3, 𝑃6 has no odd 𝑘-vertex self switching. Therefore, 𝑠𝑠1(𝑃6) = 𝑠𝑠3(𝑃6) =

𝑠𝑠5(𝑃6) = 0. Also, by Theorem 2.5, 𝑠𝑠2(𝑃6) = 1, which implies that 𝑠𝑠4(𝑃6) = 1.  
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Case 6. 𝑝 = 7 

   By Theorem 2.10, 𝑠𝑠1(𝑃7) = 0, which implies that 𝑠𝑠6(𝑃7) = 0. Also, by Theorem 2.5, 

𝑠𝑠2(𝑃7) = 0, which implies that 𝑠𝑠5(𝑃7) = 0.  

   Let 𝜎 = {𝑢, 𝑣, 𝑤} be a 3-vertex self switching of 𝑃7. By Theorem 3.1, 𝑑𝑒𝑔(𝑢) + 𝑑𝑒𝑔(𝑣) +

𝑑𝑒𝑔(𝑤) =
𝑘(𝑝−𝑘)

2
+ 2(number of edges between 𝑢, 𝑣 and 𝑤) = 6 + 2(number of edges 

between 𝑢, 𝑣 and 𝑤 in 𝑃7). But, in 𝑃7, 4 ≤ 𝑑𝑒𝑔(𝑢) + 𝑑𝑒𝑔(𝑣) + 𝑑𝑒𝑔(𝑤) ≤ 6 and thereby 

the number of edges between 𝑢, 𝑣 and 𝑤 in 𝑃7 should be 0 and 𝑑𝑒𝑔(𝑢) + 𝑑𝑒𝑔(𝑣) +

𝑑𝑒𝑔(𝑤) = 6. The only possibility is that 𝜎 = {𝑣2, 𝑣4, 𝑣6}. Clearly, 𝑃7
𝜎 ≅ 𝑃7 and so 𝜎 is a 3-

vertex self switching of 𝑃7. Then 𝑠𝑠3(𝑃7) = 1 = 𝑠𝑠4(𝑃7). 

                                                    

Case 7. 𝑝 = 8 

    We need to find the value of 𝑠𝑠𝑘 for 1 ≤ 𝑘 ≤ 4 since 𝑠𝑠𝑘(𝑃8) = 𝑠𝑠𝑝−𝑘(𝑃8). 

    By Corollary 3.3, 𝑃8 has no odd 𝑘-vertex self switching. Therefore, 𝑠𝑠1(𝑃8) = 𝑠𝑠3(𝑃8) =

0. Also, by Theorem 2.5, 𝑠𝑠2(𝑃8) = 0.  

    Let 𝑘 = 4. Suppose that 𝜎 = {𝑢, 𝑣, 𝑤, 𝑥} is a 4-vertex self switching of 𝑃8. By Theorem 

3.1, 𝑑𝑒𝑔(𝑢) + 𝑑𝑒𝑔(𝑣) + 𝑑𝑒𝑔(𝑤) + 𝑑𝑒𝑔(𝑥) =
𝑘(𝑝−𝑘)

2
+ 2(number of edges between 𝑢, 𝑣, 𝑤  

and 𝑥) = 8 + 2(number of edges between 𝑢, 𝑣, 𝑤 and 𝑥 in 𝑃8). But, in 𝑃8, 6 ≤ 𝑑𝑒𝑔(𝑢) +

𝑑𝑒𝑔(𝑣) + 𝑑𝑒𝑔(𝑤) + 𝑑𝑒𝑔(𝑥) ≤ 8 and thereby the number of edges between 𝑢, 𝑣, 𝑤 and 𝑥 in 

𝑃8 should be 0 and 𝑑𝑒𝑔(𝑢) + 𝑑𝑒𝑔(𝑣) + 𝑑𝑒𝑔(𝑤) + 𝑑𝑒𝑔(𝑥) = 8. But, in 𝑃8,  there is no such 

{𝑢, 𝑣, 𝑤, 𝑥} exists and thereby 𝑠𝑠4(𝑃8) = 0. 

     Hence, 𝑠𝑠𝑘(𝑃8) = 0 for 1 ≤ 𝑘 ≤ 4, which implies that 𝑠𝑠𝑘(𝑃8) = 0 for all values of 𝑘. 

Case 8. 𝑝 > 8 

    By Theorem 2.10, we have 𝑠𝑠1(𝑃𝑝) = 0. Also, by Theorem 2.5, 𝑠𝑠2(𝑃𝑝) = 0. So let us 

calculate the value of 𝑠𝑠𝑘(𝑃𝑝) for 3 ≤ 𝑘 ≤
𝑝

2
 when 𝑝 is even and 3 ≤ 𝑘 ≤

𝑝−1

2
 when 𝑝 is odd. 

