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Abstract:  This paper addresses critical challenges in nonlinear programming and 

integer quadratic programming problems (IQPPs) by presenting innovative solution 

methodologies. It introduces advanced decision-variable reduction techniques that 

optimize solutions by minimizing the number of state variables. The study establishes 

necessary and sufficient conditions for IQPPs and proposes strategies to identify and 

eliminate dominated terms in problem formulations. The variable reduction approach is 

further refined through an in-depth analysis of problem data and upper bounds, al-

lowing certain variables to be fixed at zero. Comprehensive computational analysis 

demonstrates the efficiency of these methods across diverse IQPP scenarios. 

Furthermore, the paper delves into separable IQPPs, providing a streamlined framework 

to enhance understanding and facilitate intuitive problem-solving. MATLAB-based 

simulations and graphical representations validate the practical applicability and 

robustness of the proposed techniques. 

. 
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1. Introduction 

 

Integer quadratic programming problems (IQPPs) represent a class of optimization 

challenges defined by a quadratic objective function and decision variables restricted to 

integer values. These problems are critical in fields such as engineering, economics, and 

operations research, where discrete decision-making is required. Recent advancements 

in IQPP research have focused on addressing computational complexities through 

innovative solution methodologies, including exact algorithms, heuristics, and 

metaheuristics. Mixed-integer quadratic programming (MIQP), which involves both 

integer and continuous variables, has also gained attention, with effective approaches 

such as decomposition techniques, branch-and-bound algorithms, and reformulation 

strategies emerging as key solutions. Research in this area prioritizes the development of 

efficient, scalable methods that balance solution quality with computational feasibility, 

tackling real-world optimization and computational intelligence challenges ([1], [2]). 

Optimization problems, in general, are mathematical models designed to identify 

optimal solutions from a set of feasible alternatives, typically by minimizing or 

maximizing an objective function under specific constraints. Such problems find 

widespread applications in disciplines like engineering, economics, operations research, 

and machine learning. Many real-world scenarios—such as capacity planning, material 
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cutting, and logistics network design—can be formulated as IQPPs, which are often 

high-dimensional and computationally intensive. Addressing these challenges 

necessitates innovative methods for solving large-scale IQPPs efficiently ([3], [4], [5]). 

Variable reduction techniques have emerged as a promising approach for tackling 

complex, large-scale optimization problems. A notable contribution to this area was 

made by Babayev and Mardanov in 1994, who introduced a novel method comparing 

pairs of columns in the constraint matrix for integer programming problems. This 

method significantly reduces the number of integer variables in various problems, 

including Knapsack Problems (KP), Multi-dimensional KPs, and general integer 

programming problems. The authors provided specific conditions under which a variable 

could be fixed at zero in the optimal solution and validated their approach through empirical 

studies on di-verse datasets. Lawrence J. Watters also advanced the field by reducing Integer 

Polynomial Programming Problems to Zero-One Linear Programming Problems, contributing 

further to variable reduction techniques ([6], [7]).  

 Applying variable reduction methods before implementing the Hashian algorithm has been 

shown to decrease prob-lem complexity and mitigate overflow risks associated with direct 

application. However, many existing techniques pri-marily focus on linear or binary 

optimization problems ( [8], [9]). In 2007, Hua proposed a variable reduction approach tailored 

to convex integer quadratic programming problems (IQPPs), leveraging continuous relaxation 

values and fea-sible solutions to identify reducible variables. Zhu and Broughan expanded this 

work by establishing necessary and sufficient conditions for identifying reducible variables in 

general integer linear programming matrices, advancing the understanding  of  reduction  

strategies  ( [10], [11]).  Further  contributions  include  Sun and Gu’s  work  on  nonlinear  

integer programming for postal design problems and Billionnet and Soutif’s exact Lagrangian 

decomposition technique for 0–1 quadratic knapsack problem ([12], [13]). Wang have 

established the path relinking for unconstrained binary quadratic programming in his article in 

2012 and Kumar et al have discussed the advanced solution technique of quadratic programming 

problems with neural network modeling in 2024 ([14], [15]). 

