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Abstract. In this paper, we investigate the orthogonally Euler-Lagrange type

cubic functional equation

f(ax+ by) + f(ax− by)− ab2[f(x+ y) + f(x− y)]− 2a(a2 − b2)f(x)

+ c[f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y)] = 0, x⊥y
for fixed non-zero rational numbers a, b and a fixed non-zero real number c

with a2 6= b2 and a 6= ±1 and prove the generalized Hyers-Ulam stability for
it by using the fixed point method,

1. Introduction

Assume that X is a real inner product space and f : X −→ R is a solution of the
orthogonally Cauchy functional equation f(x+ y) = f(x) + f(y), < x, y >= 0. By
the Pythagorean theorem, f(x) = ‖x‖2 is a solution of the conditional equation.
Of course, this function does not satisfy the additivity equation everywhere. Thus,
orthogonal Cauchy equation is not equivalent to the classic Cauchy equation on the
whole inner product space.

The orthogonally Cauchy functional equation

f(x+ y) = f(x) + f(y), x⊥y
in which ⊥ is an abstract orthogonality relation, was first investigated by Gudder
and Strawther [5]. Rätz [16] introduced a new definition of orthogonality by using
more restrictive axioms than of Gudder and Strawther. Moreover, he investigated
the structure of orthogonally additive mappings. Rätz and Szabó [17] investigated
the problem in a rather more general framework.

Definition 1.1. [17] Let X be a real vector space with dimX ≥ 2 and ⊥ a binary
relation on X with the following properties:

(O1) totality for zero: x⊥0 and 0⊥x for all x ∈ X;
(O2) independence: if x, y ∈ X − {0}, x⊥y, then x, y are linearly independent;
(O3) homogeneity: if x, y ∈ X, x⊥y, then αx⊥βy for all α, β ∈ R;
(O4) the Thalesian property: if P is a 2-dimensional subspace of X, x ∈ P

and a non-negative real number k, then there exists an y ∈ P such that x⊥y and
x+ y⊥kx− y.
The pair (X,⊥) is called an orthogonality space. By an orthogonality normed
space, we mean an orthogonality space having a normed structure.
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2 CHANGIL KIM AND GILJUN HAN

Remark 1.2. (i) The trivial orthogonality on a vector space X defined by (O1)
and for non-zero elements x, y ∈ X, x⊥y if and only if x, y are linearly independent.

(ii) The ordinary orthogonality on an inner product space (X,< ·, · >) given by
x⊥y if and only if < x, y >= 0.

(iii) The Birkhoff-James orthogonality on a normed space (X, ‖ · ‖) defined by
x⊥y if and only if ‖x+ ky‖ ≥ ‖x‖ for all k ∈ R.

The relation ⊥ is called symmetric if x⊥y implies that y⊥x for all x, y ∈ X.
Then clearly examples (i) and (ii) are symmetric but example (iii) is not. However,
that a real normed space of dimension greater than 2 is an inner product space if
and only if the Birkhoff-James orthogonality is symmetric.

In 1940, S. M. Ulam proposed the following stability problem (cf. [19]):

“Let G1 be a group and G2 a metric group with the metric d. Given a constant
δ > 0, does there exist a constant c > 0 such that if a mapping f : G1 −→
G2 satisfies d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then there exists a unique
homomorphism h : G1 −→ G2 with d(f(x), h(x)) < δ for all x ∈ G1?”

In the next year, Hyers [6] gave a partial solution of Ulam,s problem for the case
of approximate additive mappings. In 1978, Rassias [14] extended the theorem of
Hyers by considering the unbounded Cauchy difference. The result of Rassias has
provided a lot of influence in the development of what we now call the generalized
Hyers-Ulam stability or Hyers-Ulam stability of functional equations. Ger and
Sikorska [4] investigated the orthogonal stability of the Cauchy functional equation

(1.1) f(x+ y) = f(x) + f(y), x⊥y

and Vajzović [20] investigated the orthogonally additive-quadratic equation

(1.2) f(x+ y) + f(x− y) = 2f(x) + 2f(y), x⊥y

when X is a Hilbert space, Y is a scalar field, f is continuous and ⊥ means the
Hilbert space orthogonality. Later, many mathematicians have investigated the
orthogonal stability of functional equations ([3], [9], [10], [11], [12], [13], and [18]).

In 2001, Rassias [15] introduced the following cubic functional equation

(1.3) f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y) = 0

and every solution of the cubic functional equation is called a cubic mapping and
Jun, Kim, and Chang [8] introduced the Euler-Lagrange cubic functional equation.

