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The quest for sustainable energy solutions has sparked intense research into biomass 

utilization, a crucial step towards mitigating climate change and weaning ourselves off fossil 
fuels. This study delves into the application of computational intelligence to optimize the 
efficiency of agriculture residual biomass for energy production. Author developed a machine 
learning framework that provides Random Forest and Gradient Boosting models to predict and 
optimize the calorific value and ash content of biomass. To unravel the intricacies of our 
models, employed SHapley Additive exPlanations (SHAP) values, which revealed that the rice 
husk, sugarcane bagasse and wheat husk biomass to Cow Dung Ratio exerted the most 
profound influence on both calorific value and ash content predictions. Notably, the Gradient 
Boosting model underscored the significance of Biomass Type, whereas the Random Forest 
model emphasized the critical role of Particle Size. A correlation heat-map further highlighted 
the pivotal contributions of Biomass Type and Biomass cow dung Ratio to energy output and 
residue levels. Residual analysis validated the efficacy of our models and pinpointed areas for 
refinement. The findings of this study demonstrate the vast potential of computational 
intelligence in optimizing biomass energy systems, offering strategic insights for enhancing 
energy output while minimizing environmental impact. Future research endeavors should 
focus on refining machine learning models, compiling comprehensive datasets, and exploring 
hybrid energy systems to foster more resilient and adaptive energy networks. This study 
contributes meaningfully to the broader objective of transitioning to renewable energy sources 
and promoting sustainable energy practices, ultimately paving the way for a more 
environmentally conscious future 

 

 

1. NTRODUCTION 

 
Heavy reliance on fossil fuels lies at the core of 

escalating climate change, pervasive environmental 

degradation, and increasing energy insecurity. In 

response, researchers around the world are intensifying 

their search for sustainable energy alternatives. The 

industrial drivers of coal dependence in developing 

countries are shown in Figure 1. Renewable energy 

sources—such as hydropower, wind, solar, and 

biomass—not only offer cleaner environmental 

footprints but also bolster energy security. Biomass 

energy, in particular, contributes roughly 1,250 million 

tons of oil-equivalent energy annually [1]. Unlike 

conventional fossil fuels, biomass is derived from 

organic waste streams—including household, industrial, 

an agricultural residues—which means its use 

simultaneously addresses waste management 

challenges and reduces pollution. Furthermore, by 

 

valorizing these residues, biomass energy supports rural 

economies and creates local employment opportunities, 

particularly in developing regions. Enhancing the 

efficiency of biomass conversion processes is essential 

for achieving sustainable development goals and for 

optimizing the performance of renewable energy 

systems [2].Figure 2, which shows the utilization of 

different types of biomass for energy conversion and 

production of briquettes. The largest proportions are 

made up of sawdust and rice husk because of their 

widespread availability and utility in biomass 

applications. Other materials like dry leaves, groundnut 

shells, cashew nut shells, grass stalks, and agricultural 

stalks such as pigeon pea, cotton and soy, are also 

affordably available and make a substantial 

contribution. Organic municipal solid waste and rice 

straw, however, form a smaller fraction and their 

contribution is unconventional. The inclusion of 
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renewable energy enables a more diverse utilization of 

agricultural and organic waste materials. In recent years 

a new biomass resource has been on trial. 

 

 

 
Figure 1. Industrial drivers of coal dependence in 

developing countries 

 
Currently, machine learning and artificial intelligence 

have not received the same level of scientific attention 

as other methodologies in the biomass energy 

conversion process. 

 

 
Figure 2: Utility of biomass types in Literature 

 
The integration of artificial intelligence and machine 

learning in biomass energy options enables the 

development of predictive models for energy yield and 

optimization techniques for parameter refinement. To 

Agricultural residues such as wheat husk, bagasse, and 

rice husk are commonly utilized for producing pallets 

and briquettes. The presence of functional groups like 

C-C, C=C, C-O, and C-H makes these residues 

particularly suitable for biomass applications. 

Additionally, they are readily available, achieve this, we 

primarily employ techniques such as Artificial Neural 

Network (ANN), Support Vector Machines (SVM), and 

Random Forest (RF) Methods. These technologies 

enable us to analyze complex data and predict energy 

production with greater accuracy. This research paper 

explores the application of artificial intelligence and 

machine learning to optimize biomass energy yield. The 

author conducted an investigation to establish the 

relationship between process parameters and energy 

yield. Furthermore, a comprehensive study framework 

is proposed to facilitate the optimization of biomass 

energy. 