 Building upon these foundational advancements, this paper introduces a novel variable 

reduction technique for general integer quadratic programming problems (GIQPPs). The 

proposed method enables certain variables to be fixed at  zero  while  maintaining  the  

optimality  of  the  solution.  Specific  conditions  for  identifying  removable  decision  

variables in quadratic integer programming problems are presented, with criteria established 

based on problem data analysis and variable upper bounds. The effectiveness of these conditions 

is validated through extensive computational experiments using MATLAB and is illustrated 

with graphical representations of quadratic programming problems. This innovative approach 

contributes to the ongoing development of efficient, scalable optimization solutions for GIQPPs. 

 The paper is organized as follows: Section 1 is an introduction to the topic, setting the context 

for the study. Section 2 explores the fundamental concepts of nonlinear and quadratic 

programming problems. Section 3 presents the derivation of necessary and  sufficient conditions 

for identifying dominated terms and offers a detailed explanation of the separable technique for 

integer quadratic programming problems. Section 4 assesses the effectiveness of the proposed 

technique through computational experiments on randomly generated GIQPPs and separable 

IQPPs. Finally, Section 5 concludes the paper, summarizing key findings and implications. 
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2 Mathematical Formulation of General Quadratic Programming Problems 
 

2.1 An Overview of Nonlinear Programming: 
 

The general nonlinear programming problem describes as: 
 

Optimize (max or min) Z = f(x) = f(xj); 

subject to constraints,               g(x) = gi(xi) ≤ bi, i = 1,2, . . . ,m; 

                  = bi      i = 1,2, . . . ,m;   (1) 

             ≥ bi , 

i = 1,2, . . . ,m; 

 and xi = (x1,  x2,. . . ,xn);∀ j ≥ 0, j = 1,2, . . . , n; 

where f (x) = f(xi) is  real valued  nonlinear  objective  function  of  n  decision  

variables  and  g(x)= gi(xi)  is  real-valued functions of n decision variables. 

 

2.2 Necessary Kuhn-Tucker Conditions of Nonlinear Programming Problems (NLPs) 

 

Maximize Z =  f (x),  

subject to the constraints:   gi(x) = 0,  i = 1,2, . . . , m;  

                                       and x = xi , ≥ 0 for all i.                                                   (2) 

In a nutshell, this is written as:. 

1.  

2.  

3.  

4.  

 

Note: If λ ≤ 0, these conditions also apply to minimization of nonlinear programming 

(NLP) problems. The non negativity conditions x = ( ) ≥ 0 is taken for all these 

conditions 1-4. This represents the feasibilities conditions.  

The Kuhn-Tucker conditions for maximization NLP problem is rewritten as: 

 Maximize Z = f(x), 

 subject to the constraints           (3) 

and    -x  

where x = ( ) 

 In this NLP problem, taking the m+n inequalities into equations. Take the m+n slack 

variables  ≥ 0 (i = 1,2,...,m,m+1,...,m+n) as: 

 

 

The Kuhn-Tucker necessary conditions for the maximum of f(x) is obtained as: 
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1.  

2.  

3.  

4.  

The Kuhn-Tucker necessary conditions is taken into sufficient conditions when f(x) is 

concave and   is convex with respect to x. For minimization NLPPs, f(x) is taken as 

convex, while gi(x) is taken as concave in relation to x.  

Lagrangian function is rewritten as: 

L(x,s,λ) = f( )−  

Where   = (  is the vector of Lagrange multiplier. The necessary 

conditions for an extreme point to be local optimum (max or min) can be obtained by 

solving the following equations: 

 

 

 

Thus, the Kuhn-Tucker necessary conditions to be satisfied at a local optimum (max or 

min) point is stated as follows: 

 

 

 

 

Remark If the provided nonlinear programming (NLP) problem is a minimization 

problem or if the constraints are of the form   ≥ 0, then  ≤ 0. Conversely, if the 

NLP problem is a maximization problem with constraints of the form  ≤ 0, then  ≥ 

0.  

Kuhn-Tucker Sufficient Conditions:  

Theorem 2.1 The Kuhn-Tucker necessary conditions for the problem. 

Maximize Z = f(x), 

subject to the constraints:    ≤ 0, i = 1,2,...,m; x ≥ 0, 

 are also sufficient conditions if f(x) is concave and all  are convex functions of x. 

