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Abstract

For a finite undirected graph G(V,E) and a non-empty set ¢ €V, the
switching of G by o is defined as the graph G°(V,E") which is obtained from
G by removing all edges between o and its complement V — o and adding as
edges all non-edges between o and V —a. If G = G9, then o is called as self
switching of G and if | 0 |= k, then it is called as k-vertex self switching. The
set of all k-vertex self switchings of G is denoted by SS,.(G) and its
cardinality by ss,(G). In this paper, we give a sufficient condition for o to
be a k-vertex self switching and we find ss, (G) of path and star graphs.
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1 Introduction

Switching, also known as Seidel switching or | o |-vertex switching, has been explained
by Seidel [2, 6]. For a finite undirected graph G (V,E) with | V |= p and a non-empty set o ©
V7, the switching of G by o is defined as the graph G°(V,E") which is obtained from G by
removing all edges between o and its complement V — o and adding as edges all non-edges
between o and V —o. In 1998, Hertz emphasized that if we take into account the restricted
form of switching, we can get more results. For example, the cardinality of o is 1 or 2.

When ¢ = {v} c V, the corresponding switching G} is called as vertex switching and
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is denoted by GV. Jayasekaran was the first person to propose the idea of self switching in
2007. If G = G°, then o is said to be a self switching of G. It is sometimes referredto as | o |-
vertex self switching. If k = 1, then the self switching o is termed as self vertex switching [4,
5] and if k = 2, then the corresponding self switching is termed as 2-vertex self switching [1].
If |o|=k, then it is called as k-vertex self switching. The set of all k-vertex self
switchings of G is denoted by SS,(G) and its cardinality by ss,(G).

In this paper, we prove that if 0 = {v,v,,...,v,} € V is a k-vertex self switching of G,

k(p—k)
2

then deg(v,) + deg(v,)+...+deg(vy,) = + 2(The number of edges between the

vertices of o in G) for k = 2; an even order graph has no odd k-vertex self switching; V — o
is a (p — k)-vertex self switching of G; if o is a k-vertex self switching of G, then o is also
a k-vertex self switching of G? and (G°?)? = G and the number of k-vertex self switchings

for path and star graphs has been found.

2 Preliminaries

The following results are required in the subsequent section.
Definition 2.1. The set of positive integers, each is the degree of a vertex in a graph G, is
denoted by DS(G). That is, DS(G) = {n:n =deg(u),u € V(G)}.
Theorem 2.2. [7] Let G(V,E) be a graph and let o c V be a self switching of G. Then the
number of edges between the verticesof cand V —ain G is k(p — k)/2 where k =| o |.
Lemma 2.3. [3] Let G(V,E) be agraph and o < V be a switching of G. Then

i. Glo]=G7]a],
ii. G[V —o0]=G°[V —o]and

iii. G2 =GV °.
Remark 2.4. [7] ss1(P;) = s51(K1,1) = 0; s51(P3) = s51(K12) = 2; ss1(P,) =
0; ss;(Ps) =1 and ss;(Pg) = 0.

1 ifp=2,6
Theorem 2.5. [1] For p = 2, ss,(P,) = { 2 ifp=3,45
0 otherwise

Definition 2.6. A Branch at v in G is a maximal connected subgraph B of G such that

the intersection of B with the vertex v is v and B — v is connected and maximal.

1120 C.Jayasekaranetal 1119-1127



Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024

Notation 2.7. [5] Let G be a connected graph and v be a cut vertex of G. Let By, B>, ..., B,
be the branches with n,, n,, ..., n,. copies, respectively at v in G. The graph G is denoted by
G(U, TllBl, nsz, . an-,-).

Fig 1.1 G(v,;2Ps)

Theorem 2.8 . [5] Let G be a tree of odd order p = 2n+ 1, n € N. Then G has a self

vertex switching v if and only if G = G (v; nP3).

Corollary 2.9. [7] If v is a self vertex switching of a graph G of order p, then
dege(v) = (p —1)/2.