 
2. METHODOLOGY AND APPROACH 

 

2.1. Machine Learning (ML) Approach for 

Biomass Energy Conversion: 

 
ML presents a groundbreaking approach to optimizing 

biomass energy conversion, leveraging cutting-edge 

algorithms such as Random Forest (RF), Artificial 

Neural Networks (ANNs), and eXtreme Gradient 

Boosting (XGB). These algorithms excel at capturing 

complex interactions between biomass composition and 

energy parameters, including calorific value and ash 

content, thereby providing enhanced accuracy and 

profound insights[3], [4]. Recent studies have 

successfully harnessed ML tools to predict and optimize 

the energy potential of agricultural residues. This 

research employed RF and XGB models, chosen for 

their robustness in modeling nonlinear interactions and 

handling outliers, making them particularly suited for 

biomass datasets with diverse compositions[5], [6]. A 

comprehensive investigation was conducted, training 

the RF model using literature data and validating it with 

experimental results on wheat husk, bagasse, and rice 

husk using cow dung binder. The model's performance 

was evaluated using metrics such as Mean Squared 

Error (MSE) and R-squared (R²) values [7]. To 

elucidate the key drivers of energy performance, SHAP 

were applied. SHAP analyses revealed the most 

influential biomass components contributing to desired 

outcomes, providing actionable insights for optimizing 

wheat husk, bagasse, and rice husk-based bioenergy 

systems. 
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Figure 3 shows a flow Chart for Biomass Energy 

Prediction and Optimization Process. An XGB model 

was developed to further optimize biomass energy 

conversion, leveraging its ability to handle high- 

R², and Mean Absolute Error (MAE), and compared in 

terms of computational efficiency and interpretability 

[12].By integrating machine learning with experimental 

insights, this study presents a comprehensive approach 

dimensional data and complex interactions between 

biomass components. The performance of the RF and 

XGB models was evaluated using metrics such as MSE, 

to optimizing wheat husk, bagasse, and rice husk using 

cow dung binder biomass energy conversion, 

supporting the development of sustainable bioenergy 

solutions. 

 
 

 

 
 

Figure 3: Flow Chart for Biomass Energy Prediction and Optimization Process 
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1.1. Materials and Sample Preparation: 

The study utilized agriculture residual (wheat husk, 

bagasse and rice husk) and cow dung as binder 

materials. Biomass was sourced from the nearby fields, 

while cow dung was collected from Village dairy farms. 

The experiment runs consisted of three primary wheat 

husk, bagasse and rice husk with cow dung in varying 

ratios (60:40%, 70:30%, 80:20%). The samples were 

prepared by sun-drying and grinding the biomass to 

achieve a consistent particle size, followed by mixing 

with cow dung and compressing into tablets. The 

trained machine learning models, including Random 

Forest Regressor and eXtreme Gradient Boosting is 

used to verify and predict the optimal blending ratios 

and processing conditions for wheat husk, bagasse and 

rice husk biomass energy conversion. The models were 

tuned using hyper-parameter optimization techniques, 

and their performance was evaluated using metrics such 

as Mean Squared Error and R-squared. SHAP were 

used to interpret the models and identify the key drivers 

of energy performance in biomass energy conversion 

systems. 

 

1.2. Experimental Design and Measurement: 

A comprehensive investigation was conducted to 

explain the effects of three critical factors (Table 1) - 

Biomass Type (Bagasse, Rice husk, and Wheat husk), 

Biomass cow dung Ratio (60:40%, 70:30%, and 

80:20%), and Particle Size (0.75 mm, 2.78 mm, and 4.8 

mm) - on the energy potential and combustion 

efficiency of biomass pellets. 

 
A full factorial design was employed, comprising 27 

experimental runs that systematically evaluated all 

possible combinations of these independent variables. A 

ML framework was developed to predict and optimize 

the calorific value and ash content of biomass pellets, 

leveraging the experimental data generated from the 

design. Calorific value measurements were obtained 

using a Digital Bomb Calorimeter (Model: DS-CS- 

100X75), while ash content determinations were 

performed using a Harrier Enterprises Muffle Furnace 

(Tubular type). The accuracy and reliability of the ML 

models were rigorously validated by comparing 

predicted values with actual experimental results.  