   Suppose 𝜎 = {𝑣1, 𝑣2, … , 𝑣𝑘} is a 𝑘-vertex self switching of 𝑃𝑝. Then ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖) ≤ 2𝑘𝑘
𝑖=1 .  

But, since 𝑝 > 8, 3 ≤ 𝑘 ≤
𝑝

2
 when 𝑝 is even and 3 ≤ 𝑘 ≤

𝑝−1

2
 when 𝑝 is odd, we have 𝑝 −

𝑘 > 4, which implies that 
2𝑘(𝑝−𝑘)

4
> 2𝑘. That is, 2𝑘 <

𝑘(𝑝−𝑘)

2
. Therefore, 
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∑ 𝑑𝑒𝑔𝐺(𝑣𝑖) <𝑘
𝑖=1

𝑘(𝑝−𝑘)

2
 for 𝑝 > 8, 3 ≤ 𝑘 ≤

𝑝

2
 when 𝑝 is even and 3 ≤ 𝑘 ≤

𝑝−1

2
 when 𝑝 is 

odd. Then by Theorem 3.1, 𝜎 cannot be a 𝑘-vertex self switching for 𝑝 > 8, 3 ≤ 𝑘 ≤
𝑝

2
 

when 𝑝 is even and 3 ≤ 𝑘 ≤
𝑝−1

2
 when 𝑝 is odd, which implies that 𝜎 cannot be a 𝑘-vertex 

self switching of 𝑃𝑝 (𝑝 > 8) for all 𝑘.   

    The theorem follows from the cases 1 to 8.  

Remark 3.9. Complete graph 𝐾𝑛 has no 𝑘-vertex self switching. 

Proof. Suppose that 𝜎 = {𝑣1, 𝑣2, … , 𝑣𝑘} is a 𝑘-vertex switching of 𝐾𝑛. Then 𝐾𝑛
𝜎 = 𝐾𝑘 ∪

𝐾𝑛−𝑘, which is a disconnected graph and so 𝐾𝑛 ≇ 𝐾𝑛
𝜎, which is a contradiction to 𝜎 is a 𝑘-

vertex self switching of 𝐾𝑛. This completes the proof. 

Theorem 3.10. Let 𝐺 be a star graph 𝐾1,𝑛 (𝑛 ≥ 2). Then 

(i)  For 𝑛 = 3, 𝑠𝑠𝑘(𝐺) = 𝑠𝑠𝑝−𝑘(𝐺) = { 
2𝑛 𝑖𝑓 𝑘 = 2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(ii)  For 𝑛 ≠ 3, 𝑠𝑠𝑘(𝐺) = 𝑠𝑠𝑝−𝑘(𝐺) = { 
𝑛 𝑖𝑓 𝑘 = 2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Proof. Let 𝐺 = 𝐾1,𝑛 be a star graph for 𝑛 ≥ 2 with 𝑝 = 𝑛 + 1 vertices. Let 𝑉 = 𝑉1 ∪ 𝑉2 

where 𝑉1 = {𝑣} and 𝑉2 = {𝑣1, 𝑣2, … , 𝑣𝑛} be the bipartition of 𝑉. Clearly, 𝑑𝑒𝑔(𝑣) = 𝑛 and 

𝑑𝑒𝑔(𝑣𝑖) = 1, 1 ≤ 𝑖 ≤ 𝑛 and so 𝐷𝑆(𝐺) = {1, 𝑛}. 

Case 1. 𝑛 = 3 

    Then 𝐺 = 𝐾1,3. If 𝑘 = 2, then by Theorem 2.11, 𝑠𝑠2(𝐾1,3) = 1 × 3 + (
3
2

) = 6 = 2 × 3. 

    If 𝑘 ≠ 2, then by Theorem 2.12, 𝑠𝑠1(𝐾1,3) = 0. Also, by Theorem 3.5, 𝑠𝑠3(𝐾1,3) = 0.    

Therefore, 𝑠𝑠𝑘(𝐾1,3) = 𝑠𝑠𝑝−𝑘(𝐾1,3) = 0 if 𝑘 ≠ 2.       

