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Abstract 

In the context of a finite undirected graph 𝐺(𝑉, 𝐸) and a non-empty subset 𝜎 ⊆
𝑉, the graph generated by switching 𝐺 by 𝜎 is known as 𝐺𝜎(𝑉, 𝐸′). This graph is 

obtained from 𝐺 by summing up all non-edges between 𝜎 and 𝑉 − 𝜎 and 

terminating all edges between 𝜎 and its complement 𝑉 − 𝜎. We record 𝐺𝑣 for 

𝜎 = {𝑣}, and the associated switching is known as vertex switching. 

Nevertheless, we refer to this as |𝜎|-vertex switching. It is reported as 2 -vertex 

switching when |𝜎| = 2. The process of 𝐺 being isomorphic to 𝐺𝜎 is referred to 

as self vertex switching. An acyclic graph is one that lacks cycles. A graph that 

is unicyclic only has one cycle in it. A two cyclic graphs contains exactly two 

cycles in it. Any two vertices in a connected graph are linked together by a path. 

A disconnected graph has more than one component. Christabel Sudha 

introduced the idea of 2 -vertex self switching in 2018. The notion of self 

switching of two cyclic and bicyclic graphs was defined by sumathy in 2014. 

The two vertex switching properties of connected and disconnected unicyclic 

graphs are described by Vinoth Kumar. In this article, we come up with 

neccessary and sufficient requirements for 𝐺𝜎, the switching of 𝐺 at 𝜎 = {𝑢, 𝑣} 

to be connected and two cyclic graph when 𝑢𝑣 ∉ 𝐸(𝐺). 

Keywords :Switching, Connected two cyclic graphs, 2-vertex self switching. 

Subject Classification Number: 05C60, 05C40. 

1 Introduction 

For any graph 𝐺(𝑉, 𝐸) with |𝑉(𝐺)| = 𝑝, 𝐺𝜎(𝑉, 𝐸′) is described as the graph formed from 

𝐺 by terminating all edges between 𝜎 and its counterpart, 𝑉 − 𝜎, and any non-edges 

between 𝜎 and 𝑉 − 𝜎 are added as edges where 𝜎 ⊆ 𝑉. Seidel defined switching also 
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known as |𝜎| vertex switching[1]. When |𝜎| = 2, it is called as 2 -vertex switching 

[9,10]. Hage deliberate about switching of a vertices in a graph [2,3]. A graph which 

contains exactly two cycles is called an two cyclic graph. In the paper[5], the concept of 

self vertex switchings were studied. Vilfred V. et al., established the theory of branches 

and joints in graphs[11]. A joint at 𝜎 in 𝐺 is a subgraph 𝐵 of 𝐺 that includes 𝐺[𝜎] if 𝐵 −
𝜎 is connected and maximum. If 𝐵 is connected, we refer it as a 𝑐-joint or else a 𝑑-joint. 

In the paper[7], graphs were distinguished for self vertex switching of connected two 

cyclic graphs. In the paper[6,8], C. Jayasekaran et al., examined the graphs for 2 -vertex 

switching of joints and connected unicyclic graphs. For standard symbols and definitions, 

we make reference to F. Harary[4]. In this paper, we intiated the concept of 2-vertex 

switching of connected two cyclic graphs. 

2 Preliminaries 

Theorem 2.1. [6] 

Let 𝐺 be a graph of order 𝑝 and let 𝜎 = {𝑢, 𝑣} be a subset of 𝑉(𝐺) such that uv ∉ 𝐸(𝐺). 

Let 𝐵 be a c-joint at 𝜎 in 𝐺. Then 𝐵𝜎 is a 𝑐-joint at 𝜎 in 𝐺𝜎 if and only if 𝐵 − 𝜎 is 

connected, |𝑉(𝐵)| ≥ 4,0 < 𝑑𝐵(𝑢) ≤ |𝑉(𝐵)| − 3 and 0 < 𝑑𝐵(𝑣) ≤ |𝑉(𝐵)| − 3. 

