k-vertex Self Switching of Graphs

¹Associate Professor, Department of Mathematics,

Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India.

²Research Scholar, Reg. No: 23113132092004, Department of Mathematics,

Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India.

Affiliated to Manonmaniam Sundaranar University, Abishekapatti,

Tirunelveli - 627012, Tamil Nadu, India.

email : jayacpkc@gmail.com¹, divyathamarai35920@gmail.com²

Abstract

For a finite undirected graph G(V, E) and a non-empty set $\sigma \subseteq V$, the switching of G by σ is defined as the graph $G^{\sigma}(V, E')$ which is obtained from G by removing all edges between σ and its complement $V - \sigma$ and adding as edges all non-edges between σ and $V - \sigma$. If $G \cong G^{\sigma}$, then σ is called as self switching of G and if $|\sigma| = k$, then it is called as k-vertex self switching. The set of all k-vertex self switchings of G is denoted by $SS_k(G)$ and its cardinality by $ss_k(G)$. In this paper, we give a sufficient condition for σ to be a k-vertex self switching and we find $ss_k(G)$ of path and star graphs.

Keywords : Switching, self switching, *k*-vertex self switching, $SS_k(G)$, $ss_k(G)$ *AMS Subject Classification* : 05C38, 05C60.

1 Introduction

Switching, also known as Seidel switching or $|\sigma|$ -vertex switching, has been explained by Seidel [2, 6]. For a finite undirected graph G(V, E) with |V| = p and a non-empty set $\sigma \subseteq V$, the switching of G by σ is defined as the graph $G^{\sigma}(V, E')$ which is obtained from G by removing all edges between σ and its complement $V - \sigma$ and adding as edges all non-edges between σ and $V - \sigma$. In 1998, Hertz emphasized that if we take into account the restricted form of switching, we can get more results. For example, the cardinality of σ is 1 or 2. When $\sigma = \{v\} \subset V$, the corresponding switching $G^{\{v\}}$ is called as vertex switching and is denoted by G^{ν} . Jayasekaran was the first person to propose the idea of self switching in 2007. If $G \cong G^{\sigma}$, then σ is said to be a self switching of G. It is sometimes referred to as $|\sigma|$ -vertex self switching. If k = 1, then the self switching σ is termed as self vertex switching [4, 5] and if k = 2, then the corresponding self switching is termed as 2-vertex self switching [1]. If $|\sigma| = k$, then it is called as k-vertex self switching. The set of all k-vertex self switchings of G is denoted by $SS_k(G)$ and its cardinality by $ss_k(G)$.

In this paper, we prove that if $\sigma = \{v_1, v_2, ..., v_k\} \subset V$ is a *k*-vertex self switching of *G*, then $deg(v_1) + deg(v_2) + ... + deg(v_k) = \frac{k(p-k)}{2} + 2$ (The number of edges between the vertices of σ in *G*) for $k \ge 2$; an even order graph has no odd *k*-vertex self switching; $V - \sigma$ is a (p - k)-vertex self switching of *G*; if σ is a *k*-vertex self switching of *G*, then σ is also a *k*-vertex self switching of G^{σ} and $(G^{\sigma})^{\sigma} = G$ and the number of *k*-vertex self switchings for path and star graphs has been found.

2 Preliminaries

The following results are required in the subsequent section.

Definition 2.1. The set of positive integers, each is the degree of a vertex in a graph G, is denoted by DS(G). That is, $DS(G) = \{n : n = deg(u), u \in V(G)\}$.

Theorem 2.2. [7] Let G(V, E) be a graph and let $\sigma \subset V$ be a self switching of G. Then the number of edges between the vertices of σ and $V - \sigma$ in G is k(p - k)/2 where $k = |\sigma|$.

Lemma 2.3. [3] Let G(V, E) be a graph and $\sigma \subseteq V$ be a switching of G. Then

- *i*. $G[\sigma] = G^{\sigma}[\sigma]$,
- *ii.* $G[V \sigma] = G^{\sigma}[V \sigma]$ and
- *iii.* $G^{\sigma} = G^{V-\sigma}$.

Remark 2.4. [7] $ss_1(P_2) = ss_1(K_{1,1}) = 0$; $ss_1(P_3) = ss_1(K_{1,2}) = 2$; $ss_1(P_4) = 0$; $ss_1(P_5) = 1$ and $ss_1(P_6) = 0$.

