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Abstract 

By a graph 𝐺1 = (𝑉, 𝐸), we specify a simple finite graph. Let a graph be 𝐺1 

having 𝜎 ≠ 𝜙 as a subset of 𝑉. The graph 𝐺1 𝜎 is generated from 𝐺1 by deleting 

all edges connecting 𝜎 to 𝑉 − 𝜎 and all non-present edges between two subsets 

𝜎 and 𝑉 − 𝜎 are added as new edges. In case of 𝐺1 ≅ 𝐺1 𝜎 , 𝜎 is stated to be a 

self switching of 𝐺1. A self-switching 𝜎 of 𝐺1 with |𝜎| = 𝑘 is also referred to 

as 𝑘-vertex self switching. The collection of all 𝑘-vertex self switchings of the 

graph is represented by 𝑆𝑆𝑘(𝐺1) and its cardinality by 𝑠𝑠𝑘(𝐺1). Duplication of 

a vertex 𝑣 of graph 𝐺1 results in a new graph 𝐺1 ′ where a vertex 𝑣′ is added 

and connected to the same neighbourhood as 𝑣. This paper presents essential 

properties for 𝜎 to be a 𝑘-vertex duplication self switching for a graph 𝐺1 and 

utilizing these properties, we determine the cardinality 𝑑𝑠𝑠𝑘(𝐺1) for path 𝑃𝑝 

and complete graph 𝐾𝑚. 

Keywords: Switching, self switching, duplication,duplication self vertex switching, path,      

complete graph. 

Subject Classification Number: 05C60. 

1 Introduction 

For an undirected finite graph 𝐺1 = (𝑉, 𝐸), the degree of vertex 𝑣 in 𝐺1 is symbolized by 

deg𝐺1
(𝑣) is described as the count of incident edges on 𝑣. Seidel defined switching and 

provided overview of two graphs in [8] that is termed as Seidel switching. And for a simple 

graph 𝐺1 = (𝑉, 𝐸) that is finite undirected with subset 𝜎 of 𝑉 which is non-empty, the 

switching of 𝐺1 by 𝜎 denoted by 𝐺1
σ = (𝑉, 𝐸′) is constructed from 𝐺1 by deleting all edges 

connecting 𝜎 to 𝑉 − 𝜎 and inserting every non-present edges between 𝜎 and 𝑉 − 𝜎 as new 
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edges. While 𝜎 consists of a single vertex 𝑣, the switching is specifically refered to as 

vertex switching denoted by 𝐺1
𝑣. In [6], vertex switching was initiated by Lint and Seidel. 

If 𝐺1 ≅ 𝐺1
σ, then it is called self vertex switching. C. Jayasekaran introduced self vertex 

switching [10]. Further results on self vertex switching can be found in [3, 9]. Switching 

classes are discussed by A. Ehrenfeuct, J. Hage and T. Harju [1]. For details of 𝑘-vertex 

self switching, we refer [4]. The duplication self vertex switching was conceptualized by 

C. Jayasekaran and V. Prabavathy [5]. A vertex 𝑣 in a graph 𝐺1 is considered as duplication 

self vertex switching of 𝐺1 if the vertex 𝑣 is duplicated and the resultant graph contains a 

self vertex switching on 𝑣 and 𝑑𝑠𝑠1(𝐺1) denotes the number of such duplication self vertex 

switching. We rely on [2,11] for fundamental definitions. 

2 Preliminaries 

Definition 2.1. [9] Let 𝐺1(𝑉, 𝐸) be a undirected finite graph contains 𝜎 ⊆ 𝑉. The switching 

of 𝐺1 by 𝜎 is explained as the graph 𝐺1
𝜎(𝑉, 𝐸′) that is generated from 𝐺1 by deleting the 

existing edges connecting 𝜎 to 𝑉 − 𝜎 and inserting the non-edges between 𝜎 and 𝑉 − 𝜎 as 

new edges. Whenever 𝜎 contains a single vertex 𝑣, the resulting switching 𝐺1
{𝑣}

 is termed 

as vertex switching and is symbolized by 𝐺1
𝑣. 

Definition 2.2. [10] 𝜎 ⊆ 𝑉(𝐺1) is considered as a self switching of 𝐺1 if 𝐺1 ≅ 𝐺1
𝜎. 

𝑆𝑆𝑘(𝐺1) denotes the set of all self switchings of 𝐺1 with cardinality 𝑘 and 𝑠𝑠𝑘(𝐺1) denotes 

the cardinality of 𝑆𝑆𝑘(𝐺1). 

Self switching is termed as self vertex switching when 𝑘 = 1. 

Definition 2.3. [5] Duplication of a vertex 𝑣 of a graph 𝐺1 generates a graph 𝐺1 ′ by 

inserting a vertex 𝑣′ so that Neighbourhood of 𝑣′ is same as the Neighbourhood of 𝑣. 