3 Main Results: 2-vertex Switching of Connected Two cyclic Graphs 

Theorem 3.1. For a graph 𝐺 of order 𝑝 ≥ 5 and let 𝜎 = {𝑢, 𝑣} ⊆ 𝑉(𝐺) be such that uv ∉
𝐸(𝐺). Let 𝑀 be the set of non-adjacent vertices of 𝑢 and 𝑁 be the set of non-adjacent 

vertices of 𝑣 in 𝐺. Let 𝐵 be a c-joint at 𝜎 in 𝐺. Then 𝐵𝜎 is a c-joint and two-cyclic at 𝜎 in 

𝐺𝜎 if and only if |𝑉(𝐵)| ≥ 5 and one of the following holds: 

1. 𝐵 − 𝜎 is connected, acyclic, 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 4 and the path formed 

by elements of 𝑀 and by elements of 𝑁 have either at most one vertex in common 

for 𝑀 ∩ 𝑁 = 𝜑 or the vertex a in common for 𝑀 ∩ 𝑁 = {𝑎}. 

2. 𝐵 − 𝜎 is connected, unicyclic, {𝑑𝐵(𝑢), 𝑑𝐵(𝑣)} = {|𝑉(𝐵)| − 4, |𝑉(𝐵)| − 3} and 

for |𝑀 − {𝑣}| = 2 and |𝑁 − {𝑢}| = 1(|𝑀 − {𝑣}| = 1 and |𝑁 − {𝑢}| = 2) either 

the elements of 𝑀(𝑁) do not lie on the cycle of 𝐵 − 𝜎 and the unique path 

connecting them contains at most one vertex of the cycle or one of the elements of 

𝑀(𝑁), say a, lies on the cycle and the unique path connecting them contains no 

vertex of the cycle other than a. 

3. 𝐵 − 𝜎 is connected, two-cyclic and 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 3. 

Proof. Let 𝑀 and 𝑁 be the set of non-adjacent vertices of 𝑢 and 𝑣 respectively in 𝐺. Let 

𝐵 be a 𝑐-joint at 𝜎 in 𝐺 such that 𝐵𝜎 is a 𝑐-joint and two-cyclic. By Theorem 2.1, 𝐵 − 𝜎 

is connected, ∣ 𝑉𝐵)|≥ 4,0 < 𝑑𝐵(𝑢) ≤ |𝑉(𝐵)| − 3 and 0 < 𝑑𝐵(𝑣) ≤ |𝑉(𝐵)| − 3. Since 

𝐵𝜎 is two-cyclic, 𝐵 − 𝜎 is either acyclic or unicyclic or two-cyclic. 

Case 1. 𝐵 − 𝜎 is acyclic 

If 𝑑𝐵(𝑢) < |𝑉(𝐵)| − 4, then there exist at least three elements of 𝑀, say 

𝑢1, 𝑢2, 𝑢3, in 𝑉(𝐵) − 𝜎 such that 𝑢1, 𝑢2 and 𝑢3 are adjacent to 𝑢 in 𝐵𝜎. Since 𝐵 − 𝜎 is 

connected, there exist 𝑢1 − 𝑢2, 𝑢2 − 𝑢3 and 𝑢1 − 𝑢3 paths in 𝐵 and hence in 𝐵𝜎. Now the 
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edges 𝑢1𝑢, 𝑢2𝑢 and 𝑢3𝑢 and the paths 𝑢1 − 𝑢2, 𝑢2 − 𝑢3 and 𝑢1 − 𝑢3 form at least three 

cycles in 𝐵𝜎 which is a contradiction to 𝐵𝜎 is two-cyclic. Hence, either 𝑑𝐵(𝑢) =
|𝑉(𝐵)| − 4 or 𝑑𝐵(𝑢) = |𝑉(𝐵)| − 3. 

Subcase 1.a.  𝑑𝐵(𝑢) = |𝑉(𝐵)| − 4 

Since 𝑢𝑣 ∉ 𝐸(𝐺), there exist two vertices of 𝑀, say 𝑢1 and 𝑢2, in 𝑉(𝐵) − 𝜎 which are 

adjacent to 𝑢 in 𝐵𝜎. Clearly, 𝑀 = {𝑢1, 𝑢2}. Since 𝐵 − 𝜎 is connected, there exists an 𝑢1 −
𝑢2 path in 𝐵𝜎. Here, the edge 𝑢𝑢1, the path 𝑢1 − 𝑢2 and the edge 𝑢2𝑢 form a cycle 𝐶1 in 

𝐵𝜎. 

If 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 3, then there exists exactly one vertex of 𝑁, say 𝑤, in 𝑉(𝐵) − 𝜎. 