Theorem 2.5. [1] For $p \ge 2$, $ss_2(P_p) = \begin{cases} 1 & if \ p = 2, 6 \\ 2 & if \ p = 3, 4, 5 \\ 0 & otherwise \end{cases}$

Definition 2.6. A Branch at v in G is a maximal connected subgraph B of G such that the intersection of B with the vertex v is v and B - v is connected and maximal.

Notation 2.7. [5] Let G be a connected graph and v be a cut vertex of G. Let B_1 , B_2 , ..., B_r be the branches with $n_1, n_2, ..., n_r$ copies, respectively at v in G. The graph G is denoted by $G(v; n_1B_1, n_2B_2, ..., n_rB_r)$.

Theorem 2.8 . [5] Let G be a tree of odd order p = 2n + 1, $n \in N$. Then G has a self vertex switching v if and only if $G = G(v; nP_3)$.

Corollary 2.9. [7] If v is a self vertex switching of a graph G of order p, then $deg_G(v) = (p-1)/2$.

Theorem 2.10. [7] For $p \ge 7$, $ss_1(P_p) = 0$.

Theorem 2.11. [1] For $m, n \in N$, $ss_2(K_{m,n}) \ge mn$. In particular,

$$ss_2(K_{m,n}) = \begin{cases} mn & \text{if } n \neq m+2\\ mn + \binom{n}{2} & \text{if } n = m+2 \end{cases}$$

Theorem 2.12. [7] For $n \ge 3$, $ss_1(K_{1,n}) = 0$.

3 *k*-vertex Self Switching of Graphs

Theorem 3.1. Let G be a graph and let $\sigma = \{v_1, v_2, ..., v_k\} \subset V$ be a k-vertex self switching of G. Then for $k \ge 2$, $deg(v_1) + deg(v_2) + ... + deg(v_k) = \frac{k(p-k)}{2} + 2$ (The number of edges between the vertices of σ in G).

Proof. Let σ be a k-vertex self switching of G. Then $G \cong G^{\sigma}$. By Theorem 2.2, the number of edges between the vertices of σ and $V - \sigma$ is k(p - k)/2. Also, each edge in $G[\sigma]$ contributes 2 to the sum of degrees. Hence, $deg(v_1) + deg(v_2) + \ldots + deg(v_k)$ = the number of edges between σ

and $V - \sigma + 2$ (the number of edges in $G[\sigma]$) = k(p - k)/2 + 2 (the number of edges between the vertices in σ).

Remark 3.2. The converse of the above theorem need not be true. For example, consider the graph *G* given in figure 3.1. Let $\sigma = \{v_1, v_4, v_5\}$.

Here, p = 5, q = 6. Now, $deg(v_1) + deg(v_4) + deg(v_5) = 2 + 4 + 1 = 7 = k(p - k)/2 + 2$ (The number of edges between the vertices of σ). The graph G^{σ} is given in figure 3.2. Clearly, σ is not a 3-vertx self switching of G as $G \ncong G^{\sigma}$.

Corollary 3.3. For even order graph, there is no odd k-vertex self switching.

Proof. Let G be a graph with even order p. Let $\sigma = \{v_1, v_2, ..., v_k\}$ be a k-vertex self switching of G where k is odd. Then k(p-k)/2 is not an integer and thereby $deg(v_1) + deg(v_2) + ... + deg(v_k)$ is not an integer, which is a contradiction to the sum of degrees is an integer. Hence, G has no odd k-vertex self switching.

Theorem 3.4. Let G be a connected graph and let $\sigma \subset V$ be a k-vertex self switching of G. Then there is no vertex in $V - \sigma$ which is adjacent only to all the k vertices in σ .

Proof. Let $\sigma = \{v_1, v_2, ..., v_k\}$ be a *k*-vertex self switching of a connected graph *G*. Then $G \cong G^{\sigma}$. Let *w* be a vertex in $V - \sigma$ which is adjacent only to $v_1, v_2, ..., v_k$ in *G*. Then $deg_G(w) = k$ and in G^{σ} , *w* is an isolated vertex which is a contradiction to G^{σ} is connected. Hence, no vertex in $V - \sigma$ is adjacent only to all the *k* vertices in σ .