 

2.3   Quadratic Programming Problems (QPP) 

The mathematical modeling of quadratic programming (QP) problems is expressed as: 
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       Optimize (Maximize or Minimize)  Z =  +  ,  

subject to the constraints: 

 

  

In matrix notation, the quadratic programming problem is reformulated as: 

Optimize (Maximize or Minimize)    Z =cTx+ xTDx, 

subject to the constraints:                   Ax≤b,                                     (5) 

and x ≥0, 

where 

 x = ( )T   is the vector of decision variables, 

 c = (c1,c2, . . . ,cn)
T  is the vector of linear coefficients, 

b = (b1,b2, . . . ,bm)T is the vector of constraint bounds, 

D = [djk] is an n×n symmetric matrix, where., djk =dkj’ 

A =[aij] is an m×n matrix. 

 

3 General Integer Quadratic Programming Problems (GIQPPs) 

 

In this section, let us take the general quadratic programming problem (GIQPP): 

 

GQPP1  min f (x) = xTQx+cTx 

subject to constraint: A1x≤b1; 

x ∈ Zn;                                                                             (6) 

   x ≥ 0. 

Where, Q  =      

Q is a symmetric matrix;   =   

amj = (a1j, a2j, . . . ,amj)
T > 0;       

=( , ,……., )T > 0  

c = (c1,c2, . . . ,cn)
T ∈ Rn; 

  b1 = (b1,b2, . . . ,bm1)
T ∈ Rm1; 
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   b2 =( , ,……., )T∈ Rm2; 

N = {1,2, . . . ,n}; M1 = {1,2, . . . ,m1}; M2 = {1,2, . . . ,m2}. Let S be the feasible range of 

(GIQPP). If we remove some variables from (GIQPP), generally, the optimal solution 

and optimal value will change. However, if the optimal value of the problem which has 

been removed a variable, is equal to that of the original problem (GQPP), then we 

should only consider the new problem with lower dimensions. 

  Let (GIQPPk) be the new problem after removing the term k of (GIQPP): 

 (GIQPPk)  min fk(y) =yTQky+dTy, 

subject to constraints: Ar
1y≤b1, 

Ar
2y = b2,                                                            (7) 

y ∈ Zn−1, 

y ≥ 0,      

where 

Qr = {qr
ij}(n−1)×(n−1) and d = (c1, . . . ,cr−1,cr+1, . . . ,cn)

T ∈ Rn−1; 

A1k = (a1 · · · ak−1 ak+1 · · · an); 

A2k = ( …… ……., ). 

Let Sk be the feasible range of (GIQPPk). 

Definition 3.1. Let x∗ be the optimal solution of (GIQPP) and f (x∗) be the corresponding 

optimal value. y∗ is the optimal solution of (GIQPPk) and fk(y∗) is the corresponding 

optimal value. If fk(y∗) = f (x∗), then we say term k can be removed. The corresponding 

integer variable xk is called a dominated decision variable. 

Theorem 3.1. Let x ∈ Rn be a feasible integer solution of (GIQPP). Suppose k ∈ N and 

for all j ∈ N\{k}, there exist nonnegative integers lj satisfying 

 

If for all j ∈ N \ {k}, we set yj = xj +ljxr, then y ∈ Rn−1 is a feasible integer solution of 

(GQPPk). Additionally, x0 = (y1, . . . ,yr−1,0,yr+1, . . . ,yn)
T is also a feasible integer 

solution of (GIQPP). 

Theorem 3.2. If there exists a nonnegative integer vector l ∈ Sk such that 

lTQkl ≤ qkk; 2aTQ+
kl+dTl ≤ 2aT  ≤ ck; 

then xk is a dominated variable in (GIQPP). Here a = (a1, . . . ,ar−1,ar+1, . . . ,an)
T , Q+

k = 

{q+
ij}, Q−k = {q−

ij}. 

Notes. If aj is the other upper bound of xj, then the result of Theorem 3.2 also holds. 

Denote u = maxi, j∈N\{k}{q+
ij}, v = minj∈N\{k}{q−

rj}, b = maxj∈N\{k}{aj}, and e = (1,1, . . . 