In this paper, we consider the following orthogonally Euler-Lagrange type cubic
functional equation

f(ax+ by) + f(ax− by)− ab2[f(x+ y) + f(x− y)]− 2a(a2 − b2)f(x)

+ c[f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y)] = 0, x⊥y.
(1.4)

for fixed non-zero rational numbers a, b and a fixed non-zero real numbers c with
a2 6= b2 and a 6= ±1 and prove the generalized Hyers-Ulam stability for it. Every
solution of (1.4) is called an orthogonally Euler-Lagrange type cubic mapping.

Throughtout this paper, (X,⊥) is an orthogonality normed space with the norm
‖ · ‖X and (Y, ‖ · ‖) is a Banach space.
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2. Solutions of (1.4)

In this section, we investigate solutiuons of (1.4). We will show that a mapping
f satisfying (1.4) is an orthogonally cubic mapping.

Theorem 2.1. Let f : X −→ Y be a mapping with f(0) = 0. If f satisfies (1.4)
and c 6= 0, then f is an orthogonally cubic mapping.

Proof. Suppose that f satisfies (1.4). Setting y = 0 in (1.4), we have

(2.1) f(ax) = a3f(x)

for all x ∈ X and setting x = 0 and y = x in (1.4), we have

(2.2) f(bx) + f(−bx) = (ab2 + 9c)f(x) + (ab2 + c)f(−x)− cf(2x)

for all x ∈ X. Replacing x by −x in (2.2), we have

(2.3) f(bx) + f(−bx) = (ab2 + 9c)f(−x) + (ab2 + c)f(x)− cf(−2x)

for all x ∈ X. Since c 6= 0, by (2.2) and (2.3), we have

(2.4) f(2x)− f(−2x) = 8[f(x)− f(−x)]

for all x ∈ X. Relpacing y by ay in (1.4), by (2.2), we have

a3[f(x+ by) + f(x− by)]− (ab2 + 3c)f(x+ ay)− (ab2 + c)f(x− ay)

+ cf(x+ 2ay)− (2a3 − 2ab2 − 3c)f(x)− 6cf(ay) = 0
(2.5)

for all x, y ∈ X with x⊥y and letting y = y
b in (2.5), we have

a3[f(x+ y) + f(x− y)]− (ab2 + 3c)f(x+ py)− (ab2 + c)f(x− py)

+ cf(x+ 2py)− (2a3 − 2ab2 − 3c)f(x)− 6cf(py) = 0
(2.6)

for all x, y ∈ X with x⊥y, where p = a
b . Letting y = −y in (2.6), we have

a3[f(x− y) + f(x+ y)]− (ab2 + 3c)f(x− py)− (ab2 + c)f(x+ py)

+ cf(x− 2py)− (2a3 − 2ab2 − 3c)f(x)− 6cf(−py) = 0
(2.7)

for all x, y ∈ X with x⊥y. By (2.6) and (2.7), we have

c[f(x+ 2py)− f(x− 2py)]− 2c[f(x+ py)− f(x− py)]

− 6c[f(py)− f(−py)] = 0
(2.8)

for all x, y ∈ X with x⊥y. Letting y = 1
py in (2.8), we have

(2.9) [f(x+ 2y)− f(x− 2y)]− 2[f(x+ y)− f(x− y)]− 6[f(y)− f(−y)] = 0

for all x, y ∈ X with x⊥y.

Let fo(x) = f(x)−f(−x)
2 . Then fo satisfies (2.9). Letting x = 0 in (2.9), we have

(2.10) fo(2y) = 8fo(y)

for all y ∈ X. Letting x = 2x in (2.9), by (2.10), we have

(2.11) 4[fo(x+ y)− fo(x− y)] = fo(2x+ y)− fo(2x− y) + 6fo(y)

for all x, y ∈ X with x⊥y. Interchanging x and y in (2.11), we have

(2.12) 4[fo(x+ y) + fo(x− y)] = fo(x+ 2y) + fo(x− 2y) + 6fo(x)

for all x, y ∈ X with x⊥y. By (2.9) and (2.12), we have

fo(x+ 2y)− 3fo(x+ y) + 3fo(x)− fo(x− y)− 6fo(y) = 0
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for all x, y ∈ X with x⊥y and hence f0 is an orthogonally cubic mapping.