Theorem 3.5. Let G be a graph with p vertices. Let $\sigma \subset V$ be a k-vertex self switching of G. Then $V - \sigma$ is a (p - k)-vertex self switching of G and hence $G^{\sigma} = G^{V-\sigma}$ and $ss_k(G) =$

$ss_{p-k}(G).$

Proof. Since σ is a k-vertex self switching of G, $G \cong G^{\sigma}$. By lemma 2.3, $G^{\sigma} = G^{V-\sigma}$ and thereby $G \cong G^{V-\sigma}$. Hence, $V - \sigma$ is a (p - k)-vertex self switching of G and it is true for each σ . Hence, $G^{\sigma} = G^{V-\sigma}$ and $ss_k(G) = ss_{p-k}(G)$.

Result 3.6. If σ is a k-vertex self switching of G, then σ is also a k-vertex self switching of G^{σ} and $(G^{\sigma})^{\sigma} = G$.

Note 3.7. Since for any graph G, $ss_k(G) = 1$ when k = p, we find the value of $ss_k(G)$ for $1 \le k < p$.

Theorem 3.8. For a path P_p , $ss_k(P_p) =$

 $\begin{cases} 1 & if \ p = 5 \ and \ k = 1,4 \ or \ p = 6 \ and \ k = 2,4 \ or \ p = 7 \ and \ k = 3,4 \\ 2 & if \ p = 3 \ and \ k = 1,2 \ or \ p = 4 \ and \ k = 2 \ or \ p = 5 \ and \ k = 2,3 \\ 0 & otherwise \end{cases}$

Proof. Let P_p be a path with p vertices. Since $1 \le k < p$, we have p > 1. Now, we consider the following eight cases.

Case 1. *p* = 2

By Corollary 3.3, $ss_1(P_2) = 0$.

Case 2. p = 3

By Remark 2.4, $ss_1(P_3) = 2$. Also, by Theorem 2.5, $ss_2(P_3) = 2$. Hence, $ss_1(P_3) = ss_2(P_3) = 2$.

Case 3. p = 4

By Corollary 3.3, $ss_1(P_4) = ss_3(P_4) = 0$. Also, by Theorem 2.5, $ss_2(P_4) = 2$.

Case 4. p = 5

Then $G = P_5 = G(v; 2P_3)$. By Theorem 2.8, P_5 has the self vertex switching v and thereby $ss_1(P_5) = 1$. The self vertex switching of P_5 is given in figure 3.3. By Theorem 3.5, $ss_4(P_5) = 1$. Also, By Theorem 2.5, $ss_2(P_5) = 2$, which implies that $ss_3(P_5) = 2$.

Fig 3.3

Case 5. p = 6

By Corollary 3.3, P_6 has no odd *k*-vertex self switching. Therefore, $ss_1(P_6) = ss_3(P_6) = ss_5(P_6) = 0$. Also, by Theorem 2.5, $ss_2(P_6) = 1$, which implies that $ss_4(P_6) = 1$.

Case 6. *p* = 7

By Theorem 2.10, $ss_1(P_7) = 0$, which implies that $ss_6(P_7) = 0$. Also, by Theorem 2.5, $ss_2(P_7) = 0$, which implies that $ss_5(P_7) = 0$.

Let $\sigma = \{u, v, w\}$ be a 3-vertex self switching of P_7 . By Theorem 3.1, $deg(u) + deg(v) + deg(w) = \frac{k(p-k)}{2} + 2$ (number of edges between u, v and w) = 6 + 2(number of edges between u, v and w in P_7). But, in $P_7, 4 \le deg(u) + deg(v) + deg(w) \le 6$ and thereby the number of edges between u, v and w in P_7 should be 0 and deg(u) + deg(v) + deg(v) + deg(w) = 6. The only possibility is that $\sigma = \{v_2, v_4, v_6\}$. Clearly, $P_7^{\sigma} \cong P_7$ and so σ is a 3-vertex self switching of P_7 . Then $ss_3(P_7) = 1 = ss_4(P_7)$.

Case 7. p = 8

We need to find the value of ss_k for $1 \le k \le 4$ since $ss_k(P_8) = ss_{p-k}(P_8)$.

By Corollary 3.3, P_8 has no odd *k*-vertex self switching. Therefore, $ss_1(P_8) = ss_3(P_8) = 0$. O. Also, by Theorem 2.5, $ss_2(P_8) = 0$.