 
Table 1: Sample grouping of Henna Biomass and Cow Dung Combinations 

Level Biomass Type Biomass % Particle Size(mm) 

1 Bagasse 60% Biomass: 40% Cow Dung 4.8 (High) 

2 Rice Husk 70% Biomass: 30% Cow Dung 2.775(Medium) 

3 Wheat Husk 80% Biomass: 20% Cow Dun 0.75(Low) 

 
 

 

A strong correlation between the predicted and 

experimental values was observed, thereby confirming 

the efficacy of the models in predicting the energy 

potential and combustion efficiency of biomass pellets. 

A full factorial design was employed, comprising 27 

experimental runs that systematically evaluated all 

possible combinations of these independent variables. A 

ML framework was developed to predict and optimize 

the calorific value and ash content of biomass pellets, 

leveraging the experimental data generated from the 

design. Calorific value measurements were obtained 

using a Digital Bomb Calorimeter (Model: DS-CS- 

100X75), while ash content determinations were 

performed using a Harrier Enterprises Muffle Furnace 

(Tubular type). The accuracy and reliability of the ML 

models were rigorously validated by comparing 

predicted values with actual experimental results.  

            A strong correlation between the predicted and 

experimental values was observed, thereby confirming 

the efficacy of the models in predicting the energy 

potential and combustion efficiency of biomass pellets. 

 
2. MACHINE LEARNING MODELS FOR 

BIOMASS ENERGY CONVERSION 

 
This study establishes a comprehensive framework 

for optimizing Bagasse, Rice husk, and Wheat husk 

biomass energy conversion by integrating machine 

learning models with evolutionary algorithms. This 

innovative approach enables the development of 

efficient biomass-based energy production systems, 

leveraging predictive modeling to forecast biomass 

energy conversion efficiency, calorific value, and ash 

content, while optimization techniques identify. 
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 The multi-objective optimization problem was 

addressed using Python 3.12, employing Random Forest 

and Gradient Boosting Regressors for predictive 

modelling for optimizing calorific value and ash 

content. All coding tasks were performed in PyCharm 

Community Edition 2024.2.4, with long code blocks 

modularized into functions and organized across 

separate files for improved readability and 

maintainability. 

 
 

2.1. Data Processing & Feature Engineering: 

 
A thorough pre-processing pipeline was developed to 

ensure data quality and integrity. This involved 

handling missing values, removing duplicates, and 

normalizing continuous variables using Standard 

Scaler. Categorical variables, such as biomass 

type, were encoded using one-hot and label encoding 

to facilitate machine learning analysis. 

 A comprehensive literature review was conducted, 

analyzing 24 research articles from diverse data sources. 

This review yielded 120 readings of biomass pellets, 

which are presented in Table 4. The critical factors 

influencing pellet quality, including biomass type, 

particle size, and Biomass cow dung ratio, were 

identified and their effects on calorific value and ash 

content were succinctly summarized. To further 

enhance feature engineering, new variables were 

introduced, including squared terms for Biomass cow 

dung percentage and the logarithm of particle size. This 

allowed for the capture of non-linear relationships in 

the data, providing a more comprehensive 

understanding of the complex interactions between 

variables. The final dataset comprised 120 observations 

across variables, with no missing or duplicate values 

after preprocessing. Descriptive statistics for the key 

variables are presented in Table 2, providing a picture 

of the data distribution and central tendency. 

 
Table 2: Descriptive Statistics of Key Variables 

Parameter Mean Std 

Dev 

Min 25th 

Percentile 

Median 75th 

Percentile 

Max 

Biomass cow dung Ratio 

(%) 

72.78 8.95 60.00 62.50 80.00 80.00 80.00 

Particle Size (mm) 2.43 0.35 2.00 2.00 2.50 2.70 3.00 

Avg. Calorific Value 

(kcal/kg) 

4302.65 1021.34 3090.00 3521.25 4315.00 5184.75 6230.00 

Avg. Ash Content (%) 7.73 4.80 2.46 4.50 6.23 8.92 17.42 

 
 

 
2.2. Model Development and Evaluation: 

 

The predictive modelling phase employed RF and GB 

models. Model performance was evaluated using 

metrics such as MEA, Root Mean Squared Error, and 

R2. The model is hyper-tuned using Randomized and 

Grid Search for hyper-parameter optimization. 