𝐷(𝑣𝐺1) denotes the graph generated after duplication of 𝑣. 

For example, the graph 𝐺1 = 𝑃3 and the duplication of each vertex of 𝑃3 are given in the  

figures 2.1 to 2.4. 
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      Fig. 2.1. 𝐺1 = 𝑃3           Fig. 2.2. 𝐷(𝑣𝑎1
𝐺1) 

                                           

      Fig. 2.3. 𝐷(𝑣𝑎2
𝐺1)           Fig. 2.4. 𝐷(𝑣𝑎3

𝐺1) 

Definition 2.4. [5] A vertex 𝑣 is termed as duplication self vertex switching of a graph 𝐺1 

if the vertex 𝑣 is duplicated and the graph generated after duplication contains a self vertex 

switching on 𝑣. 𝑑𝑆𝑆1(𝐺1) denotes the set of all duplication self vertex switching and 

𝑑𝑠𝑠1(𝐺1) denotes the cardinality of 𝑑𝑆𝑆1(𝐺1). 

Theorem 2.5. [10] Let 𝐺1(𝑉, 𝐸) be a graph and let 𝜎 ⊂ 𝑉 be a self switching of 𝐺1. Then 

the number of edges between 𝜎 and 𝑉 − 𝜎 in 𝐺1 is 
𝑘(𝑝−𝑘)

2
 where 𝑘 = |𝜎|. 

Theorem 2.6. [7] dss(𝑃𝑝) = {
2  if 𝑝 = 2,4
0  otherwise 

. 

Theorem 2.7. [7] dss(𝐶𝑛) = {
4  if 𝑛 = 4
0  otherwise 

. 

3 Main Results 

Definition 3.1. A k-vertex duplication of a graph 𝐺1 generates a new graph 𝐺1 ′ by 

inserting new 𝑘 vertices 𝑢1 ′, 𝑢2 ′, … , 𝑢𝑘 ′ as the duplication of any 𝑘 vertices 𝑢1, 𝑢2, … , 𝑢𝑘 

of 𝐺1 such that 𝑁(𝑢𝑖) = 𝑁(𝑢𝑖 
′), where 𝑖 = 1,2,3, … , 𝑘. The graph obtained by duplicating 

the 𝑘 vertices 𝑢1, 𝑢2, … , 𝑢𝑘 is denoted by 𝐷((𝑢1, 𝑢2, … , 𝑢𝑘)𝐺1). If 𝜎 =

{𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑘} ⊆ 𝑉(𝐺1), then the duplication of 𝐺1 by 𝜎 is denoted by 𝐷(𝜎𝐺1). 
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Definition 3.2. Let 𝜎 ⊆ 𝑉(𝐺1) be such that |𝜎| = 𝑘. Then 𝜎 is termed as 𝑘-vertex 

duplication self switching of graph 𝐺1 if 𝐷(𝜎𝐺1) ≅ 𝐷(𝜎𝐺1)𝜎 where 𝐷(𝜎𝐺1) is the 

duplication graph of 𝐺1 by 𝜎 and 𝐷(𝜎𝐺1)𝜎 is the switching graph of 𝐷(𝜎𝐺1) by 𝜎. 

The set of all 𝑘-vertex duplication self switchings of 𝐺1 is denoted by 𝑑𝑆𝑆𝑘(𝐺1) and the 

𝑑𝑠𝑠𝑘(𝐺1) denotes the cardinality of 𝑑𝑆𝑆𝑘(𝐺1). 

Example 3.3. Refer the graph 𝐺1 = 𝑃4 given in the figure 3.1. Let 𝜎 = {𝑢𝛾 , 𝑣𝛾} ⊆ 𝑉(𝐺1). 

The 2-vertex duplication 𝐷(𝜎𝐺1) of the graph 𝐺1 shown in the figure 3.2 and the graph 

𝐷(𝜎𝐺1)𝜎 is shown in the figure 3.3 imply that 𝐷(𝜎𝐺1) ≅ 𝐷(𝜎𝐺1)𝜎. Henceforth, 𝜎 is a 

duplication self switching of 𝐺1 on 2 vertices. 

                                      

      Fig. 3.1. 𝐺1     Fig. 3.2. 𝐷(𝜎𝐺1) 

 

 

         Fig. 3.3. 𝐷(𝜎𝐺1)𝜎 

Theorem 3.4. Let 𝐺1 be a (𝑝, 𝑞) graph and let 𝜎 ⊆ 𝑉(𝐺1) where |𝜎| = 𝑘. Then 𝐷(𝜎𝐺1) 

is a (𝑝 + 𝑘, 𝑞 + ∑𝑢∈𝜎  𝑑𝑒𝑔𝐺1
(𝑢)) graph. 