Let k = 4. Suppose that $\sigma = \{u, v, w, x\}$ is a 4-vertex self switching of P_8 . By Theorem 3.1, $deg(u) + deg(v) + deg(w) + deg(x) = \frac{k(p-k)}{2} + 2$ (number of edges between u, v, w and x) = 8 + 2(number of edges between u, v, w and x in P_8). But, in P_8 , $6 \le deg(u) + deg(v) + deg(w) + deg(x) \le 8$ and thereby the number of edges between u, v, w and x in P_8 should be 0 and deg(u) + deg(v) + deg(w) + deg(w) + deg(x) = 8. But, in P_8 , there is no such $\{u, v, w, x\}$ exists and thereby $ss_4(P_8) = 0$.

Hence, $ss_k(P_8) = 0$ for $1 \le k \le 4$, which implies that $ss_k(P_8) = 0$ for all values of k. Case 8. p > 8

By Theorem 2.10, we have $ss_1(P_p) = 0$. Also, by Theorem 2.5, $ss_2(P_p) = 0$. So let us calculate the value of $ss_k(P_p)$ for $3 \le k \le \frac{p}{2}$ when p is even and $3 \le k \le \frac{p-1}{2}$ when p is odd.

Suppose $\sigma = \{v_1, v_2, ..., v_k\}$ is a *k*-vertex self switching of P_p . Then $\sum_{i=1}^k deg_G(v_i) \le 2k$. But, since p > 8, $3 \le k \le \frac{p}{2}$ when *p* is even and $3 \le k \le \frac{p-1}{2}$ when *p* is odd, we have p - k > 4, which implies that $\frac{2k(p-k)}{4} > 2k$. That is, $2k < \frac{k(p-k)}{2}$. Therefore, $\sum_{i=1}^{k} deg_{G}(v_{i}) < \frac{k(p-k)}{2} \text{ for } p > 8, \ 3 \le k \le \frac{p}{2} \text{ when } p \text{ is even and } 3 \le k \le \frac{p-1}{2} \text{ when } p \text{ is odd.}$ Then by Theorem 3.1, σ cannot be a *k*-vertex self switching for $p > 8, \ 3 \le k \le \frac{p}{2}$ when *p* is even and $3 \le k \le \frac{p-1}{2}$ when *p* is odd, which implies that σ cannot be a *k*-vertex self switching of P_{p} (p > 8) for all *k*.

The theorem follows from the cases 1 to 8.

Remark 3.9. Complete graph K_n has no k-vertex self switching.

Proof. Suppose that $\sigma = \{v_1, v_2, ..., v_k\}$ is a *k*-vertex switching of K_n . Then $K_n^{\sigma} = K_k \cup K_{n-k}$, which is a disconnected graph and so $K_n \ncong K_n^{\sigma}$, which is a contradiction to σ is a *k*-vertex self switching of K_n . This completes the proof.

Theorem 3.10. Let G be a star graph $K_{1,n}$ $(n \ge 2)$. Then

(i) For
$$n = 3$$
, $ss_k(G) = ss_{p-k}(G) = \begin{cases} 2n & \text{if } k = 2\\ 0 & \text{otherwise} \end{cases}$
(ii) For $n \neq 3$, $ss_k(G) = ss_{p-k}(G) = \begin{cases} n & \text{if } k = 2\\ 0 & \text{otherwise} \end{cases}$

Proof. Let $G = K_{1,n}$ be a star graph for $n \ge 2$ with p = n + 1 vertices. Let $V = V_1 \cup V_2$ where $V_1 = \{v\}$ and $V_2 = \{v_1, v_2, ..., v_n\}$ be the bipartition of *V*. Clearly, deg(v) = n and $deg(v_i) = 1, 1 \le i \le n$ and so $DS(G) = \{1, n\}$. **Case 1.** n = 3

Then $G = K_{1,3}$. If k = 2, then by Theorem 2.11, $ss_2(K_{1,3}) = 1 \times 3 + {3 \choose 2} = 6 = 2 \times 3$. If $k \neq 2$, then by Theorem 2.12, $ss_1(K_{1,3}) = 0$. Also, by Theorem 3.5, $ss_3(K_{1,3}) = 0$.

Therefore, $ss_k(K_{1,3}) = ss_{p-k}(K_{1,3}) = 0$ if $k \neq 2$.