Let fe(x) = f(x)+f(−x)
2 . Then fe satisfies (2.9) and so we have

(2.13) fe(x+ 2y)− fe(x− 2y)− 2[fe(x+ y)− fe(x− y)] = 0

for all x, y ∈ X with x⊥y. Letting y = x in (2.13), we have

fe(3x) = 2fe(2x) + fe(x)

for all x ∈ X and letting y = 2x in (2.13), we have

fe(4x) = 2fe(3x)− 2fe(x)

for all x ∈ X. Hence we have fe(4x) = 4fe(2x) for all x ∈ X and so

fe(2x) = 4fe(x), fe(3x) = 9fe(x), fe(4x) = 16fe(x)

for all x ∈ X. By induction on n, we have

fe(nx) = n2fe(x)

for all x ∈ X and all n ∈ N and hence

fe(rx) = r2fe(x)

for all x ∈ X and all rational number r. By (2.1), since a is a non-zero rational
number with a 6= 1, f(x) = 0 for all x ∈ X. Hence f = fo + fe = fo is an
orthogonally cubic mapping. �

3. The Generalized Hyers-Ulam stability for (1.4)

In this section, we prove the generalized Hyers-Ulam stability for the orthogo-
nally cubic functional equation (1.4) by using the fixed point method.

In 1996, Isac and Rassias [7] were the first to provide applications of stabil-
ity theory of functional equations for the proof of new fixed point theorems with
applications.

Theorem 3.1. [1], [2] Let (X, d) be a complete generalized metric space and let
J : X −→ X be a strictly contractive mapping with some Lipschitz constant L with
0 < L < 1. Then for each given element x ∈ X, either d(Jnx, Jn+1x) =∞ for all
nonnegative integer n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0 ;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞} and

(4) d(y, y∗) ≤ 1

1− L
d(y, Jy) for all y ∈ Y .

For any mapping f : X −→ Y , we define the difference operator Df : X2 −→ Y
by

Df(x, y) = f(ax+ by) + f(ax− by)− ab2[f(x+ y) + f(x− y)]− 2a(a2 − b2)f(x)

+ c[f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y)]

for all x, y ∈ X.
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Theorem 3.2. Assume that φ : X2 −→ [0,∞) is a function such that

(3.1) φ(x, y) ≤ L

|a|3
φ(ax, ay)

for all x, y ∈ X and some real number L with 0 < L < 1. Let f : X −→ Y be a
mapping such that f(0) = 0 and

(3.2) ‖Df(x, y)‖ ≤ φ(x, y)

for all x, y ∈ X with x⊥y. Then there exists a unique orthogonally cubic mapping
F : X −→ Y such that

‖F (x)− f(x)‖ ≤ L

2|a|3(1− L)
φ(x, 0)(3.3)

for all x ∈ X.

Proof. Consider the set S = {g | g : X −→ Y } and define the generalized metric d
on S by

d(g, h) = inf{c ∈ [0,∞) | ‖g(x)− h(x)‖ ≤ c φ(x, 0),∀x ∈ X}.

Then (S, d) is a complete metric space([9]). Define a mapping T : S −→ S by
Tg(x) = a3g(x

a ) for all x ∈ X and all g ∈ S.
Let g, h ∈ S and d(g, h) ≤ c for some c ∈ [0,∞). Then by (3.1), we have

‖Tg(x)− Th(x)‖ = |a|3
∥∥∥g(x

a

)
− h

(x
a

)∥∥∥ ≤ cLφ(x, 0)

for all x ∈ X. Hence we have d(Tg, Th) ≤ Ld(g, h) for all g, h ∈ S and so T is a
strictly contractive mapping. Putting y = 0 in (3.2), we get

‖2f(ax)− 2a3f(x)‖ ≤ φ(x, 0)

for all x ∈ X and hence ∥∥∥f(x)− a3f
(x
a

)∥∥∥ ≤ L

2|a|3
φ(x, 0)

for all x ∈ X and hence d(f, Tf) ≤ L
2|a|3 < ∞. By Theorem 3.1, there exists a

mapping F : X −→ Y which is a fixed point of T such that d(Tnf, F ) → 0 as
n→∞ and

‖F (x)− f(x)‖ ≤ L

2|a|3(1− L)
φ(x, 0)

for all x ∈ X. Replacing x, y by x
an , y

an in (3.2), respectively, and multiplying (3.2)

by |a|3n, by (O3), we have∥∥∥a3nDf( x

an
,
y

an

)∥∥∥ ≤ Lnφ(x, y)

for all x, y ∈ X with x⊥y and all n ∈ N. Letting n→∞ in the last inequality, we
get

DF (x, y) = 0

for all x, y ∈ X with x⊥y and by Theorem 2.1, F is an orthogonally cubic mapping.
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Now, we will show the uniqueness of F . LetG : X −→ Y be another orthogonally
cubic mapping with (3.3). Since F and G are fixed points of T , by (3.3), we get

‖G(x)− F (x)‖ = ‖TnG(x)− TnF (x)‖
≤ ‖TnG(x)− Tnf(x)‖+ ‖TnF (x)− Tnf(x)‖

≤ Ln+1

|a|3(1− L)
φ(x, 0)

for all x ∈ V and for all n ∈ N. Since 0 < L < 1, letting n → ∞ in the above
inequality, we have F = G. �

Related with Theorem 3.2, we can also have the following theorem. And the
proof is similar to that of Theorem 3.2.