 
Table 3: Model Performance Metrics RFR and GB 

 
The performance of the models was evaluated based on 

their R² values, where models achieving R² > 0.8 were 

considered excellent, and those exceeding R² > 0.7 were 

deemed good. Notably, all models in this study 

surpassed the excellent threshold with R² > 0.8. A 

comparative analysis revealed that the Gradient 

Boosting (GB) model outperformed the Random Forest 

(RF) model in predicting both calorific value (R² = 

0.99999) and ash content (R² = 0.99), demonstrating 

its superior generalization capabilities on the available 

dataset. Table 3 presents a comprehensive comparison 

of the performance metrics for both RF and GB 

repressors, including Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), and R², highlighting their 

effectiveness in predicting calorific value and ash 

content. 

 

Model Target 

Variable 

MSE RMSE R² 

Random 

Forest 

Calorific 

Value 

10,102.15 100.51 0.94 

Random 

Forest 

Ash 

Content 

0.97 0.98 0.96 

Gradient 

Boosting 

Calorific 

Value 

14.47 3.80 0.99 

 

Gradient 

Boosting 

Ash 

Content 

0.01 0.10 0.99 
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GB demonstrated superior performance with the 

highest R² values for both targets, particularly excelling 

in minimizing MSE. The Random Forest also showed 

strong predictive ability but was less accurate than GB 

in both cases. 

 
2.2.1. SHAP and Feature Importance: 

 
SHAP analysis was conducted to interpret model 

predictions and identify significant controllable factors 

(Table 5). The analysis revealed that biomass type and 

squared Biomass cow dung Ratio were the most 

influential factors affecting calorific value and ash 

content. This interpretability framework enhanced the 

model's transparency, aiding in actionable decision- 

making. Figure (4, 5) present the SHAP summary plots 

for RF and GB models, respectively. According to plot of 

Calorific Value, Bagasse, Rice husk, and Wheat husk 

Biomass Cow Dung Ratio was the most significant 

predictor and according to Ash Content, Particle Size 

(mm) had a higher influence on reducing ash content. 

 

 
Table 5: Feature Importance 

Feature Random Forest 

(Calorific) 

Gradient Boosting 

(Calorific) 

Random Forest 

(Ash) 

Gradient 

Boosting (Ash) 

Biomass cow 

dung Ratio 

0.47 0.55 0.43 0.49 

Particle Size 

(mm) 

0.38 0.30 0.45 0.42 

Biomass Type 0.15 0.15 0.12 0.09 

 

2.2.2. SHAP Values comparison for the RF and 

GB Calorific value Model: 

 
The comparison of SHAP values for the RF and GB 

models (Figure 4(a), (b)) reveals differences in how 

these models attribute importance to features - 

 influencing the calorific value of biomass briquettes. 

Both models agree that the Bagasse, Rice husk, and 

Wheat husk Biomass to Cow Dung Ratio is the most 

critical factor, with a SHAP value of approximately 350, 

emphasizing its dominant role in maximizing energy 

output. 

 

 

 

   
(a) 
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(b) 

Figure 4: SHAP Value model for calorific value; (a) RF and (b) GB 
 

However, the Gradient Boosting model assigns 

greater importance to Biomass Type, with a SHAP 

value of 200 compared to 75 in the Random Forest 

model, suggesting that Gradient Boosting captures a 

stronger link between biomass selection and energy 

content. Conversely, the Random Forest model places 

more emphasis on Particle Size, assigning it a SHAP 

value of 150 compared to 100 in the Gradient 

Boosting model, indicating a higher sensitivity to 

particle size variations. These differences highlight 

complementary strengths in the models, with GB 

emphasizing biomass type and RF prioritizing 

particle size. Together, they suggest that producers 

should universally optimize the Bagasse, Rice husk, 

and Wheat husk Biomass to Cow Dung Ratio while 

also considering model-specific insights to refine 

biomass type and particle size for enhanced briquette 

performance. 

 
2.2.3. SHAP Values comparison for the RF 

and GB Ash content% Model: 

 
The comparison of SHAP values for the RF and GB 

models predicting ash content (Figure 5(a), (b)) 

reveals similarities and subtle differences in feature 

importance. Both models identify the Biomass cow 

dung Ratio as the most influential feature, with a 

SHAP value of approximately 2.5 in each case, 

emphasizing its pivotal role in determining ash levels 

and the necessity of its optimization for cleaner 

combustion and reduced residue. 