Hence, we have, for n = 3,

$$ss_k(K_{1,n}) = ss_{p-k}(K_{1,n}) = \begin{cases} 2n & \text{if } k = 2\\ 0 & \text{otherwise} \end{cases}$$

Case 2. $n \neq 3$

Subcase 2.1. *n* = 2

Then $G = P_3$. By Theorem 3.8, $ss_1(G) = ss_2(G) = 2$. Hence, for $k = 1, 2, ss_k(G) = ss_{p-k}(G) = n$.

Subcase 2.2. $n \ge 4$

Let k = 2. Now, star graph is a complete bipartite graph $K_{m,n}$ with m = 1. Then for $n \ge 4$, we have $n \ne m + 2 = 1 + 2$. By Theorem 2.11, $ss_2(G) = 1 \times n = n$. Also, by Theorem 3.5, $ss_2(G) = ss_{p-2}(G) = n$ for $n \ge 4$. Therefore, $ss_k(G) = ss_{p-k}(G) = n$ if

k = 2.

Let $k \neq 2$. If k = 1, then by Theorem 2.12, $ss_1(K_{1,n}) = 0$. Also, by Theorem 3.5, we have $ss_n(K_{1,n}) = 0$. Therefore, the result is true for k = 1 and k = n and hence let us take σ to be a *k*-vertex self switching of *G* when 2 < k < n.

If the vertex v of V_1 is in σ , then in G^{σ} , v is adjacent to the remaining k - 1 vertices of σ and thereby $deg_{G^{\sigma}}(v) = k - 1$. If k - 1 = n, then k > n, which is a contradiction. If k - 1 = 1, then k = 2, which is a contradiction. Hence, $deg_{G^{\sigma}}(v)$ is equal to neither n nor 1 and thereby $DS(G^{\sigma}) \neq DS(G)$. Then G^{σ} is not isomorphic to G and thereby σ cannot be a kvertex self switching of G. Thus, all the vertices of σ are in V_2 .

Then in G^{σ} , v has degree n - k, each vertex in σ has degree n - k and each vertex in $V - \sigma$ other than v has degree k + 1 and thereby $G^{\sigma} = K_{1,n}^{\sigma} = K_{n-k,k+1}$. Now, $K_{n-k,k+1} = K_{1,n}$ if and only if n - k = n or 1 and k + 1 = n or 1 if and only if n - k = 1 and k + 1 = n since $n - k \neq n$ and $k + 1 \neq 1$. That is, σ is a k-vertex self switching if and only if n = k + 1 if and only if p - k = 2 since p = n + 1. By Theorem 3.5, σ is a k-vertex self switching if and only if n = k + 1 if and only if k = 2. Therefore, $ss_k(G) = ss_{p-k}(G) = 0$ for $k \neq 2$.

From both the cases, we have, for n = 2 and $n \ge 4$,

 $ss_k(G) = ss_{p-k}(G) = \begin{cases} n & if \ k = 2\\ 0 & otherwise \end{cases}$

Conclusion

In this paper, we have given sufficient condition for σ to be a *k*-vertex self switching. Also, we have found *k*-vertex self switching of path and star graphs.

Application

k-vertex self switching can be used to optimize network structures such as communication networks or transportation networks by generating isomorphic graphs and comparing their properties.

References

- [1] Christabel Sudha. J., A study on 2-vertex self switching in graphs, Ph. D. thesis, Manonmaniam Sundaranar University, Tirunelveli, India, 2018. https://shodhganga.inflibnet.ac.in/handle/10603/259771
- [2] D. G. Corneil and R. A. Mathon (editors), Geometry and Combinatorics Selected

Works of J. J. Seidel, Academic Press, Boston, 1991.

- [3] Hage. J., *Structural Aspects Of Switching Classes*, Ph. D. thesis, LIACS, 2001. https://www.researchgate.net
- [4] Jayasekaran. C., Self vertex switchings of discrete unicyclic graphs, Ars Combinatoria, Vol. 129, pp. 151-162, 2016. <u>https://www.researchgate.net</u>
- [5] Jayasekaran. C., Self vertex switchings of trees, Ars Combinatoria, Vol. 127, pp. 33-43, 2016. <u>https://www.researchgate.net</u>
- [6] J. J. Seidel, *A survey of two-graphs*, Geometry and Combinatorics, pp. 146-176, 1991.
- [7] Vilfred. V., Jayasekaran. C., *Interchange similar self vertex switchings in graphs*, Journal of Discrete Mathematical Sciences and Cryptography, Vol. 12 (2009), No. 4, pp. 467-480. <u>https://www.researchgate.net</u>