,1)T
(n−1)×1. With these symbols, we obtain the following result. 
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Corollary 3.1. If there exists a nonnegative integer vector l ∈ Sk such that 

lTQkl ≤ qkk; 2b(n−1)(ueT l−v)+dT l ≤ ck; 

then xk is a dominated variable in GIQPP. 

Corollary 3.2. Assume for all i, j ∈ N \ {k}, qij < 0 and qrj > 0 in GIQPP. If there exists 

a nonnegative integer vector l ∈ Sk such that  lTQkl ≤ qkk; d
Tl ≤ ck; 

then xk is a dominated variable in GIQPP. 

Theorem 3.3. In GIQPP1, if xk is a dominated decision variable, then ∃ a nonnegative 

integer vector l ∈ Sk such that 

lTQkl+dTl ≤ qkk +ck; 

where Sk = {y : A1ky ≤ b1,y ∈ Zn−1,y ≥ 0}. 

Theorem 3.4. In GIQPP1, if for k, s ∈ N; s  r, there exists a nonnegative integer ls such 

that 

∀ k ∈ M1, akls ≤ akr,  qssl
2

s ≤ qkk 

 then xk is a dominated decision variable. 

Corollary 3.4. If xk is a dominated decision variable in GIQPP1, then there exists a 

feasible solution x0 of GIQPP1, such that f(x0)≤ qkk + ck. Furthermore, the optimal value 

of GIQPP1, f(x∗), satisfies the inequality f(x∗) ≤ qkk +ck. 

Corollary 3.5. In GIQPP1, for k ∈ N, if qkk ≥ 0 and ck + 2   then xk is a 

dominated decision variable. 

Corollary 3.6. In GIQPP1, if there exist k ∈ N and s ∈ N\{k} satisfying qk≥0, qss ≤ 0, and 

 

then xk is a dominated decision variable. 

Corollary 3.7. In GIQPP1, if ∃ k ∈ N and s ∈ N\ {k} satisfying qkk ≥ 0, qss≥0, and 

 

then xk is a dominated decision variable. 

Corollary 3.8. In GIQPP1, suppose ∃ k ∈ N satisfying qkk ≥ 0 and for all i, j ∈ N\ {k} 

satisfying  

qij < 0. Assume s ∈ N\{k}, if  

 

holds, then xk is a dominated variable. 

Corollary 3.9. In GIQPP1, suppose ∃ k∈ N and s ∈ N\{k} satisfying qkk < 0 and qss < 0. 

If there exists an integer ls satisfying 
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  and    

then xk is a dominated decision variable. 

Corollary 3.10. In GIQPP1, suppose ∃k∈ N satisfying qkk < 0 and for all i,j ∈ N\ {k} 

satisfying 

 qij < 0. Assume s ∈ N\{k}, if there exists an integer ls satisfying 

and   

then xk is a dominated decision variable. 

 

4 Simulation Results Analysis 

 

Example 4.1. Consider the following problem: 

 minf(x)=f(x1,x2,x3,x4)=(−10 +20 +9 +8 +4x1x2−15x1x3+x1x4+ 

3x2x3+9x2x4+ 2x3x4+x1 -4x2 +2x3 +5x4) 

Subject to constraints:  15x1 - 40x2 +24x3 +7x4 ≤ 50 

                         19x1 +23x2 +16x3 +7x4 ≤ 40 

                          x = (x1, x2, x3, x4) ≥ 0, x ∈ X 4 

In the matrix form, the above can be written as, 

 

Subject to constraints:   Ax ≤ b  

where, 

 

x1 ≥0; x2 ≥0; x3≥0; x4≥ 0; x ∈ X 4. 

 We find that q44 +c4 = 21 is larger. Thus, we should let x4 = 0 in the optimal solution 

from Theorem 3.1. The optimal solution is x = (1,0,1,0)T. Using the above Corollaries, 

For k = 4, q44 = 6 > 0 and q4j = 0 for j = 1,2,3; c4 = 5 > 0. x4 is a dominated decision 

variable. We remove x4 first. For k = 2, s = 1; c1 ≤   −c2.x2 is a dominated decision 

variable. Remove x2. The new problem can be written as: 

 

Subject to constraints: 15z1 +24z2 ≤ 50; 

                        19z1 +16z2 ≤ 40; 

                       z = [z1,z2];z1 ≥ 0;z2 ≥ 0;z ≥ 0; 
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                                   z ∈ Z2 . 