    Hence, we have, for 𝑛 = 3,  

       𝑠𝑠𝑘(𝐾1,𝑛) = 𝑠𝑠𝑝−𝑘(𝐾1,𝑛) = { 
2𝑛 𝑖𝑓 𝑘 = 2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Case 2. 𝑛 ≠ 3 

Subcase 2.1. 𝑛 = 2 

    Then 𝐺 = 𝑃3. By Theorem 3.8, 𝑠𝑠1(𝐺) = 𝑠𝑠2(𝐺) = 2. Hence, for 𝑘 = 1, 2, 𝑠𝑠𝑘(𝐺) =

𝑠𝑠𝑝−𝑘(𝐺) = 𝑛. 

Subcase 2.2. 𝑛 ≥ 4 

    Let 𝑘 = 2. Now, star graph is a complete bipartite graph 𝐾𝑚,𝑛 with 𝑚 = 1. Then for 

𝑛 ≥ 4, we have 𝑛 ≠ 𝑚 + 2 = 1 + 2. By Theorem 2.11, 𝑠𝑠2(𝐺) = 1 × 𝑛 = 𝑛. Also, by 

Theorem 3.5, 𝑠𝑠2(𝐺) = 𝑠𝑠𝑝−2(𝐺) = 𝑛 for 𝑛 ≥ 4. Therefore, 𝑠𝑠𝑘(𝐺) = 𝑠𝑠𝑝−𝑘(𝐺) = 𝑛 if 
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𝑘 = 2. 

    Let 𝑘 ≠ 2. If 𝑘 = 1, then by Theorem 2.12, 𝑠𝑠1(𝐾1,𝑛) = 0. Also, by Theorem 3.5, we 

have 𝑠𝑠𝑛(𝐾1,𝑛) = 0. Therefore, the result is true for 𝑘 = 1 and 𝑘 = 𝑛 and hence let us take 𝜎 

to be a 𝑘-vertex self switching of 𝐺 when 2 < 𝑘 < 𝑛. 

    If the vertex 𝑣 of 𝑉1 is in 𝜎, then in 𝐺𝜎, 𝑣 is adjacent to the remaining 𝑘 − 1 vertices of 𝜎 

and thereby 𝑑𝑒𝑔𝐺𝜎(𝑣) = 𝑘 − 1. If 𝑘 − 1 = 𝑛, then 𝑘 > 𝑛, whivh is a contradiction. If 𝑘 −

1 = 1, then 𝑘 = 2, which is a contradiction. Hence, 𝑑𝑒𝑔𝐺𝜎(𝑣) is equal to neither 𝑛 nor 1 

and thereby 𝐷𝑆(𝐺𝜎) ≠ 𝐷𝑆(𝐺). Then 𝐺𝜎 is not isomorphic to 𝐺 and thereby 𝜎 cannot be a 𝑘-

vertex self switching of 𝐺. Thus, all the vertices of 𝜎 are in 𝑉2. 

    Then in 𝐺𝜎, 𝑣 has degree 𝑛 − 𝑘, each vertex in 𝜎 has degree 𝑛 − 𝑘 and each vertex in 𝑉 −

𝜎 other than 𝑣 has degree 𝑘 + 1 and thereby 𝐺𝜎 = 𝐾1,𝑛
𝜎 = 𝐾𝑛−𝑘,𝑘+1. Now, 𝐾𝑛−𝑘,𝑘+1 = 𝐾1,𝑛 

if and only if 𝑛 − 𝑘 = 𝑛 or 1 and 𝑘 + 1 = 𝑛 or 1 if and only if 𝑛 − 𝑘 = 1 and 𝑘 + 1 = 𝑛 

since 𝑛 − 𝑘 ≠ 𝑛 and 𝑘 + 1 ≠ 1. That is, 𝜎 is a 𝑘-vertex self switching if and only if 𝑛 = 𝑘 +

1 if and only if 𝑝 − 𝑘 = 2 since 𝑝 = 𝑛 + 1. By Theorem 3.5, 𝜎 is a 𝑘-vertex self switching if 

and only if 𝑘 = 2. Therefore, 𝑠𝑠𝑘(𝐺) = 𝑠𝑠𝑝−𝑘(𝐺) = 0 for 𝑘 ≠ 2.          

    From both the cases, we have, for 𝑛 = 2 and 𝑛 ≥ 4, 

      𝑠𝑠𝑘(𝐺) = 𝑠𝑠𝑝−𝑘(𝐺) = { 
𝑛 𝑖𝑓 𝑘 = 2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Conclusion 

     In this paper, we have given sufficient condition for 𝜎 to be a 𝑘-vertex self switching. Also, 

we have found 𝑘-vertex self switching of path and star graphs. 

Application 

    k-vertex self switching can be used to optimize network structures such as communication 

networks or transportation networks by generating isomorphic graphs and comparing their 

properties. 
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