Implying that 𝑣𝑤 is an edge in 𝐵𝜎. Since 𝐵 − 𝜎 is acyclic, the addition of the edge 𝑤𝑣 in 

𝐵𝜎 and the edges 𝑢𝑢1, the path 𝑢1 − 𝑢2 and the edge 𝑢2𝑢 form the unique cycle 𝐶1 in 𝐵𝜎, 

which is a contradiction to 𝐵𝜎 is two-cyclic. 

If 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 4, then there exist two vertices of 𝑁, say 𝑣1 and 𝑣2, in 𝑉(𝐵) − 𝜎 

such that 𝑣1 and 𝑣2 adjacent to 𝑣 in 𝐵𝜎. Clearly, 𝑁 = {𝑣1, 𝑣2}. 

We consider the following three subcases 

Subcase 1.a.1.  𝑀 = 𝑁 

Then the edges 𝑣𝑣1 = 𝑣𝑢1, 𝑣𝑢2 = 𝑣𝑣2 and the path 𝑢1 − 𝑢2 form a cycle 𝐶2 and the 

edges 𝑢𝑢1, 𝑢1𝑣, 𝑣𝑢2 and 𝑢2𝑢 form another cycle 𝐶3 in 𝐵𝜎 which is different from 𝐶1 and 

𝐶2 giving a contradiction to 𝐵𝜎 is two-cyclic. 

Subcase 1.a.2. 𝑀 ≠ 𝑁 

Then 𝑀 ∩ 𝑁 is either 𝜑 or has exactly one element. 

Subcase 1.a.2.A. 𝑀 ∩ 𝑁 = 𝜑 

Then 𝑢1 ≠ 𝑣1, 𝑣2 and 𝑢2 ≠ 𝑣1, 𝑣2. We consider the following three possibilities. 

Subcase 1.a.2.A.1. Both 𝑣1 and 𝑣2 lie on 𝑢1 − 𝑢2 path 

Then there exists an 𝑣1 − 𝑣2 path, the edges 𝑣2𝑣 and 𝑣𝑣1 form a cycle 𝐶2 and the edges 

𝑢𝑢1, the path 𝑢1 − 𝑣1, the edges 𝑣1𝑣 and 𝑣𝑣2, the path 𝑣2 − 𝑢2, the edge 𝑢2𝑢 form cycle 

in 𝐵𝜎 which is different from 𝐶1 and 𝐶2, which contradicts 𝐵𝜎 is two-cyclic. 

Subcase 1.a.2.A.2. Either 𝑣1 or 𝑣2 lies on 𝑢1 − 𝑢2 path 

The edge 𝑢𝑢1, the path 𝑢1 − 𝑣1, the edges 𝑣1𝑣 and 𝑣𝑣2, the path 𝑣2 − 𝑢2 and the edge 

𝑢2𝑢 form a cycle 𝐶4 in 𝐵𝜎 different from 𝐶1 and 𝐶2 giving a contradiction to 𝐵𝜎 is two-

cyclic. 

Subcase 1.a.2.A.3. Both 𝑣1 and 𝑣2 do not lie on 𝑢1 − 𝑢2 path 

Since 𝐵 − 𝜎 is acyclic, the 𝑣1 − 𝑣2 path has either no vertex or at least one vertex of 𝑢1 −
𝑢2 path. 

Subcase 1.a.2.A.3.a. The 𝑣1 − 𝑣2 path has no vertex or exactly one vertex of 𝑢1 − 𝑢2 path 
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If the path 𝑣1 − 𝑣2 has no vertex of 𝑢1 − 𝑢2 path, then the edges 𝑣1𝑣, 𝑣𝑣2 and the path 

𝑣2 − 𝑣1 form a cycle 𝐶2 in 𝐵𝜎 different from 𝐶1. If the path 𝑣1 − 𝑣2 has exactly one 

vertex of 𝑢1 − 𝑢2 path, that is, the two paths are edge disjoint, then no other cycles are 

formed other than 𝐶2 in 𝐵𝜎, which is different from 𝐶1. Hence, 𝐵𝜎 is a two-cyclic graph. 