Proof. Let 𝐺1 be a (𝑝, 𝑞) graph. Let 𝜎 = {𝑢𝑎1
, 𝑢𝑎2

, … , 𝑢𝑎𝑘
} ⊆ 𝑉(𝐺1). By Definition 3.1, 

𝐷(𝜎𝐺1) is the duplication graph attained by inserting 𝑘 duplication vertices 

𝑣𝑎1
 ′, 𝑣𝑎2

 ′, … , 𝑣𝑎𝑘
 ′ to the graph 𝐺1. Hence, |𝑉(𝐷(𝜎𝐺1))| = 𝑝 + 𝑘. 

|𝐸(𝐷(𝜎𝐺1))| = |𝐸(𝐺1)| + the count of edges added after duplication of the 𝑘 vertices. By 

Definition 3.1, 𝑁(𝑣𝑎𝑖
) = 𝑁(𝑣𝑎𝑖

 ′) in 𝐷(𝜎𝐺1) where 𝑖 = 1 to 𝑘. Thus, the number of edges 
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added after duplication of the 𝑘 vertices = ∑𝑣𝑎∈𝜎  deg𝐺1
(𝑣𝑎). Therefore, |𝐸(𝐷(𝜎𝐺1))| =

𝑞 + ∑𝑢𝑎∈𝜎  deg𝐺1
(𝑢𝑎). Hence the desired result. 

Result 3.5. Let 𝑢 ∈ 𝜎 ⊆ 𝑉(𝐺1) with |𝜎| = 𝑘. Then 𝑑𝑒𝑔𝐺1
(𝑢) = 𝑑𝑒𝑔𝐷(𝜎𝐺1)(𝑢′). 

Proof. By Definition 3.1, 𝑁(𝑢) = 𝑁(𝑢′) in 𝐷(𝜎𝐺1). This means that the vertices 

connected to 𝑢 in 𝐺1 are connected to 𝑢′ in 𝐷(𝜎𝐺1). That is, deg𝐺1
(𝑢) = deg𝐷(𝜎𝐺1)(𝑢′). 

Theorem 3.6. If a graph 𝐺1 is with 𝑛 components, then 𝐷(𝜎𝐺1) also has 𝑛 components. 

Proof. Let 𝐺1 be a graph with 𝑛 components and 𝜎 = {𝑣𝑎1
, 𝑣𝑎2

, … , 𝑣𝑎𝑘
} ⊆ 𝑉(𝐺1). Assume 

𝑣𝑎1
 ′, 𝑣𝑎2

 ′, … , 𝑣𝑎𝑘
 ′ is the duplication vertices of 𝑣𝑎1

, 𝑣𝑎2
, … , 𝑣𝑎𝑘

, respectively. As 𝐺1 has 𝑛 

components, 𝑣𝑎𝑖
 's are either in one component or in different components. Suppose 𝑣𝑎𝑖

 

and 𝑣𝑎𝑗
 are in two distinct components of 𝐺1. Let 𝑣𝑎𝑖

 be in the component 𝐶1 and 𝑣𝑎𝑗
 be in 

the component 𝐶2 different from 𝐶1. The duplication 𝑣𝑎𝑖
 ′ of 𝑣𝑎𝑖

 must be adjacent to the 

vertices of 𝑁(𝑣𝑎𝑖
) and so 𝑣𝑎𝑖

 ′ lies in a component which contains 𝐶1. Similarly, the 

duplication 𝑣𝑎𝑗
 ′ of 𝑣𝑎𝑗

 must be adjacent to the vertices of 𝑁 (𝑣𝑎𝑗
) and so the duplication 

vertex 𝑣𝑎𝑗
 ′ lies in the component which contains 𝐶2. As a result, 𝑣𝑎𝑖

 and its duplication 

vertex 𝑣𝑎𝑖
 ′ are in the same component and so the duplication graph 𝐷(𝜎𝐺1) of 𝐺1 by 𝜎 

remains disconnected with 𝑛 components. 

Theorem 3.7. For any disconnected graph 𝐺1, 𝑑𝑠𝑠𝑘(𝐺1) = 0. 

Proof. Since 𝐺1 is disconnected, 𝐺1 has at least two components, say 𝐶1, 𝐶2, … 𝐶𝑛, 𝑛 ≥ 2. 

