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Abstract 

This study investigates the fluctuations in rice production, cultivated area, and productivity, 

aiming to identify key contributing factors and develop strategies for future improvements. By 

analysing secondary time-series data from the Economic Survey, Manipur 2021-2022, 

published by the Directorate of Economics and Statistics, Government of Manipur, the 

research employs Univariate Auto-Regressive Integrated Moving Average (ARIMA) models, 

compound growth rate models, and exponential smoothing techniques to assess trends and 

forecast future patterns. The results reveal varying model performances, with the Compound 

Growth Rate model demonstrating the highest explanatory power for rice production and 

productivity, while the Exponential Smoothing model more effectively captures variations in 

cultivated area. The ARIMA model also provides useful insights but exhibits relatively lower 

R-square values across all parameters. Notably, while total rice production continues to 

increase, the cultivated area is shrinking over time, indicating enhanced productivity and 

efficiency in rice farming. These findings highlight the need for targeted policies to support 

sustainable agricultural practices, ensuring that increased yields do not come at the cost of 

long-term soil health and resource depletion. 

Keywords: Forecast, Modelling, Rice Yield, ARIMA, Compound Growth Rate, Exponential 

Smoothing. 

Introduction 

Rice is a fundamental staple for more than half of the world's population, particularly 

in Asia and Africa, where it serves as both a primary food source and an economic driver. 

Over 3.5 billion people rely on rice for daily sustenance, making it a critical component of 

global food security (Bin Rahman and Zhang, 2023). In India, rice plays an essential role not 

only in sustaining food production but also in contributing to economic stability (Mahajan et 

al., 2017). Within the north eastern state of Manipur, rice is the dominant crop, serving as the 

backbone of the state’s agriculture-dependent economy. Despite its small geographical area 

of 22,327 square kilometres and limited arable land, approximately 70.79% of the population 
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depends on agriculture, highlighting its socio-economic significance (Singha and Mishra, 

2015). 

The Economic Survey of Manipur 2022-23 underscores the prominence of 

agriculture, particularly rice cultivation, which accounts for nearly 90% of the Gross Cropped 

Area (GCA) in the state (Manipur, 2021). The cropping intensity stands at 143.26%, 

reflecting frequent cultivation cycles, yet recent data indicate a decline in rice cultivation area 

from 180.72 thousand hectares in 2018-19 to 175.62 thousand hectares in 2019-20. Such 

reductions in cultivated land raise concerns regarding the sustainability of rice production and 

its long-term impact on food security in the region. 

Several studies have investigated the factors influencing rice production and 

productivity in Manipur. Meitei and Sharma (2023) explored agro-climatic conditions and 

constraints faced by farmers, identifying climatic variations and resource limitations as 

significant contributors to production fluctuations. Similarly, Kumari et al. (2022) and 

Shafiya et al. (2023) emphasized the necessity of historical data analysis in selecting 

appropriate time-series models for forecasting rice production trends. Understanding these 

trends is crucial for policymakers and agricultural stakeholders to develop informed strategies 

for improving production efficiency and ensuring food security. Forecasting models play a 

vital role in agricultural planning. Thangjam and Jha (2020a) analysed the effectiveness of 

statistical models in predicting rice yields, while Chanu and Oinam (2023) demonstrated the 

significance of data-driven approaches in understanding production trends. Advanced 

statistical methods such as Univariate Auto-Regressive Integrated Moving Average 

(ARIMA) models, compound growth rate models, and exponential smoothing techniques 

have been widely used to assess trends and predict future production patterns. These models 

aid in formulating effective agricultural policies and optimizing resource allocation to 

enhance rice productivity. 

Given the growing challenges in rice production, collaboration between researchers, 

agricultural experts, and government agencies is essential for ensuring that predictive models 

align with real-world farming conditions. Strengthening data-driven decision-making and 

policy implementation can help Manipur move towards self-sufficiency in rice production. 

This study aims to conduct a comprehensive analysis of rice production trends in Manipur 
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using advanced time-series modeling techniques. By integrating statistical insights with 

policy recommendations, the research seeks to enhance forecasting accuracy and support 

sustainable agricultural development in the region. 

Materials and Methods 

 Present study is based on secondary data obtain from the economic survey of Manipur, 

Department of Agriculture, Government of Manipur for the year 2022-23. The time series 

data on rice production and area was collected for the period of 43 years from 1980 to 2022. 

For data analysis, the SPSS software package is utilized. The ARIMA model: ARIMA stands 

for Auto-Regressive Integrated Moving Average. A non-seasonal ARIMA model is 

represented as an ARIMA (p,d,q) model (Anggraeni et al., 2021; Dhaka and Poolsingh, 2023; 

Eyduran et al., 2022; Hemavathi and Prabakaran, 2018; Kathayat and Dixit, 2021; Mahajan et 

al., 2020). The notations are given as 

p: Order of the autoregressive terms that is number of lagged values (past values 

used in the model  

d:  Order of the differencing to make stationarity of the variable 

q:  Order of the moving average terms that is the number of lagged error terms 

involved in the model.  