Subcase 1.a.2.A.3.b. The 𝑣1 − 𝑣2 path has at least two vertices of 𝑢1 − 𝑢2 path 

Then the path 𝑣1 − 𝑣2, the edges 𝑣2𝑣 and 𝑣𝑣1 forms a cycle 𝐶2 in 𝐵𝜎 and the edges 

𝑢1𝑢, 𝑢𝑢2, the path 𝑢2 − 𝑣2, the edges 𝑣2𝑣, 𝑣𝑣1, the path 𝑣1 − 𝑢1 form 

another cycle in 𝐵𝜎 which is different from 𝐶2 and 𝐶1 giving a contradiction to 𝐵𝜎 is 

two-cyclic. 

Subcase 1.a.2.B. 𝑀 ∩ 𝑁 has exactly one element 

Then {𝑢1, 𝑢2} ∩ {𝑣1, 𝑣2} has exactly one element. Without loss of generality, let 𝑢1 = 𝑣1 

and 𝑢2 ≠ 𝑣2. Then we have two possibilities according as 𝑢1 − 𝑢2 path contains 𝑣2 or 

does not contain 𝑣2. 

Subcase 1.a.2.B.1. The 𝑢1 − 𝑢2 path contains 𝑣2 

Then the 𝑣1 − 𝑣2 path in 𝐵𝜎 and the edges 𝑣2𝑣 and 𝑣𝑢1 = 𝑣𝑣1 form a cycle 𝐶2 and the 

edges 𝑢1𝑢, 𝑢𝑢2, the path 𝑢2 − 𝑣2, the edges 𝑣2𝑣 and 𝑣𝑣1 = 𝑣𝑢1 form a cycle in 𝐵𝜎 

different from 𝐶1 and 𝐶2 giving a contradiction to 𝐵𝜎 is two-cyclic. 

Subcase 1.a.2.B.2. The 𝑢1 − 𝑢2 path does not contain 𝑣2 

The 𝑣1 − 𝑣2 path has either no vertex or at least one vertex of 𝑢1 − 𝑢2 path other than 𝑣1. 

Subcase 1.a.2.B.2.a. The 𝑣1 − 𝑣2 path has no vertex of 𝑢1 − 𝑢2 path other than 𝑣1 

Then the edges 𝑣1𝑣 = 𝑢1𝑣, 𝑣𝑣2 and the path 𝑣2 − 𝑣1 form a cycle 𝐶2 in 𝐵𝜎, different 

from 𝐶1. Hence, 𝐵𝜎 is a two-cyclic graph. 

Subcase 1.a.2.B.2.b. The 𝑣1 − 𝑣2 path has at least one vertex of 𝑢1 − 𝑢2 path other than 

𝑣1 

Then the 𝑣1 − 𝑣2 path and the edges 𝑣2𝑣 and 𝑣𝑣1 = 𝑣𝑢1 form a cycle 𝐶2 in 𝐵𝜎 and the 

edges 𝑢𝑢1, 𝑢1𝑣 = 𝑣1𝑣, 𝑣𝑣2, the path 𝑣2 − 𝑢2 and the edge 𝑢2𝑢 form another cycle in 𝐵𝜎 

different from 𝐶1 and 𝐶2 giving a contradiction to 𝐵𝜎 is two-cyclic. 

Thus the path formed by elements of 𝑀 and by elements of 𝑁 have either 

at most one vertex in common for 𝑀 ∩ 𝑁 = 𝜑 or the vertex say 𝑎 in common for 𝑀 ∩
𝑁 = {𝑎}. 

Subcase 1.b.  𝑑𝐵(𝑢) = |𝑉(𝐵)| − 3 

Since 𝑢𝑣 ∉ 𝐺, there exists exactly one vertex of 𝑀, say 𝑢1, in 𝑉(𝐵) − 𝜎, which is 

adjacent to 𝑢 in 𝐵𝜎. Hence, 𝑢𝑢1 is an edge in 𝐵𝜎. 

If 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 3, then there exists exactly one vertex of 𝑁, say 𝑣1, in 𝑉(𝐵) − 𝜎, 

which is adjacent to 𝑣 in 𝐵𝜎. Hence, 𝑣𝑣1 is an edge in 𝐵𝜎. This shows that the edges 𝑣𝑣1 
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and 𝑢𝑢1 do not form any cycle in 𝐵𝜎 and hence 𝐵𝜎 is acyclic, which is a contradiction to 

𝐵𝜎 is two-cyclic. 