The optimal solution is 

 

Thus, the optimal solution for the original problem is  

 

 Example 4.2. Consider the following problem: 

f(x) = f(x1,x2,x3,x4, x5,x6) = (10 +12.5 +10 −8 −3 +12.5 +12x1x2 

+18x1x3 +15x1x4 +4x1x5 +2x1x6 +24x2x3 +19x2x4 +3x2x5 +14x2x6 −6x3x4 +10x3x5 +4x3x6 

+3x4x5 +8x4x6 +7x5x6 −4x1 +8x2 +6x3 +8x4 +8x5 +25x6) 

Subject to constraints: 3x1 +4x2 +6x3 +3x4 +2x5 +1x6 ≤ 200 

4x1 +8x2 +4x3 +7x4 +2x5 +3x6 ≤ 40 

x = (x1,x2,x3,x4) ≥ 0, x∈X 4 

 

In the matrix form, the above can be written as, 

 

 

Subject to constraints:   Ax ≤ b , 

where, 

  

x1 ≥0; x2 ≥0; x3≥0; x4≥ 0; x5≥0; x6≥ 0  x ∈ X 6. 

 Applying the above corollaries, for k = 2, q22 = 25 > 0 and q4j = 4 for j = 1,3,4,5, 6;  

c2 = 8> 0. x4 is a dominated decision variable. For the same reason, there exists k = 6 

satisfying above corollaries, so x6 is a dominated decision variable. Remove x2 first and 

x6. 

 Then the new problem can be written as: 

, 

Subject to constraints: 3z1 +6z2 +3z3 +2z4  ≤ 10; 

                                    4z1 +4z2+7z3 +7z4  ≤ 40; 
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+  −  

                                    z ≥ 0; 

                                   z = [z1, z2, z3, z4]; z1 ≥ 0; z2 ≥ 0; z3 ≥ 0; z4 ≥ 0; z ≥ 0; 

z ∈ Z4. 

 

 Thus, the optimal solution for the originals problems is . 

We used MATLAB to compute two examples with continuous variables, yielding identical 

optimal solutions and values for both cases. This confirms the applicability of the proposed 

technique to general integer quadratic programming problems (GIQPPs). The results show that 

uncorrelated data produces results like strongly correlated data in numerical analysis. The 

decision variable reduction technique requires minimal problem data and can be broadly applied 

to GIQPPs with linear inequality constraints. For examples GIQPP1 and GIQPP3, we analyzed 

randomly generated test problems using uncorrelated and correlated data, where q j j and c j were 

uniformly distributed in [−10,10], and ak j in [0,100]. 

 Experimental conclusions highlight the average remaining variables and dominated rate. For 

separable integer quadratic programming problems, integer variables identified as dominated 

can be fixed at zero before applying solution methods. Additionally, the problem size and the 

number of constraints significantly impact on the dominated rate (percentage) and remaining 

variables. Throughout this article, the following notations are used: qi j = max{qi j , 0} and qi j 

= min{qi j , 0}. Figure 1 is plotted for QPPs 4.1.  

Figure 2 is plotted for QPPs 4.2. 
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Fig. 1: Phase portrait of Quadratic Programming Problem 4.1 with different axes 

 

Fig. 2: Phase portrait of Quadratic Programming Problem 4.2 with different axes. 

 

 

5 Conclusions 

 

This paper explores nonlinear programming and general integer quadratic programming 

problems (GIQPPs), emphasizing advanced optimization techniques. It introduces a novel 

variable reduction method for GIQPPs, which reduces problem dimensionality by fixing 

specific decision variables at zero while preserving optimality. Additionally, it 

establishes necessary and sufficient conditions for identifying and removing dominated 

terms within GIQPPs. Extensive computational experiments conducted in MATLAB 

confirm the proposed approach’s effectiveness, showcasing enhanced solution efficiency 

and accuracy. The findings offer valuable insights into optimizing GIQPPs and present 

a robust framework for tackling large-scale, real-world nonlinear programming 

challenges. 
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