Consider a 𝑘-vertex duplication switching, 𝐷(𝜎𝐺1) where 𝜎 = {𝑣𝑎1
, 𝑣𝑎2

, … , 𝑣𝑎𝑘
}. Assume 

𝑣𝑎1
 ′, 𝑣𝑎2

 ′, … , 𝑣𝑎𝑘
 ′ is the duplication vertices of 𝑣𝑎1

, 𝑣𝑎2
, … , 𝑣𝑎𝑘

, 

respectively. By Theorem 3.6, 𝐷(𝜎𝐺1) has 𝑛 components. In 𝐷(𝜎𝐺1), 𝑣𝑎𝑖
 is non-adjacent 

to 𝑣𝑎𝑖
 ′ and all the vertices of other components. Thus in 𝐷(𝜎𝐺1), 𝑣𝑎1

 is not adjacent to 

minimum one vertex in every component. This means that 𝐷(𝜎𝐺1)𝜎 is connected and so 

𝐷(𝜎𝐺1) ⊈ 𝐷(𝜎𝐺1)𝜎 which contradicts our assumption, 𝜎 = {𝑣𝑎1
, 𝑣𝑎2

, … , 𝑣𝑎𝑘
} is a 

duplication self switching on 𝑘 vertices of 𝐺1. As a result, 𝑑𝑠𝑠𝑘(𝐺1) = 0. 
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Theorem 3.8. Let 𝐺1 be a graph and 𝜎 ⊆ 𝑉 be a 𝑘-vertex duplication self switching of 𝐺1. 

Then the count of edges linking 𝜎 and 𝑉(𝐷(𝜎𝐺1)) − 𝜎 in 𝐷(𝜎𝐺1) is 
𝑘𝑝

2
 where 𝑘 = |𝜎|. 

Proof. Assume 𝜎 is a duplication self switching of 𝐺1 on 𝑘 vertices. Accordingly, 

𝐷(𝜎𝐺1) ≅ 𝐷(𝜎𝐺1)𝜎. By Theorem 3.4, 𝐷(𝜎𝐺1)𝜎 is a graph with 𝑝 + 𝑘 vertices. Hence by 

Theorem 2.5, the count of edges linking of 𝜎 and 𝑉(𝐷(𝜎𝐺1)) − 𝜎 in 𝐷(𝜎𝐺1) is 
𝑘(𝑝+𝑘−𝑘)

2
=

𝑘𝑝

2
. 

Theorem 3.9. Let 𝐺1 be a graph with 𝜎 as a 𝑘-vertex duplication self switching of 𝐺1 and 

𝜎′ as the set of duplication vertices of 𝜎. Then the count of edges linking 𝜎 and 𝜎′ in 

𝐷(𝜎𝐺1) is 2 (count of edges linking the points of 𝜎 in 𝐺1 ). 

Proof. Assume 𝜎 = {𝑣𝑎1
, 𝑣𝑎2

, … , 𝑣𝑎𝑘
} ⊆ 𝑉(𝐺1) is a 𝑘-vertex duplication self switching of 

𝐺1 and 𝜎′ = {𝑣𝑎1
 ′, 𝑣𝑎2

 ′, … , 𝑣𝑎𝑘
 ′} where 𝑣𝑎1

 ′, 𝑣𝑎2
 ′, … , 𝑣𝑎𝑘

 ′ are the duplication vertices of 

𝑣𝑎1
, 𝑣𝑎2

, … , 𝑣𝑎𝑘
, respectively. By the definition of duplication, each edge between the 

vertices of 𝜎 in 𝐺1 contributes 2 edges between the vertices of 𝜎 and 𝜎′ in 𝐷(𝜎𝐺1). Hence, 

the count of edges linking 𝜎 and 𝜎′ in 𝐷(𝜎𝐺1) is 2 (count of edges linking the points of 𝜎 

in 𝐺1 ). 

Theorem 3.10. Let 𝐺1 be a graph and 𝜎 be a 𝑘-vertex duplication self switching of 𝐺1. 

Then the count of edges linking 𝜎 and 𝑉(𝐺1) − 𝜎 in 𝐷(𝜎𝐺1) is 
𝑘𝑝

2
− 2 (count of edges 

linking the points of 𝜎 in 𝐺1 ). 

Proof. Assume 𝜎 = {𝑣𝑎1
, 𝑣𝑎2

, … . , 𝑣𝑎𝑘
} ⊆ 𝑉(𝐺1) is a duplication self switching of 𝐺1 on 𝑘 

vertices and 𝜎′ = {𝑣𝑎1
 ′, 𝑣𝑎2

 ′, … , 𝑣𝑎𝑘
 ′} in which 𝑣𝑎1

 ′, 𝑣𝑎2
 ′, … , 𝑣𝑎𝑘

 ′ are the duplication 

vertices of 𝑣𝑎1
, 𝑣𝑎2

, … , 𝑣𝑎𝑘
, respectively. Obviously, 𝑉(𝐷(𝜎𝐺1)) = 𝑉(𝐺1) ∪ 𝜎′ =

(𝑉(𝐺1) − 𝜎) ∪ 𝜎 ∪ 𝜎′ implies that 𝑉(𝐷(𝜎𝐺1)) − 𝜎 = 𝜎′ ∪ (𝑉(𝐺1) − 𝜎). Hence, the 

count of edges linking 𝜎 and 𝑉(𝐷(𝜎𝐺1)) − 𝜎 in 𝐷(𝜎𝐺1) = the count of edges linking 𝜎 

and 𝑉(𝐺1) − 𝜎 in 𝐷(𝜎𝐺1) + the count of edges linking 𝜎 and 𝜎′ in 𝐷(𝜎𝐺1). That is, the 

count of edges linking 𝜎 and 𝑉(𝐺1) − 𝜎 in 𝐷(𝜎𝐺1) = the count of edges linking 𝜎 and 