If 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 4, then there exist two vertices of 𝑁, say 𝑣1 and 𝑣2 in 𝑉(𝐵) − 𝜎 

which are adjacent to 𝑣 in 𝐵𝜎. Since 𝐵 − 𝜎 is connected, there exists an 𝑣1 − 𝑣2 path in 

𝐵𝜎. If 𝑢1 = 𝑣1, then the edges 𝑣1𝑣 = 𝑢1𝑣, 𝑣𝑣2 and the path 𝑣2 − 𝑣1 form a cycle 𝐶1 in 

𝐵𝜎. If 𝑢1 ≠ 𝑣1, then the edges 𝑣1𝑣, 𝑣𝑣2 and the path 𝑣2 − 𝑣1 form a cycle 𝐶2 in 𝐵𝜎. In 

both cases, we get a unique cycle in 𝐵𝜎, which is a contradiction to 𝐵𝜎 is two-cyclic. 

Case 2. 𝐵 − 𝜎 is unicyclic 

Let 𝐶 be the unique cycle of 𝐵 − 𝜎 in 𝐺. Then 𝐶 is also a cycle of 𝐵 − 𝜎 in 𝐺𝜎. If 

𝑑𝐵(𝑢) < |𝑉(𝐵)| − 4, then there exist at least three vertices of 𝑀, say 𝑢1, 𝑢2 and 𝑢3, in 

𝑉(𝐵) − 𝜎 which are adjacent to 𝑢 in 𝐵𝜎. Clearly, 𝑀 ⊇ {𝑢1, 𝑢2, 𝑢3}. Since 𝐵 − 𝜎 is 

connected, there exist 𝑢1 − 𝑢2, 𝑢2 − 𝑢3 and 𝑢1 − 𝑢3 paths in 𝐵 − 𝜎 and hence in 𝐵𝜎. Now 

the edges 𝑢1𝑢, 𝑢2𝑢 and 𝑢3𝑢 and the paths 𝑢1 − 𝑢2, 𝑢2 − 𝑢3 and 𝑢1 − 𝑢3 form at least three 

cycles in 𝐵𝜎 in addition to 𝐶 which is a contradiction to 𝐵𝜎 is two-cyclic. Hence either 

𝑑𝐵(𝑢) = |𝑉(𝐵)| − 4 or 𝑑𝐵(𝑢) = |𝑉(𝐵)| − 3. 

Subcase 2.a. 𝑑𝐵(𝑢) = |𝑉(𝐵)| − 4 

Since 𝑢𝑣 ∉ 𝐸(𝐺), there exist two vertices of 𝑀, say 𝑢1, 𝑢2 in 𝑉(𝐵) − 𝜎. Clearly, 𝑀 =
{𝑢1, 𝑢2}. We consider the following three subcases. 

Subcase 2.a.1. 𝑢1 and 𝑢2 do not lie on cycle 𝐶 

Since 𝐵 − 𝜎 is connected, there exists either one or two 𝑢1 − 𝑢2 paths in 𝐵 − 𝜎 according 

as at most one vertex or at least two vertices of 𝐶 lie on the path and hence in 𝐵𝜎 also. 

If 𝐵 − 𝜎 contains only one 𝑢1 − 𝑢2 path, say 𝑃1, then the edge 𝑢𝑢1, path 𝑃1 and the edge 

𝑢2𝑢 form another cycle 𝐶1 in 𝐵𝜎. Hence, 𝐵𝜎 is two-cyclic. 

If 𝐵 − 𝜎 contains two 𝑢1 − 𝑢2 paths, say 𝑃2 and 𝑃3, then the edge 𝑢𝑢1, path 𝑃2 and the 

edge 𝑢2𝑢 form a cycle 𝐶2 and the edge 𝑢𝑢1, path 𝑃3 and the edge 𝑢2𝑢 form a cycle 𝐶3 

different from 𝐶2 in 𝐵𝜎. Hence, 𝐵𝜎 has at least 3 cycles, which is a contradiction to 𝐵𝜎 is 

two-cyclic. 

Subcase 2.a.2. 𝑢1 and 𝑢2 lie on the cycle 𝐶 

Then the cycle 𝐶 gives two 𝑢1 − 𝑢2 paths in 𝐵 − 𝜎 and hence by subcase 2.a.1, 𝐵𝜎 has at 

least 3 cycles, which is a contradiction to 𝐵𝜎 is two-cyclic. 