 

                               
(a) 
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(b) 

Figure 5: SHAP Value model for Ash content %; (a) RF and (b) GB 
 

For the biomass type, both models attribute a SHAP 

value of around 1.5, indicating consistent recognition of 

its moderate yet significant influence on ash content. 

This highlights the shared importance of selecting 

appropriate biomass types to minimize ash production. 

The models differ slightly in their evaluation of particle 

size. The RF model assigns a SHAP value of 

approximately 0.5, suggesting a more substantial 

impact compared to the GB model, which assigns a 

SHAP value of about 0.25. This indicates that the 

Random Forest model attributes greater sensitivity to 

variations in particle size, whereas the GB model 

considers it a less critical factor. In summary, while both 

models agree on the hierarchy of feature importance- 

Bagasse, Rice husk, and Wheat Husk Biomass cow Dung 

ratio, biomass type, and particle size—they differ in the 

degree of emphasis placed on particle size. Producers 

should universally prioritize optimizing the cow dung 

ratio and biomass type, while also considering particle 

size adjustments, particularly when relying on the RF 

model for insights. 

 

2.3. Correlation Heat-map: 

 

The heat-map (Figure 6) illustrates the correlation 

coefficients among five key variables: Avg. Calorific 

Value (kcal/kg), Avg. Ash Content (%), Bagasse, Rice 

husk, and Wheat husk Biomass to Cow Dung Ratio, 

Particle Size (mm), and Biomass Type. 

 

  

 
 

Figure 6: Correlation Heat-map for calorific vale and Ash content
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The correlation heatmap illustrates the relationships 

between various factors, with a gradient transitioning 

from blue (negative correlations) to red (positive 

correlations). The intensity of the color represents the 

strength of the correlation. Notably, the analysis reveals 

that Biomass Type has a profound impact on both Average 

Calorific Value and Average Ash Content. 

A strong negative correlation (-0.76) exists between 

Biomass Type and Average Calorific Value, indicating 

that certain biomass types tend to have lower calorific 

values. Additionally, a moderate negative correlation (-

0.44) is observed between Biomass Type and Average 

Ash Content, suggesting that specific biomass types are 

associated with higher ash content. 

Furthermore, the biomass-to-cow-dung ratio emerges 

as a critical factor, exhibiting a moderate positive 

correlation (0.42) with Average Calorific Value and a 

moderate negative correlation (-0.6) with Average Ash 

Content. This highlights the importance of optimizing 

the biomass-to-cow-dung ratio to maximize energy 

output while minimizing residue. 

In contrast, Particle Size exhibits weaker correlations, 

indicating a relatively lesser influence on the outcome 

variables. Overall, the analysis underscores the 

significant impact of Biomass Type and biomass-to-cow-

dung ratio on calorific value and ash content, providing 

valuable insights for optimizing biomass energy 

production. 

The modeling results corroborate the importance of 

Biomass Type and ratio, while SHAP analyses provide a 

detailed understanding of their effects on calorific value 

and ash content. Specifically, the ratios of Bagasse, Rice 

husk, and Wheat husk are found to be significant 

predictors of calorific value, whereas Particle Size has a 

notable impact on ash content 

 

2.4. Residual Analysis:  

 

The findings unequivocally highlight the pivotal role of 

the Bagasse, Rice husk, and Wheat husk biomass-to-

cow-dung ratio in facilitating efficient energy conversion. 

This discovery aligns seamlessly with the underlying 

principles of biomass combustion, where a delicate 

balance between fuel and additives can significantly 

enhance thermal efficiency and residue quality. 

 

    In essence, the optimal blending of biomass and cow 

dung can lead to improved combustion characteristics, 

resulting in higher energy yields and reduced residue 

generation. 

 

 

 

 This nuanced understanding of the biomass-to-cow-

dung ratio's impact on energy conversion has far-

reaching implications for the development of sustainable 

and efficient biomass-based energy systems. 

Furthermore, the exceptional performance of the 

Gradient Boosting model serves as a testament to its 

remarkable capacity to capture complex, nonlinear 

relationships between predictors and outputs. By 

effectively modeling these intricate interactions, the 

Gradient Boosting algorithm provides a robust 

framework for predicting energy conversion outcomes 

and optimizing biomass-based energy production 

processes. 