The general ARIMA (p, d, q) model is presented in simple form as 

    (1)                                                                                                

Where,  is autoregressive operator of order ‘ p’ defined by 

   

  : the  order difference values of the random variable  . 

  : rice production, area, or productivity at time t. 

 (B): moving average operator of order ‘q’ defined by  

  (B) =  

  error component which is white noise. 

An ARIMA (p,1,q) model is given by 

                      =     (2) 

i.e.  

    

          Where,    
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Whereas B is the backshift operator defined by 

                              (m=0,1, 2,….p) 

  : backward difference operator  

                      

The Dickey- Fuller test 

To identify the stochastic nature of a non-stationary series, the Dickey-Fuller test 

involves regressing the series on its first lag to assess if the regression coefficient of the 

lagged term is approximately equal to one and statistically significant (Box, 2013; Hipel et 

al., 1977). This is done under various conditions, including no constant, a non-zero constant, 

or a non-zero constant plus a deterministic trend coefficient. Examine the scenario known as 

the autoregressive no constant test. This model assumes that the regression equation does not 

include a significant constant term. 

The initial regression model under examination is 

 

A regression model without an intercept indicates that this analysis tests for pure 

random walk without drift 

 

and for  then 

 

                      (1-L)  

                              t =  

                         |t|   

Where,  the critical value of the first case. 

The degrees of freedom are calculated as number of observation used in the test - 

number of lags included in then regression -1. The time series has a unit root, and is non-

stationary. If the null hypothesis is not rejected, it suggests that the data-generating process 

has a unit root and is non-stationary. Consequently, a two-sided significance test is conducted 

to determine the statistical significance of  , similar to a t-test. The null hypothesis that 

the series follows a non-stationary random walk is rejected if |t| exceeds  , with 's value 

depending on the sample size and the specific parameters included in the equation. 
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Analysis 

a) Data: The time series data on rice for a period of 41 years (1980-2022) has been 

collected from the Directorate of Economic and Statistics, Government of 

Manipur, Imphal. 

b) Implementing an ARIMA model involves four stages, which are: 

i) Model identification: Stationarity was achieved by taking the first-order 

differences. Once the series became stationary, the p and q orders were 

identified using the correlogram of the ACF and PACF, respectively. 

ii) Model Estimation: The parameters are estimated using the least squares 

method. 

iii) Diagnostic evaluation: Diagnostic checking involved evaluating the model's 

assumptions using techniques such as the Ljung-Box statistic (autocorrelation 

test) and the ACF and PACF of the residuals (goodness-of-fit test). The 

model also met the criteria for having the lowest AIC/BIC. 

Ljung- Box test: 

It tests the null hypothesis that the residuals from the model are independently 

distributed. The test statistic Q is calculated based on the autocorrelations of the 

residuals (Jhade and Dagam, 2020). 

The Ljung-Box Q statistics, denoted as Q, is computed as: 

  Q(m)=n(n+2)  

   Where,  n: the sample size 

: is the autocorrelation at lag j 

m: number of lag variables being tested 

 

We reject the null hypothesis  that our model fits well and accept the alternative 

hypothesis that the model show lack of fit if 

                                            Q >  

where,  table value of for h degrees of freedom at 5% level of significance. 

The degrees of freedom h must be determined as m−p−q, where p and q denote 

the number of parameters in the estimated model. 

iv) Forecasting: The model developed can be employed for predicting future 

values.  
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Compound Growth Model: The compound growth rate model calculates how a value grows 

over time when the growth is reinvested or compounded (Islam et al., 2023; Yadav et al., 

2020). The equation for computing the compound growth rate is outlined below 

     (3) 

where,  production/area/productivity at time t 

  constant (base year production/area/productivity) 

                  t = time periods in years  

r = compound growth rate 

To simplify the analysis, we take the logarithm on both sides and obtain 

    (4) 

   =A+ Bt 

where,   A =   

 B =  and  

  B = regression coefficient 

  Compound growth rate (%) = (Antilog B-1) *100 

Exponential Smoothing Model: Exponential smoothing is a forecasting technique used to 

predict future data points by applying weighted averages to past observations, where the 

weights decrease exponentially over time (Dritsaki and Dritsaki, 2021; Kumari et al., 2022). 

The cumulative weighted mean up to period t for n data points  

  

  

The most basic version of exponential smoothing is expressed by the equation 

    (5) 

Where, forecast value at time t+1 

  current forecast value 

  Smoothing factor  

 = Actual value at time t 

Results and Discussion 

In this study, we utilized data on rice production, area, and productivity spanning 

from 1980 to 2022. To predict rice production, area, and productivity, the ARIMA model is 

applied only after converting the forecasted variable into a stationary series (Dhaka and 
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Poolsingh, 2023). The stationarity of the series is assessed by analyzing the differences or 

examining the time plot of the data. This test revealed that the time series of rice production, 

area, and productivity is non-stationary. The formal approach to testing the stationarity of a 

series, known as the Dickey-Fuller test (i.e., unit root test), is also employed to assess the 

stationarity of the time series for rice production, area, and productivity and found the data 

was nonstationary(Mamun et al., 2021; Pande and Ramesh, 2024). 