 
Journal of Computational Analysis and Applications                                                              VOL. 33, NO. 2, 2024 

 
 

                                                                                                    1111                                               C. Jayasekaran et al 1105-1118 
 

𝑉(𝐷(𝜎𝐺1)) − 𝜎 in 𝐷(𝜎𝐺1) the count of edges linking 𝜎 and 𝜎′ in 𝐷(𝜎𝐺1). By Theorem 

3.8, the count of edges linking 𝜎 and 𝑉(𝐷(𝜎𝐺1)) − 𝜎 in 𝐷(𝜎𝐺1) =
𝑘𝑝

2
. By Theorem 3.9, 

the count of edges linking 𝜎 and 𝜎′ in 𝐷(𝜎𝐺1) = 2 (the count of edges linking the points 

of 𝜎 in 𝐺1). Hence, the count of edges linking 𝜎 and 𝑉(𝐺1) − 𝜎 in 𝐷(𝜎𝐺1) is 
𝑘𝑝

2
− 2 (count 

of edges linking the points of 𝜎 in 𝐺1 ). 

Observation 3.11. Refer graph 𝐺1 illustrated in figure 3.4. The graph 𝐺1 𝜎 is illustrated 

in figure 3.5. Undoubtedly, 𝐺1 𝜎 is the union of two induced subgraphs of 𝐺1 𝜎 namely 

𝐺1 𝜎[𝜎] and 𝐺1 𝜎[𝑉 − 𝜎] together with the edges joining 𝜎 and 𝑉 − 𝜎 in 𝐺1 𝜎. 

 

 

Fig 3.4. 𝐺1 

 

 

Fig 3.5 

Theorem 3.12. Let 𝐺1 be a graph and 𝜎 ⊆ 𝑉(𝐺1) where |𝜎| = 𝑘. If 𝜎 is a 𝑘-vertex 

duplication self switching of the graph 𝐺1, then ∑𝑢∈𝜎  𝑑𝑒𝑔𝐺1
(𝑢) =

𝑘𝑝

2
. 
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 Proof. Let 𝜎 = {𝑣𝑎1
, 𝑣𝑎2

, … . , 𝑣𝑎𝑘
} ⊆ 𝑉(𝐺1) be a 𝑘-vertex duplication self switching of the 

graph 𝐺1. Accordingly, 𝐷(𝜎𝐺1) ≅ 𝐷(𝜎𝐺1)𝜎 and thereby |𝐸(𝐷(𝜎𝐺1))| = |𝐸(𝐷(𝜎𝐺1)𝜎)|. 

By Theorem 3.4, ∣ 𝐸(𝐷(𝜎𝐺1) ∣= 𝑞 + ∑𝑢∈𝜎  deg𝐺1
(𝑢). 

Let 𝜎′ = {𝑣𝑎1
 ′, 𝑣𝑎2

′ , … , 𝑣𝑎𝑘
′ } in which 𝑣𝑎1

 ′, 𝑣𝑎2
 ′, … , 𝑣𝑎𝑘

 ′ are the duplication  

vertices of 𝑣𝑎1
, 𝑣𝑎2

, … . , 𝑣𝑎𝑘
, respectively.  

Now, |𝐸(𝐷(𝜎𝐺1)𝜎)| = the count of edges linking the points of 𝜎 in 𝐷(𝜎𝐺1)𝜎 + the count 

of edges linking the points of 𝑉(𝐺1) − 𝜎 in 𝐷(𝜎𝐺1)𝜎 + the count of edges linking the 

points of 𝜎′ in 𝐷(𝜎𝐺1)𝜎 + the count of edges linking 𝜎′ and 𝑉(𝐺1) − 𝜎 in 𝐷(𝜎𝐺1)𝜎 + the 

count of edges linking 𝜎 and 𝜎′ in 𝐷(𝜎𝐺1)𝜎 + the count of edges linking 𝜎 and 𝑉(𝐺1) − 𝜎 

in 𝐷(𝜎𝐺1)𝜎. 

Obviously, the count of edges linking the points of 𝜎 in 𝐺1, 𝐷(𝜎𝐺1) and 𝐷(𝜎𝐺1)𝜎 are equal. 

Also, the count of edges linking the points of 𝑉(𝐺1) − 𝜎 in 𝐺1, 𝐷(𝜎𝐺1) and 𝐷(𝜎𝐺1)𝜎 are 

equal and the count of edges linking the points of 𝜎′ in 𝐷(𝜎𝐺1) and 𝐷(𝜎𝐺1)𝜎 is 0 . 