 

     
Figure 7: Residual Plot for calorific value 

   

The integration of machine learning and multi-objective 

optimization techniques has yielded a powerful tool for 

addressing the intricate challenges inherent in biomass 

energy research. One of the most significant advantages 

of this approach lies in its ability to navigate the complex 

interplay between competing objectives, such as 

maximizing energy yield while minimizing ash content. 

The considerable variability in ash content observed in 

this study serves as a poignant reminder of the 

paramount importance of rigorous preprocessing 

protocols and precise control over the biomass-to-cow-

dung ratio.  

   By meticulously optimizing these factors, researchers 

and practitioners can unlock the full potential of biomass 

energy, paving the way for the development of scalable, 

efficient conversion systems that can make a meaningful 

impact on the environment and energy landscape.  

  Ultimately, the successful harnessing of biomass energy 

will depend on our ability to carefully balance competing 

objectives, navigate complex nonlinear relationships, 

and develop innovative solutions that can be scaled up to 

meet the demands of a rapidly changing world.  
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2.4.1. Residual Plot Analysis - Calorific Value: 

 

The residual plot for calorific value (Figure 7) provides 

essential insights into the effectiveness of the regression 

model in predicting Bagasse, Rice husk, and Wheat 

husk biomass briquette energy content. 

The residual plot offers a visual representation of the 

discrepancies between actual and predicted calorific 

values, with residuals spanning a range of approximately 

-200 to 200. In an ideal scenario, these residuals would 

be scattered randomly around the zero mark, indicating 

a robust model that accurately captures the underlying 

relationships between variables without any systematic 

biases. However, the presence of patterns, such as curves 

or funnel shapes, in the residual plot would suggest that 

the model is incomplete, failing to fully capture the 

complexities of the relationship between variables. 

Moreover, large residuals would highlight specific 

calorific values where the model struggles to provide 

precise predictions, underscoring the need for 

refinement. 

  From a practical perspective, verifying the accuracy of 

the model is crucial. A random scatter of residuals 

around zero would confirm a good fit, while discernible 

patterns would indicate a need for further refinement. 

Identifying outliers is also essential, as they may result 

from data inaccuracies or represent legitimate values 

that the model fails to capture.  

   To enhance predictive accuracy, several improvements 

can be made. These include introducing new variables 

that may provide additional insight, transforming 

existing variables to better capture nonlinear 

relationships, or exploring alternative regression 

techniques that may be better suited to the data. By 

adopting these strategies, it is possible to develop a more 

robust and accurate model that provides reliable 

predictions and informs decision-making. In conclusion, 

the residual plot serves as a crucial diagnostic 

instrument, enabling a comprehensive evaluation of the 

regression model's efficacy.  

   By leveraging the insights gleaned from residual 

analysis, model developers can identify areas for 

improvement, optimize model performance, and 

ultimately generate more precise and trustworthy 

predictions. This, in turn, facilitates informed decision-

making, drives innovation, and advances the 

development of more efficient and sustainable energy 

solutions. 

 

2.4.2. Residual Plot Analysis - Ash Content: 

 

The residual plot for ash content (Figure 8) offers 

valuable insights into the regression model's 

performance.  

 
Figure 8: Residual Plot for Ash Content 

 
A random distribution of residuals confirms a well- 

fitting model, while discernible patterns indicate the 

need for refinement. Investigating outliers is crucial to 

determine whether they result from data errors or valid 

observations the model fails to capture. If necessary, 

improvements can be made by adding variables, 

transforming data, or adopting alternative regression 

techniques. Ultimately, the residual plot serves as a 

vital diagnostic tool for assessing and enhancing the 

accuracy and reliability of regression models in 

predicting ash content. 

 
3. CONCLUSION 

 
This research showcases the effectiveness of machine 

learning (ML) in optimizing energy conversion from 

Bagasse, Rice husk, and Wheat husk biomass. Author 

focused on calorific value and ash content as key 

performance indicators. The proposed ML models 

achieved high predictive accuracy (R² > 95%) and low 

root mean square error (RMSE), successfully capturing 

complex relationships and interactions between 

variables. The flexibility of ML enabled to explore 

broader optimization possibilities without requiring 

significant experimental redesign. Notably, our analysis 

identified optimal parameter ranges, including biomass 

percentages (75-85%) and particle sizes (2.5-3.5 mm). 