Subcase 2.a.3. Either 𝑢1 or 𝑢2 lies on the cycle 𝐶 

Let us assume that 𝑢1 lies on 𝐶. Since 𝐵𝜎 is connected, there exists either one 𝑢1 − 𝑢2 

path or two 𝑢1 − 𝑢2 paths according as either the 𝑢1 − 𝑢2 path has no vertex or a vertex 

of 𝐶 other than 𝑢1. 

If 𝐵 − 𝜎 contains only one 𝑢1 − 𝑢2 path, then the path contains no vertex of the cycle 𝐶. 

Now the edge 𝑢𝑢1, the 𝑢1 − 𝑢2 path and the edge 𝑢2𝑢 form another cycle 𝐶1 in 𝐵𝜎 

different from 𝐶. Hence, 𝐵𝜎 is two-cyclic. 
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If 𝐵 − 𝜎 contains two 𝑢1 − 𝑢2 paths, then as in subcase 2.a.1, 𝐵𝜎 has at least 3 cycles, 

which is a contradiction. 

If 𝑑𝐵(𝑣) < |𝑉(𝐵)| − 3, then there exist at least two vertices of 𝑁, say 𝑣1 

and 𝑣2, in 𝑉(𝐵) − 𝜎 which are adjacent to 𝑣 in 𝐵𝜎. If {𝑢1, 𝑢2} = {𝑣1, 𝑣2}, then the edge 

𝑣𝑣1 = 𝑣𝑢1, the 𝑢1 − 𝑢2 path and the edge 𝑣2𝑣 = 𝑢2𝑣 form a cycle 𝐶2 different from 𝐶1. 

And if {𝑢1, 𝑢2} ≠ {𝑣1, 𝑣2}, then {𝑢1, 𝑢2} ∩ {𝑣1, 𝑣2} is either 𝜑 or has exactly one element. 

If {𝑢1, 𝑢2} ∩ {𝑣1, 𝑣2} = 𝜑, then 𝑢1 ≠ 𝑣1, 𝑣2 and 𝑢2 ≠ 𝑣1, 𝑣2. Clearly, we have the 𝑢1 − 𝑢2 

path contains no vertex or one vertex or both vertices of {𝑣1, 𝑣2}. In all possibilities, the 

edges 𝑣2𝑣, 𝑣𝑣1 and the 𝑣1 − 𝑣2 path form a cycle 𝐶2 in 𝐵𝜎. If {𝑢1, 𝑢2} ∩ {𝑣1, 𝑣2} ≠ 𝜑, 

then without loss of generality, let 𝑢1 = 𝑣1, 𝑢2 ≠ 𝑣2. Then we have two possibilities 

according as 𝑢1 − 𝑢2 path contains 𝑣2 or does not contain 𝑣2. In both cases, the edges 

𝑣2𝑣, 𝑣𝑣1 and the 𝑣1 − 𝑣2 path form a cycle 𝐶2 in 𝐵𝜎. 

Hence in all the possibilities, we get a cycle 𝐶2, which is different from 𝐶 and 𝐶1 in 𝐵𝜎 

which is a contradiction to 𝐵𝜎 is two-cyclic. Hence, 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 3. 

Hence either the elements of 𝑀 do not lie on the cycle 𝐶 and at most one vertex of the 

cycle lies on the unique 𝑢1 − 𝑢2 path or one of the elements of 𝑀, say 𝑎, lies on 𝐶 and the 

unique 𝑢1 − 𝑢2 path does not contain any vertex of 𝐶 other than 𝑎 for which |𝑀 − {𝑣}| =
2 and |𝑁 − {𝑢}| = 1. 

Subcase 2.b. 𝑑𝐵(𝑢) = |𝑉(𝐵)| − 3 

Since 𝑢𝑣 ∉ 𝐸(𝐺), there is only one vertex of 𝑀, say 𝑢1, in 𝑉(𝐵) − 𝜎 and hence 𝑢𝑢1 is an 

edge in 𝐵𝜎. 

If 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 3, then there exist only one vertex of 𝑁, say 𝑣1, in 𝑉(𝐵) − 𝜎 and 

hence 𝑣𝑣1 is an edge in 𝐵𝜎. Since 𝐵 − 𝜎 is unicyclic and 𝑢𝑣 ∉ 𝐸(𝐺), 𝑣𝑣1 and 𝑢1𝑢 do not 

form a cycle in 𝐵𝜎 and hence we have 𝐵𝜎 is unicyclic which is contradiction to 𝐵𝜎 is 

two-cyclic. 