Since 𝑁(𝑢𝑖) = 𝑁(𝑢𝑖 
′) where 1 ≤ 𝑖 ≤ 𝑘, the count of edges linking 𝜎′ and 𝑉(𝐺1) − 𝜎 in 

𝐷(𝜎𝐺1)𝜎 = the count of edges linking 𝜎′ and 𝑉(𝐺1) − 𝜎 in 𝐷(𝜎𝐺1) = the count of edges 

linking 𝜎 and 𝑉(𝐺1) − 𝜎 in 𝐺1. 

The count of edges linking 𝜎 and 𝜎′ in 𝐷(𝜎𝐺1)𝜎 is obviously equal to the count of non-

edges between the points of 𝜎 and 𝜎′ in 𝐷(𝜎𝐺1) = all possible edges linking 𝜎 and 𝜎′ in 

𝐷(𝜎𝐺1)-the count of edges linking 𝜎 and 𝜎′ in 𝐷(𝜎𝐺1) = 𝑘2 − 2 (count of edges linking 

the points of 𝜎 in 𝐺1 )(by Theorem 3.9). 

It is clear that the count of edges linking 𝜎 and 𝑉(𝐺1) − 𝜎 in 𝐷(𝜎𝐺1)𝜎 = the count of non-

edges between the points of 𝜎 and 𝑉(𝐺1) − 𝜎 in 𝐷(𝜎𝐺1) = all possible edges linking 𝜎 

and 𝑉(𝐺1) − 𝜎 in 𝐷(𝜎𝐺1)-the count of edges linking 𝜎 and 𝑉(𝐺1) − 𝜎 in 𝐷(𝜎𝐺1) = 𝑘(𝑝 −

𝑘) − [
𝑘𝑝

2
− 2 (count of edges linking the points of 𝜎 in 𝐺1)] (by Theorem 3.10). 
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Thus, (2) indicates that |𝐸(𝐷(𝜎𝐺1)𝜎)| = the count of edges linking the points of 𝜎 in 𝐺1 + 

the count of edges linking the points of 𝑉(𝐺1) − 𝜎 in 𝐺1 + 0 + the count of edges linking 

𝜎 and 𝑉(𝐺1) − 𝜎 in 𝐺1 + 𝑘2-2(count of edges linking the points of 𝜎 in 𝐺1) + 𝑘(𝑝 − 𝑘) −

{
𝑘𝑝

2
− 2 (the count of edges linking the points of 𝜎 in 𝐺1)} = the count of edges linking the 

points of 𝜎 in 𝐺1 + the count of edges linking the points of 𝑉(𝐺1) − 𝜎 in 𝐺1 + the count 

of edges linking 𝜎 and 𝑉(𝐺1) − 𝜎 in 𝐺1 + 𝑘2 − 2 (count of edges linking the points of 𝜎 

in 𝐺1) + 𝑘𝑝 − 𝑘2 −
𝑘𝑝

2
+ 2 (the count of edges linking the points of 𝜎 in 𝐺1 ) = the count 

of edges in 𝐺1(by Observation 3.11) +𝑘𝑝 −
𝑘𝑝

2
= 𝑞 +

𝑘𝑝

2
. Since |𝐸(𝐷(𝜎𝐺1))| =

|𝐸(𝐷(𝜎𝐺1)𝜎)|, from (1) and (3) we get, 𝑞 + ∑𝑢∈𝜎  deg𝐺1(𝑢) = 𝑞 +
𝑘𝑝

2
 which implies that 

∑𝑢∈𝜎  deg𝐺1
(𝑢) =

𝑘𝑝

2
. Hence the desired result. 

Remark 3.13. The above theorem does not hold for its converse. For example, refer the 

graph 𝐺1 = 𝐶4 with 4 vertices given in the figure 3.6 and let 𝜎 = {𝑧𝛼, 𝑧𝛽 , 𝑧𝛾}. Then 

𝑑𝑒𝑔𝐺1
(𝑧𝛼) + 𝑑𝑒𝑔𝐺1

(𝑧𝛽) + 𝑑𝑒𝑔𝐺1
(𝑧𝛾) = 6 =

3×4

2
=

𝑘𝑝

2
. The graphs 𝐷(𝜎𝐺1) and 𝐷(𝜎𝐺1)𝜎 

are given in figure 3.7 and figure 3.8 respectively shows that 𝐷(𝜎𝐺1) ⫋ 𝐷(𝜎𝐺1)𝜎. Thus, 

the converse of the above theorem does not hold. 