This study contributes to the limited existing research on 

Bagasse, Rice husk, and Wheat husk biomass for 

bioenergy applications using ML. By combining Bagasse, 

Rice husk, and Wheat husk with cow dung, we produced 
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valuable insights into feature importance. This research 

provides a comprehensive framework for optimizing 

biomass energy conversion, paving the way for future 

research in this field. By providing a scalable 

framework for Bagasse, Rice husk, and Wheat husk 

utilization, this study enhances energy efficiency and 

contributes to environmental sustainability by reducing 

agricultural waste and emissions. These results lay a 

strong foundation for future research and industrial 

adoption, promoting Bagasse, Rice husk, and Wheat 

husk integration into renewable energy systems to 

support global sustainability goals. 
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Table 4. A systematic literature review was conducted on Biomass studies 

 
S.No. Raw Material Binder Study Outcome Calorific 

Value 
(kcal/kg) / 
HHV 

Citations 

1 Sawdust Burnt 
Engine Oil 

High energy content 
briquettes 

4450 [10] 

2 Rice Husk, Dry Leaf, Groundnut 
Shell, Sawdust 

Paper Pulp Moderate energy, 
lightweight briquettes 

4000, 3500, 
4700, 4500 

[11] 

3 Cashew Nut Shell, Rice Husk, Grass 
(Combinations: 50:25:25, 25:50:25, 
25:25:50) 

None Stable energy content 5154.58, 
4687.56, 
4188.64 

[12][13] 

4 Pigeon Pea Stalk, Cotton Stalk, Soy 
Stalk 

None High density, durable 
briquettes 

4707.88, 
4566.90, 
4892.64 

[14] 

5 Sawdust (SD) (15%, 25%, 35%, 45% 
Binder) 

Cassava 
Starch 

Versatile binder effect 7160, 6830, 
8370, 7240 

[14] 

6 Rice Husk (RH) Starch High calorific value, 
suitable for fuel 

3627 [15] 

7 100SD:00RH, 94SD:06RH, 
92SD:08RH, 90SD:10RH 

Organic 
Binder 

High heating value, 
suitable for large-scale 
use 

6480, 6370, 
6250, 5900 

[16] 

8 olive mill solid waste %-Binder% 
(100-0, 90-10, 85-15, 70-30) 

Corn 
Starch 

Improved wear 
resistance 

16.36 MJ/kg, 
16.92 

[17] 

9 Rice Straw, Rice Husk, Sawdust 
(10RS:40CD, 10RH:05RS:40CD, 
20SD:05RS:40CD) 

Cow 
Dung(CD) 

Moderate density, 
cost-effective 
briquettes 

2389.86, 
3188.10, 
3227.52 

[18] 

10 Rice Husk with MC (12%, 14%, 
16%), blended with 10 wt% Kraft 
Lignin 

Kraft 
Lignin 

High binding 
efficiency 

14.040 MJ/kg, 
17.688, 13.106 

[19] 

11 Bagasse Molasses High energy output 4200 [20][21] 
12 Wood Chips Synthetic 

Binder 
Moderate compressive 
strength 

4500 [22] 

13 Maize Stalk None Lightweight, 
moderately strong 

4300 [23] [24] 

14 Wheat Husk Lime Durable, dense 4700 [25] 
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   briquettes   

15 Corn Cobs Clay Suitable for fuel 
applications 

4400 [26] 

16 Coconut Shell None High energy, hard 
briquettes 

5500 [26][27] 

17 Bamboo Dust Water 
Glass 

Easy to ignite, high 
energy 

5000 [28] 

18 Mustard Stalk Synthetic 
Polymer 

Flexible, dense 
briquettes 

4700 [29] 

19 Coffee Husk None Compact, eco-friendly 4800 [29] 
20 Eucalyptus Leaves Cow Dung Biodegradable, 

moderate heating 
4300 [29] 

21 Peat Moss Organic 
Polymer 

Slow-burning, high 
energy 

5200 [29] 

22 Pine Needles Cassava 
Starch 

Lightweight, easy to 
handle 

4400 [29] 

23 Groundnut Shells Lime Durable, high binding 4900 [30] 
24 Sunflower Husk Clay Moderate heating, 

biodegradable 
4500 [31] 
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