If 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 4, then from subcases 2.a.1 to 2.a. 3 of subcase 2.a, we 

get either the elements of 𝑁, say 𝑎, do not lie on the cycle 𝐶 and at most one vertex of the 

cycle lies on the unique 𝑣1 − 𝑣2 path or one of the element of 𝑁 lies on 𝐶 and the unique 

𝑣1 − 𝑣2 path does not contain any vertex of 𝐶 other than 𝑎 for which |𝑀 − {𝑣}| = 1 and 

|𝑁 − {𝑢}| = 2. 

Case 3. 𝐵 − 𝜎 is two-cyclic 

Let 𝐶1 and 𝐶2 be the cycles in 𝐵 − 𝜎 in 𝐺. Then 𝐶1 and 𝐶2 are also the cycles of 𝐵𝜎 in 

𝐺𝜎. We have 0 < 𝑑𝐵(𝑢) ≤ |𝑉(𝐵)| − 3 and 0 < 𝑑𝐵(𝑣) ≤ |𝑉(𝐵)| − 3 in 𝐺. If 𝑑𝐵(𝑢) <
|𝑉(𝐵)| − 3, then there exist at least two vertices of 𝑀, say 𝑢1 and 𝑢2, in 𝑉(𝐵) − 𝜎. Now, 

𝑢𝑣 ∉ 𝐸(𝐺) shows that 𝑢 is adjacent to 𝑢1 and 𝑢1 in 𝐵𝜎. Since 𝐵 − 𝜎 is connected, there 

is an 𝑢1 − 𝑢2 path in 𝐵 and hence in 𝐵𝜎. Now the edges 𝑢1𝑢, 𝑢2𝑢 and the 𝑢1 − 𝑢2 path 

form a cycle 𝐶3 in 𝐵𝜎 different from 𝐶1 and 𝐶2, which is a contradiction to 𝐵𝜎 is two-

cyclic. Hence, 𝑑𝐵(𝑢) = |𝑉(𝐵)| − 3. Similarly, 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 3. 
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Conversely, let either (1) or (2) or (3) in the statement hold. 

Case A. 𝐵 − 𝜎 is connected, acyclic, 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 4 and the path formed 

by elements of 𝑀 and by elements of 𝑁 have either at most one vertex in common for 

𝑀 ∩ 𝑁 = 𝜑 or the vertex 𝑎 in common for 𝑀 ∩ 𝑁 = {𝑎} 

By Theorem 2.1, 𝐵𝜎 is connected since 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 4. Since 𝑢𝑣 ∉ 𝐸(𝐺) 

and 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 4, let 𝑀 = {𝑢1, 𝑢2} and 𝑁 = {𝑣1, 𝑣2}. Now the edges 

𝑢1𝑢, 𝑢𝑢2 and 𝑢2 − 𝑢1 path form a cycle 𝐶 in 𝐵𝜎 and the edges 𝑣𝑣1, 𝑣𝑣2 and 𝑣2 − 𝑣1 path 

form another cycle 𝐶1 in 𝐵𝜎. 

For 𝑀 ∩ 𝑁 = 𝜑, the paths 𝑢1 − 𝑢2 and 𝑣1 − 𝑣2 have at most one vertex in common and 

hence 𝐵𝜎 has only two cycles 𝐶 and 𝐶1. The branches 𝐵𝜎 with minimum number of 

vertices is given in figure 1.1. 

 

                                                                  Fig 1.1: 𝐵𝜎 

For 𝑀 ∩ 𝑁 = {𝑎}, the paths 𝑢1 − 𝑢2 and 𝑣1 − 𝑣2 have the vertex 𝑎 in common. Let 𝑎 be 

𝑢1 = 𝑣1. In this case, 𝐵𝜎 has only two cycles 𝐶 and 𝐶1. The branch 𝐵𝜎 with minimum 

number of vertices is given in figure 1.2. 