           

 

        Fig. 3.6. 𝐺1 = 𝐶4  Fig. 3.7. 𝐷 ((𝑧𝛼 , 𝑧𝛽 , 𝑧𝛾)𝐺1)   Fig. 3.8. 𝐷 ((𝑧𝛼 , 𝑧𝛽 , 𝑧𝛾)𝐺1)
𝜎
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Corollary 3.14. A graph of odd order has no odd order duplication self switching. 

 

Proof. Let a graph be 𝐺1 with order 𝑝. Suppose 𝜎 ⊆ 𝑉(𝐺1) is a duplication 

self switching of 𝐺1 where |𝜎| = 𝑘 is odd. By Theorem 3.12, ∑𝑢∈𝜎  𝑑𝑒𝑔𝐺1
(𝑢) =

𝑘𝑝

2
. Since 

𝑘𝑝

2
 is an integer and 𝑝 is odd, 𝑘 must be even which contradicts 𝑘 is odd. Hence the desired 

result. 

Theorem 3.15. For 𝑝 > 1, 

𝑑𝑠𝑠𝑘(𝑃𝑝) = {
1  if 𝑘 = 2 and 𝑝 = 2 or 4
2  if 𝑘 = 1 and 𝑝 = 2 or 4; 𝑘 = 2 and 𝑝 = 3.
0  otherwise 

. 

Proof. Let 𝑣𝑎1
𝑣𝑎2

… . 𝑣𝑎𝑝
 be the path 𝑃𝑝 with two end vertices with degree 1 and the rest 

with degree 2. Let 𝜎 ⊆ 𝑉 and |𝜎| = 𝑘. Then clearly, 2𝑘 − 2 ≤ ∑  𝑢𝑎∈𝜎 deg𝐺1
(𝑢𝑎) ≤ 2𝑘. 

To prove the required results, we look at the following two cases, 𝑝 ≤ 4 and 𝑝 > 4 

Case 1. 𝑝 ≤ 4 

Obviously, 
𝑘𝑝

2
≤

4𝑘

2
= 2𝑘 and ∑  𝑢𝑎∈𝜎 deg𝐺1

(𝑢𝑎) ≤ 2𝑘. This implies that 

∑  𝑢𝑎∈𝜎 deg𝐺1
(𝑢𝑎) may be equal to 

𝑘𝑝

2
 in certain situations. Now consider the following 

three subcases: 𝑝 = 2,3, and 4. 

Subcase 1.a. 𝑝 = 2 

By Theorem 2.6, 𝑑𝑠𝑠1(𝑃2) = 2. When 𝑘 = 2,
𝑘𝑝

2
= 2 = ∑  𝑘

𝑖=1 deg𝐺1
(𝑣𝑎𝑖

). By Theorem 

3.12, 𝜎 may be a 2-vertex duplication self switching. Refer the graph 𝑃2 given in figure 
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3.9. Clearly, 𝜎 = {𝑣𝑎1
, 𝑣𝑎2

}. Let 𝑣𝑎1
 ′ and 𝑣𝑎2

 ′ be the corresponding duplications of 𝑣𝑎1
 

and 𝑣𝑎2
. The graphs 𝐷(𝜎𝐺1) and 𝐷(𝜎𝐺1)𝜎 are given in figure 3.9. Clearly, 𝐷(𝜎𝐺1) ≅

𝐷(𝜎𝐺1)𝜎. Henceforth, 𝜎 = {𝑣𝑎1
, 𝑣𝑎2

} is a duplication self switching of 𝑃2 on 2 vertices and  

so 𝑑𝑠𝑠2(𝑃2) = 1. 

 

 

     Fig. 3.9 

Subcase 1.b. 𝑝 = 3 

By Corollary 3.14, 𝑑𝑠𝑠1(𝑃3) = 𝑑𝑠𝑠3(𝑃3) = 0. When 𝑘 = 2,
𝑘𝑝

2
= 3. Refer the graph 𝑃3 

given in figure 3.10. Now, 𝜎 can be either {𝑣𝑎1
, 𝑣𝑎3

} for which deg𝑃3
(𝑣𝑎1

) + deg𝑃3
(𝑣𝑎3

) =

2 or {𝑣𝑎1
, 𝑣𝑎2

} for which deg𝑃3
(𝑣𝑎1

) + deg𝑃3
(𝑣𝑎2

) = 3. By Theorem 3.12, 𝜎 = {𝑣𝑎1
, 𝑣𝑎2

} 

might be a duplication self switching of 𝑃3 on 2 vertices. Take 𝑣𝑎1
 ′ and 𝑣𝑎2

 ′ as the  

duplications of 𝑣𝑎1
 and 𝑣𝑎2

, respectively. 