Theorem 3.3. Assume that φ : X2 −→ [0,∞) is a function such that

(3.4) φ(ax, ay) ≤ |a|3Lφ(x, y)

for all x, y ∈ X and some real number L with 0 < L < 1. Let f : X −→ Y be a
mapping such that satisfying (3.2). Then there exists a unique orthogonally cubic
mapping F : X −→ Y such that

‖F (x)− f(x)‖ ≤ 1

2|a|3(1− L)
φ(x, 0)(3.5)

for all x ∈ X.

Proof. Consider the set S = {g | g : X −→ Y } and define the generalized metric d
on S by

d(g, h) = inf{c ∈ [0,∞) | ‖g(x)− h(x)‖ ≤ c φ(x, 0),∀x ∈ X}.

Then (S, d) is a complete metric space([9]). Define a mapping T : S −→ S by
Tg(x) = 1

a3 g(ax) for all x ∈ X and all g ∈ S.
Let g, h ∈ S and d(g, h) ≤ c for some c ∈ [0,∞). Then by (3.4), we have

‖Tg(x)− Th(x)‖ =
1

|a|3
‖g(ax)− h(ax)‖ ≤ cLφ(x, 0)

for all x ∈ X. Hence we have d(Tg, Th) ≤ Ld(g, h) for all g, h ∈ S and so T is a
strictly contractive mapping. Putting y = 0 in (3.2), we get

‖2f(ax)− 2a3f(x)‖ ≤ φ(x, 0)

for all x ∈ X and hence ∥∥∥f(x)− 1

a3
f(ax)

∥∥∥ ≤ 1

2|a|3
φ(x, 0)

for all x ∈ X and hence d(f, Tf) ≤ 1
2|a|3 < ∞. By Theorem 3.1, there exists a

mapping F : X −→ Y which is a fixed point of T such that d(Tnf, F ) → 0 as
n→∞ and

‖F (x)− f(x)‖ ≤ 1

2|a|3(1− L)
φ(x, 0)

for all x ∈ X. Replacing x, y by anx, any in (3.2), respectively, and multiplying
(3.2) by |a|−3n, by (O3), we have∥∥∥a−3nDf(anx, any)

∥∥∥ ≤ Lnφ(x, y)
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for all x, y ∈ X with x⊥y and all n ∈ N. Letting n→∞ in the last inequality, we
get

DF (x, y) = 0

for all x, y ∈ X with x⊥y and by Theorem 2.1, F is an orthogonally cubic mapping.
Now, we will show the uniqueness of F . LetG : X −→ Y be another orthogonally

cubic mapping with (3.3). Since F and G are fixed points of T , by (3.3), we get

‖G(x)− F (x)‖ = ‖TnG(x)− TnF (x)‖
≤ ‖TnG(x)− Tnf(x)‖+ ‖TnF (x)− Tnf(x)‖

≤ Ln

|a|3(1− L)
φ(x, 0)

for all x ∈ V and for all n ∈ N. Since 0 < L < 1, letting n → ∞ in the above
inequality, we have F = G. �

As an example of φ(x, y) in Theorem 3.2 and Theorem 3.3, we can take φ(x, y) =

ε(‖x‖pX‖x‖
p
X + ‖x‖2pX + ‖y‖2pX ) for some positive real numbers ε and p. Then we can

formulate the following corollary :

Corollary 3.4. Let (X,⊥) be an orthogonality normed space with the norm ‖ · ‖X
and (Y, ‖ · ‖) a Banach space. Let f : X −→ Y be a mapping such that

(3.6) ‖Df(x, y)‖ ≤ ε(‖x‖pX‖x‖
p
X + ‖x‖2pX + ‖y‖2pX )

for all x, y ∈ X with x⊥y and a fixed positive number p with p 6= 3
2 . Then there

exists a unique orthogonally cubic mapping F : X −→ Y such that

‖F (x)− f(x)‖ ≤ 1

2
∣∣∣|a|2p − |a|3∣∣∣‖x‖2p

for all x ∈ X.