Theorem 2.10. [7] For p = 7, ss,(P,) = 0.
Theorem 2.11. [1] Form,n € N, SSz(Km,n) > mn. In particular,

mn ifn+Fm+2
553 (Kmn) = {mn+ (Z) ifn=m+2

Theorem 2.12. [7] For n = 3, ss;(K,,) = 0.

3 k-vertex Self Switching of Graphs

Theorem 3.1. Let G be a graph and let o0 = {v,, v,, ..., v} € V be a k-vertex self switching

of G. Then for k = 2, deg(v,) + deg(v,)+...+deg(vy) =k(pT_k)+ 2(The number of

edges between the vertices of o in G).
Proof. Let o be a k-vertex self switching of G. Then G = G°. By Theorem 2.2, the number of edges
between the vertices of c and V — g is k(p — k) /2. Also, each edge in G[o] contributes 2 to the

sum of degrees. Hence, deg(v;) + deg(v,)+ ... +deg(v,) =the number of edges between o
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and V — o + 2(the number of edges in Glo]) = k(p —k)/2 + 2(the number of edges
between the vertices in o).
Remark 3.2. The converse of the above theorem need not be true. For example, consider the

graph G given in figure 3.1. Let 0 = {v,v,, vs5}.

Fig 3.1 G

Here, p =5, g = 6. Now, deg(v,) + deg(v,) +deg(vs) =2+4+1=7=k(p—k)/2 +
2(The number of edges between the vertices of a). The graph G?is given in figure 3.2. Clearly,

o is not a 3-vertx self switching of G as G % G°.

Fig 3.2 G°
Corollary 3.3. For even order graph, there is no odd k-vertex self switching.
Proof. Let G be a graph with even order p. Let o = {vy,v,, ..., v} be a k-vertex self
switching of G where k is odd. Then k(p — k)/2 is not an integer and thereby deg(v,) +
deg(vy)+...+deg(v,) is not an integer, which is a contradiction to the sum of degrees is
an integer. Hence, G has no odd k-vertex self switching.
Theorem 3.4. Let G be a connected graph and let ¢  V be a k-vertex self switching of G.
Then there is no vertex in V — o which is adjacent only to all the k vertices in o.
Proof. Let 0 = {v;,v,, ..., v} be a k-vertex self switching of a connected graph G. Then
G = G°. Let w be a vertex in V — o which is adjacent only to v, v,,...,v, in G. Then
deg;(w) = k and in G?, w is an isolated vertex which is a contradiction to G¢ is connected.
Hence, no vertex in V — o is adjacent only to all the k vertices in o.
Theorem 3.5. Let G be a graph with p vertices. Let o < V be a k-vertex self switching of G.

Then V — o is a (p — k)-vertex self switching of G and hence G2 = GV~° and ss,(G) =
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S5y (G).
Proof. Since o is a k-vertex self switching of G, G = G°. By lemma 2.3, G° = GV~? and
thereby G = GV~°. Hence, V — o is a (p — k)-vertex self switching of G and it is true for
each 0. Hence, G? = GV ~7 and ss3(G) = ssp_,(G).
Result 3.6. If o is a k-vertex self switching of G, then o is also a k-vertex self switching of
G° and (G?)? =G.
Note 3.7. Since for any graph G, ss,(G) = 1 when k = p, we find the value of ss; (G) for
1<k<p.
Theorem 3.8. For a path P, ssx(P,) =

1 ifp=5and k=14o0orp=6and k=24o0orp=7and k = 3,4

2 ifp=3andk=120rp=4andk=2o0orp=5and k =2,3
0 otherwise

Proof. Let P, be a path with p vertices. Since 1 <k <p, we have p > 1. Now, we

consider the following eight cases.