           

𝑃3                                                      𝐷(𝜎𝑃3) 

 

                                                 Fig. 3.10 



 
Journal of Computational Analysis and Applications                                                              VOL. 33, NO. 2, 2024 

 
 

                                                                                                    1116                                               C. Jayasekaran et al 1105-1118 
 

Figure 3.10 indicates that 𝐷(𝜎𝑃3) ≅ 𝐷(𝜎𝑃3)𝜎. Henceforth, 𝜎 = {𝑣𝑎1
, 𝑣𝑎2

} is a duplication 

self switching of 𝑃3 on 2 vertices. Similarly, 𝜎 = {𝑣𝑎2
, 𝑣𝑎3

} is also a duplication self 

switching of 𝑃3 on 2 vertices. As there are two such possible pairs, 𝑑𝑠𝑠2(𝑃3) = 2. 

Subcase 1.c. 𝑝 = 4 

By Theorem 2.6, 𝑑𝑠𝑠1(𝑃4) = 2. When 𝑘 = 2,
𝑘𝑝

2
= 4. Let 𝜎 = {𝑣𝑎𝑖

, 𝑣𝑎𝑗
} ⊆ 𝑉(𝑃4). Then 

deg𝑃4
(𝑣𝑎𝑖

) + deg𝑃4
(𝑣𝑎𝑗

) = 2 or 3 or 4. By Theorem 3.12, 𝜎 might be a 2 -vertex 

duplication self switching only when ∑𝑢𝑎∈𝜎  deg𝑃4
(𝑢𝑎) = 4. Refer the graph 𝑃4 given in 

figure 3.11. The only possibility for 𝜎 is {𝑣𝑎2
, 𝑣𝑎3

} for which ∑𝑢𝑎∈𝜎  deg𝑃4
(𝑢𝑎) = 4. Let 

𝑣𝑎2
 ′ and 𝑣𝑎3

 ′ be the duplications of 𝑣𝑎2
 and 𝑣𝑎3

, respectively. The graphs 𝐷(𝜎𝐺1) and  

𝐷(𝜎𝐺1)𝜎 are given in figure 3.11. 

 

           

 

                      𝑃4                                             𝐷(𝜎𝑃4)                                         𝐷(𝜎𝑃4)𝜎 

Fig. 3.11 

From figure 3.11, we see that 𝐷(𝜎𝑃4) ≅ 𝐷(𝜎𝑃4)𝜎. Henceforth, 𝜎 = {𝑣𝑎2
, 𝑣𝑎3

} is a 

duplication self switching of 𝑃4 on 𝑘 vertices. As there is only one such pair, 𝑑𝑠𝑠2(𝑃4) =

1. 
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For 𝑘 = 3,
𝑘𝑝

2
= 6 and there does not exist a set 𝜎 where |𝜎| = 𝑘 = 3 for which 

∑𝑢𝑎∈𝜎  𝑑𝑒𝑔𝑃4
(𝑢𝑎) = 6 and hence 𝑑𝑠𝑠3(𝑃4) = 0. Also, when 𝑘 = 4,

𝑘𝑝

2
= 8 and there does 

not exist a set 𝜎 where |𝜎| = 4 for which ∑𝑢𝑎∈𝜎  deg𝑃4
(𝑢𝑎) = 8. Hence, 𝑑𝑠𝑠4(𝑃4) = 0 

Case 2. 𝑝 > 4 

Let 𝜎 ⊆ 𝑉(𝐺) be such that |𝜎| = 𝑘. Now, ∑𝑢𝑎∈𝜎  deg𝐺(𝑢𝑎) ≤ 2𝑘 <
𝑘𝑝

2
. By Theorem 3.12, 

𝜎 can't be a 𝑘-vertex duplication self switching of 𝑃𝑝. 

Based on the foregoing discussions, we conclude that 

𝑑𝑠𝑠𝑘(𝑃𝑝) = {
1  if k = 2 and p = 2 or 4
2  if k = 1 and p = 2 or 4; k = 2 and p = 3
0  otherwise 

. 

Theorem 3.16. For 𝑚 ≥ 3, 𝑑𝑠𝑠𝑘(𝐾𝑚) = 0. 

Proof. Assume 𝐾𝑚 is a complete graph having 𝑚 vertices. Let 𝜎 ⊆ 𝑉(𝐾𝑚) be such that 

|𝜎| = 𝑘. Then ∑  𝑢∈𝜎 deg𝐾𝑚
(𝑢) = 𝑘(𝑚 − 1) ≠

𝑘𝑚

2
. By Theorem 3.12, 𝑑𝑠𝑠𝑘(𝐾𝑚) = 0. 

Applications 

k-vertex duplication self-switching in graph theory is mainly used in areas such as 

graph isomorphism testing, detecting graph automorphisms, and analyzing the structural 

properties of graphs. 

Conclusion 

 In this paper, we found the conditions for 𝜎 to be a 𝑘-vertex duplication self switching 

for a graph 𝐺1 and using this, we determined the cardinality 𝑑𝑠𝑠𝑘(𝐺1) for path 𝑃𝑝 and complete 

graph 𝐾𝑚. 
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