By Theorem 2.1, if c = − 1
3ab

2, then we have the following orthogonally Euler-
Lagrange type cubic functional equation :

f(ax+ by) + f(ax− by)− 2

3
ab2f(x− y)− 1

3
ab2f(x+ 2y)

− a(2a2 − b2)f(x) + 2ab2f(y) = 0

for all x, y ∈ X with x⊥y. By Corollary 3.6, we have the following exmaple.

Example 3.5. Let (X,⊥) be an orthogonality normed space with the norm ‖ · ‖X
and (Y, ‖ · ‖) a Banach space. Let f : X −→ Y be a mapping such that

‖f(ax+ by) + f(ax− by)− 2

3
ab2f(x− y)− 1

3
ab2f(x+ 2y)

− a(2a2 − b2)f(x) + 2ab2f(y)‖ ≤ ε(‖x‖pX‖x‖
p
X + ‖x‖2pX + ‖y‖2pX )

for all x, y ∈ X with x⊥y and a fixed positive number p with p 6= 3
2 . Then there

exists a unique orthogonally cubic mapping F : X −→ Y such that

‖F (x)− f(x)‖ ≤ 1

2
∣∣∣|a|2p − |a|3∣∣∣‖x‖2p

for all x ∈ X.
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It should be remarked that if a functional inequality can be deformed into the
type of (3.2), then a solution of the original functional equation is cubic. In the
following theorems, we give a simple example.

Theorem 3.6. Let φ : X2 −→ [0,∞) be a function such that

(3.7) φ(x, y) ≤ 1

8
Lφ(2x, 2y)

for all x, y ∈ X, some real number L with 0 < L < 1 and f : X −→ Y a mapping
such that f(0) = 0 and

(3.8) ‖f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)‖ ≤ φ(x, y)

for all x, y ∈ X with x⊥y. Then there exists a unique orthogonally cubic mapping
F : X −→ Y such that

‖F (x)− f(x)‖ ≤ L

16(1− L)
[3φ(x, 0) + 8φ(0, x)]

for all x ∈ X.

Proof. Letting x = 0 in (3.8), we have

(3.9) ‖f(y) + f(−y)‖ ≤ φ(0, y)

for all y ∈ X and letting y = 0 in (3.8), we have

(3.10) ‖f(2x)− 8f(x)‖ ≤ 1

2
φ(x, 0)

for all y ∈ X. Letting y = 2y in (3.8), by (3.10), we have

‖8f(x+ y) + 8f(x− y)− 2f(x+ 2y)− 2f(x− 2y)− 12f(x)‖

≤ 1

2
φ(x+ y, 0) +

1

2
φ(x− y, 0) + φ(x, 2y)

(3.11)

for all x, y ∈ X with x⊥y. Interchang x and y in (3.8), by (3.9), we get

‖f(x+ 2y)− f(x− 2y)− 2f(x+ y) + 2f(x− y)− 12f(y)‖
≤ φ(y, x) + φ(0, x− 2y) + 2φ(0, x− y)

(3.12)

for all x, y ∈ X with x⊥y. Putting a = 2, b = 1, and c = −4 in Df(x, y), by (3.8),
(3.11), and (3.12), we have

‖Df(x, y)‖ ≤ ψ(x, y)

for all x, y ∈ X, where

ψ(x, y) = φ(x, y) + 2φ(y, x) +
1

2
φ(x+ y, 0) +

1

2
φ(x− y, 0) + φ(x, 2y)

+ 2φ(0, x− 2y) + 4φ(0, x− y)

Since ψ satisfies (3.1), by Theorem 3.2, we get the result. �

Similar to Theorem 3.6, we have the following theorem :

Theorem 3.7. Let φ : X2 −→ [0,∞) be a function such that

(3.13) φ(2x, 2y) ≤ 8Lφ(2x, 2y)
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for all x, y ∈ X, some real number L with 0 < L < 1 and f : X −→ Y a mapping
satisfying f(0) = 0 (3.8). Then there exists a unique orthogonally cubic mapping
F : X −→ Y such that

‖F (x)− f(x)‖ ≤ 1

16(1− L)
[3φ(x, 0) + 8φ(0, x)]

for all x ∈ X.

By Theorem 3.6 and Theorem 3.7, we have the following corollary :

Corollary 3.8. Let f : X −→ Y be a mapping such that f(0) = 0 and

‖f(2x+y)+f(2x−y)−2f(x+y)−2f(x−y)−12f(x)‖ ≤ ‖x‖p‖y‖p+‖x‖2p+‖y‖2p.

for all x, y ∈ X and a fixed positive real number p with p 6= 3
2 . Then there exists a

unique orthogonally cubic mapping F : X −→ Y such that

‖F (x)− f(x)‖ ≤ 11

2|8− 22p|
‖x‖2p

for all x ∈ X.
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