Casel.p=2
By Corollary 3.3, ss; (P,) = 0.
Case2.p=3

By Remark 2.4, ss;(P3;) = 2. Also, by Theorem 2.5, ss,(P;) = 2. Hence, ss;(P3;) =
ss,(P3) = 2.
Case3.p=4

By Corollary 3.3, ss;(P,) = ss3(P,) = 0. Also, by Theorem 2.5, ss,(P,) = 2.
Cased4.p=5

Then G = Ps = G(v; 2P3). By Theorem 2.8, Pg has the self vertex switching v and thereby
ss;(Pg) = 1. The self vertex switching of Pg is given in figure 3.3. By Theorem 3.5,
ss,(Ps) = 1. Also, By Theorem 2.5, ss,(Ps) = 2, which implies that ss;(Pg) = 2.

v v

Ps P’
Fig 3.3
Case5.p=6

By Corollary 3.3, P, has no odd k-vertex self switching. Therefore, ss;(Pg) = ss3(Pg) =
sss(Pg) = 0. Also, by Theorem 2.5, ss,(P,) = 1, which implies that ss,(Pg) = 1.
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Case6.p=7

By Theorem 2.10, ss;(P;) = 0, which implies that ss,(P;) = 0. Also, by Theorem 2.5,
ss,(P;) = 0, which implies that sss(P;) = 0.

Let 0 = {u, v,w} be a 3-vertex self switching of P,. By Theorem 3.1, deg(u) + deg(v) +

deg(w) = @+ 2(number of edges between u, v and w) = 6 + 2(number of edges

between u, v and w in P;). But, in P;, 4 < deg(u) + deg(v) + deg(w) < 6 and thereby
the number of edges between u, v and w in P, should be 0 and deg(u) + deg(v) +
deg(w) = 6. The only possibility is that o = {v,, v4, vs}. Clearly, P,° = P, and so o is a 3-
vertex self switching of P,. Then ss3(P;) = 1 = ss,(P;).

(& 2 Vs Uy Us, Vs U7 Usg Ug (5] U4 U7 Va2 Us

P P_?{ V2,V4,U6}
Fig 3.4
Case7.p =8
We need to find the value of ss; for 1 < k < 4 since ss;(Pg) = ss,_x(Pg).
By Corollary 3.3, Pg has no odd k-vertex self switching. Therefore, ss;(Pg) = ss3(Pg) =
0. Also, by Theorem 2.5, ss,(Pg) = 0.

Let k = 4. Suppose that o = {u, v,w, x} is a 4-vertex self switching of Pg. By Theorem

k(p—k)

3.1, deg(u) + deg(v) + deg(w) + deg(x) = “&

+ 2(number of edges between u, v, w
and x) = 8 + 2(number of edges between u, v, w and x in Pg). But, in Pg, 6 < deg(u) +
deg(v) + deg(w) + deg(x) < 8 and thereby the number of edges between u, v, w and x in
Pg should be 0 and deg(u) + deg(v) + deg(w) + deg(x) = 8. But, in Pg, there is no such
{u,v,w, x} exists and thereby ss,(Pg) = 0.

Hence, ssi(Pg) = 0 for 1 < k < 4, which implies that ss; (Pg) = 0 for all values of k.
Case8.p > 8

By Theorem 2.10, we have ss;(P,) = 0. Also, by Theorem 2.5, ss,(P,) = 0. So let us
calculate the value of ssk(Pp) for3<k< gwhen pisevenand 3 <k < pT_l when p is odd.
Suppose o = {vy, Uy, ..., Ui} is a k-vertex self switching of P,. Then Yk . degs(v)) < 2k.
But, sincep > 8,3 <k < g when p isevenand 3 <k < p2;1 when p is odd, we have p —

2k(p—k)

k >4, which implies that > 2k. That is, 2k<@. Therefore,
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Yk degs(vy) <@ forp >8,3<k< g when p iseven and 3 < k < pT_l when p is
odd. Then by Theorem 3.1, o cannot be a k-vertex self switching for p > 8, 3 <k Sg

whenpisevenand 3 <k < pT_l when p is odd, which implies that o cannot be a k-vertex

self switching of P, (p > 8) for all k.