 

 

 

                                                                 Fig 1.2 : 𝐵𝜎 

Case B. 𝐵 − 𝜎 is connected, unicyclic, {𝑑𝐵(𝑢), 𝑑𝐵(𝑣)} = {|𝑉(𝐵)| − 4, |𝑉(𝐵)| − 3} and 

for |𝑀 − {𝑣}| = 2 and |𝑁 − {𝑢}| = 1(|𝑀 − {𝑣}| = 1 and |𝑁 − {𝑢}| = 2) either the 

elements of 𝑀(𝑁) do not lie on the cycle of 𝐵 − 𝜎 and the unique path connecting them 

contains at most one vertex of the cycle or one of the elements of 𝑀(𝑁), say 𝑎, lies on 

the cycle and the unique path connecting them contains no vertex of the cycle other than 

𝑎 
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Without loss of generality, let 𝑑𝐵(𝑢) = |𝑉(𝐵)| − 4 and 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 3. By 

Theorem 2.1, 𝐵𝜎 is connected. Let 𝐶 be the unique cycle in 𝐵 − 𝜎. Since 𝑢𝑣 ∉ 𝐸(𝐺), let 

𝑀 = {𝑢1, 𝑢2} and 𝑁 = {𝑣1}. Clearly, 𝑢𝑢1, 𝑢𝑢2 and 𝑣𝑣1 are edges in 𝐵𝜎. Since 𝐵𝜎 is 

connected, there exists an 𝑢1 − 𝑢2 path in 𝐵𝜎. Now the edges 𝑢𝑢1, 𝑢𝑢2 and the path 𝑢1 −
𝑢2 form a cycle 𝐶1 in 𝐵𝜎. 

If the elements 𝑢1 and 𝑢2 of 𝑀 do not lie on the cycle 𝐶 of 𝐵 − 𝜎 and the unique path 

connecting them contains at most one vertex of the cycle 𝐶, then we cannot have any 

cycle other than 𝐶 and 𝐶1 in 𝐵𝜎 implies that 𝐵𝜎 is two-cyclic. The branches 𝐵𝜎 with 

minimum number of vertices is given in figure 1.3. 

 

 

                                                                     Fig 1.3 : 𝐵𝜎 

 

If one of the elements of 𝑀, say 𝑢2, lies on the cycle 𝐶 and the unique path connecting 𝑢1 

and 𝑢2 contains no vertex of the cycle 𝐶 other than 𝑢2, then we cannot have any cycle 

other than 𝐶 and 𝐶1 in 𝐵𝜎 implies that 𝐵𝜎 is two-cyclic. The branch 𝐵𝜎 with minimum 

number of vertices is given in figure 1.4 

 

 

                                                     Fig 1.4: 𝐵𝜎 

 

Case C. 𝐵 − 𝜎 is connected, two-cyclic and 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 3 

Since 𝐵 − 𝜎 is two-cyclic, |𝑉(𝐵)| ≥ 5 and hence by Theorem 2.1, 𝐵𝜎 is connected. Since 

𝑑𝐵(𝑢) = |𝑉(𝐵)| − 3, there exist exactly one vertex of 𝑀, say 𝑢1, of 𝑉(𝐵) − 𝜎 in 𝐵 such 

that 𝑢𝑢1 is an edge in 𝐵𝜎. In the same way, 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 3 implies that there exists 
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exactly one vertex, say 𝑣1, of 𝑉(𝐵) − 𝜎 in 𝐵 such that 𝑣𝑣1 is an edge in 𝐵𝜎. Now 𝐵 − 𝜎 

is two-cyclic and 𝑢𝑣 ∉ 𝐸(𝐺), the addition of the edges 𝑢𝑢1 and 𝑣𝑣1 for both 𝑢1 = 𝑣1 and 

𝑢1 ≠ 𝑣1 do not form any other cycle in 𝐵𝜎. Hence, 𝐵𝜎 is two-cyclic. 

4 Conclusion 

In this article, we came up with necessary and sufficient requirements for 𝐺𝜎, the 

switching of 𝐺 at 𝜎 = {𝑢, 𝑣} to be connected and two cyclic graph when 𝑢𝑣 ∉ 𝐸(𝐺). 

5 Application 

2-Vertex Switching is a technique used in molecular biology to simulate and examine 

molecular structures, including networks of interactions between proteins. In social 

network analysis, 2-Vertex Switching can be applied to study the evolution of social 

networks, identifying key players and community structures. By identifying important 

people and community structures, 2-Vertex Switching can be used in social network 

analysis to examine how social networks have changed over time. 
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