The theorem follows from the cases 1 to 8.
Remark 3.9. Complete graph K,, has no k-vertex self switching.
Proof. Suppose that o = {v,,v,, ..., Vx} is a k-vertex switching of K,,. Then K,° = K, U
K,,_i, which is a disconnected graph and so K,, # K,,°, which is a contradiction to o is a k-
vertex self switching of K,,. This completes the proof.
Theorem 3.10. Let G be a star graph K, ,, (n = 2). Then

_ B B _(2n  ifk=2
(i) Forn =3, s5,(G) = s5p_1(G) = { 0 otherwise
n ifk=2

(ii) Forn # 3, s5,.(G) = 555, (G) = { 0 otherwise

Proof. Let G = K;,, be a star graph for n > 2 with p =n + 1 vertices. Let V=V, UV,
where V; = {v} and V, = {v,, v, ..., v, } be the bipartition of V. Clearly, deg(v) = n and
deg(v;) =1,1<i<nandsoDS(G) = {1,n}.

Casel.n=3

Then G = Ky 5. If k = 2, then by Theorem 2.11, ss,(Ky3) = 1% 3 + (3) =6=2Xx3.
If k # 2, then by Theorem 2.12, ss,(Ky3) = 0. Also, by Theorem 3.5, ss5(K;3) = 0.
Therefore, ss, (K1) = sspx(Ky3) = 0if k = 2.
Hence, we have, for n = 3,
SSk(KLn) = Ssp_k(KLn) = {
Case2.n# 3

Subcase 2.1. n =2
Then G = P;. By Theorem 3.8, ss5,(G) = ss5,(G) = 2. Hence, for k =1, 2, s5,(G) =

2n  ifk=2
0 otherwise

ssp_k(G) = n.
Subcase 2.2.n = 4

Let k = 2. Now, star graph is a complete bipartite graph K, ,, with m = 1. Then for
n=>4, we have n#=m+ 2 =1+ 2. By Theorem 2.11, s5,(G) =1 X n =n. Also, by

Theorem 3.5, s5,(G) = ss,,_,(G) = n for n = 4. Therefore, ss5,(G) = ss,_,(G) = n if
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k= 2.

Let k = 2. If k = 1, then by Theorem 2.12, ss,(Ky,) = 0. Also, by Theorem 3.5, we
have SSn(K1,n) = 0. Therefore, the result is true for k = 1 and k = n and hence let us take o
to be a k-vertex self switching of G when 2 < k < n.

If the vertex v of V; is in g, then in G?, v is adjacent to the remaining k — 1 vertices of o
and thereby deggs(v) = k — 1. If k — 1 = n, then k > n, whivh is a contradiction. If k —
1 =1, then k = 2, which is a contradiction. Hence, deg;s(v) is equal to neither n nor 1
and thereby DS(G?) # DS(G). Then G? is not isomorphic to ¢ and thereby o cannot be a k-
vertex self switching of G. Thus, all the vertices of ¢ are in V.

Then in G?, v has degree n — k, each vertex in ¢ has degree n — k and each vertex in V —
o other than v has degree k + 1 and thereby G° = K7, = Ky, k+1- NOW, Ky i1 = Ky gy
ifandonlyifn—k=norlandk+1=norlifandonlyifn—k=1andk+1=n
sincen—k #nand k+ 1+ 1. Thatis, o is a k-vertex self switching if and only if n = k +
1ifand only if p — k = 2 since p = n + 1. By Theorem 3.5, ¢ is a k-vertex self switching if
and only if k = 2. Therefore, ss,(G) = ss,_,(G) = 0 for k # 2.

From both the cases, we have, forn = 2 and n = 4,

n ifk=2
0 otherwise

551(G) = s5p_1e(G) = {
Conclusion

In this paper, we have given sufficient condition for ¢ to be a k-vertex self switching. Also,
we have found k-vertex self switching of path and star graphs.
Application

k-vertex self switching can be used to optimize network structures such as communication
networks or transportation networks by generating isomorphic graphs and comparing their

properties.
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