To achieve stationarity, applying a first-order difference (i.e., d=1) to the series for 

rice production, area, and productivity was sufficient. The graphical stationarity test, 

illustrated in Figure 1 clearly indicates that the original series for rice production, area, and 

productivity does not exhibit constant variance. However, the first-order differenced series 

displays a more stable variance compared to the original series. The Dickey-Fuller test 

statistic values were found to be 3.872, 4.971, and 4.736 for rice yield, cultivated land, and 

crop productivity respectively, each with a lag of 3. The Dickey-Fuller test revealed that the 

stationarity condition is met with a first-order difference, with a p-value of 0.01 for 

production, area, and productivity. This strongly indicates that there is no unit root in the 

first-order differenced series for rice production, area, and productivity at a 1% significance 

level. 

By examining the orders of the ACF and PACF for the differenced series of rice 

production, area, and productivity in the correlogram in Figures 2, 3, and 4, the values of the 

parameters p and q are determined and estimated. 
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Original series (area) Difference series (area) 
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Figure 4. Graphical presentation of ACF and PACF of differenced data of rice productivity 

Figure 3.  Graphical presentation of ACF and PACF of differenced data of rice area 

Figure 2. Graphical presentation of ACF and PACF of differenced data of rice production 



                        Journal of Computational Analysis and Applications                                                              VOL. 33, NO. 2, 2024 

 

                                                              1045                    Taibangjam Loidang Chanu et al 1036-1052 

 

 

Table 1: Summary of statistics of fitted ARIMA models 

Crop Aspects Model Fit Statistics Ljung -Box 
Statistics 

Stationary  

 

R-
square 

RMSE MAPE MAE Normalized 
BIC 

Statistics Sig. 

Rice Production ARIMA 

(1,1,2) 

0.521 0.545 1.578 5.742 1.081 1.268 23.747 0.07 

Area ARIMA 

(2,1,2) 

0.348 0.260 0.318 1.512 0.192 -1.843 11.632 0.636 

Productivity ARIMA 

(2,1,2) 

0.389 0.422 0.121 5.335 0.077 -3.786 

 

12.840 0.539 

 

ARIMA (1,1,2), ARIMA (2,1,2), and ARIMA (2,1,2) models are the most suitable for rice 

production, area, and productivity, respectively, as they exhibit the highest number of significant 

coefficients along with the lowest AIC and normalized BIC values. The estimated parameters for the 

fitted ARIMA (1,1,2), ARIMA (2,1,2), and ARIMA (2,1,2) models for the production area and 

productivity of rice are presented in Tables 1. The Ljung-Box test reveals a p-value of 0.441, strongly 

indicating that there is no autocorrelation among the residuals of the fitted ARIMA (1,1,2) model for 

rice production at the 5% significance level. Similarly, for the area, the Ljung-Box test shows a p-

value of 0.983, which strongly suggests no autocorrelation among the residuals of the fitted ARIMA 

(2,1,2) model at the 5% significance level. Additionally, for productivity, the Ljung-Box test yields a 

p-value of 0.776, again strongly suggesting the absence of autocorrelation among the residuals of the 

fitted ARIMA (2,1,2) model at the 5% significance level. Thus, these models are recommended for 

future forecasting. Additionally, the suitability and reliability of the fitted models are confirmed by 

the flat ACF and PACF of the residuals for rice production, area, and productivity, as shown in 

Figures 2,3 and 4, respectively. In the correlogram of the residuals, all lags fall within the confidence 

limits, indicating a good fit to the given data. 

Graphical diagnostics for the residuals of the fitted ARIMA models for production, area, and 

productivity are presented in Figures 5,6 and 7 respectively. These figures show that nearly all points 

align closely with the Q-Q line, indicating that the residuals of the fitted ARIMA models are normally 

distributed for rice production, area, and productivity. Therefore, based on both graphical and formal 

tests, it is evident that the ARIMA (1,1,2), ARIMA (2,1,2), and ARIMA (2,1,2) models are the best 

choices for forecasting rice production, area, and productivity in Manipur. The future values predicted 

by the ARIMA models are shown in Table 2. The graphical representations of the observed and 

predicted values for rice production, area, and productivity are displayed in Figures 11,12 and 13, 

respectively. Table 3 shows that regression coefficient of rice area, production, and productivity by 
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using compound growth rate model is significant at 5% level. Table 4   shows Summary report for the 

fitted compound growth rate model of rice production, area, and productivity.  Table 5 shows 

Exponential smoothing approach to assess rice production, area, and productivity trends between 

1980 and 2022. Table 6 overviews of the Statistics for Fitted Exponential Smoothing Models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Showing of normality of residuals for ARIMA (1,1,2) model of rice production 

 

Figure 9. Showing of normality of residuals for ARIMA (2,1,2) model of rice area 

 

Figure 10. Showing of normality of residuals for ARIMA (2,1,2) model of rice productivity 
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Figure 11. Graphical representation of original and forecasted rice production 

Figure 12. Graphical representation of original and forecasted rice area 

Figure 13. Graphical representation of original and forecasted rice productivity 
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Table 2: Future Forecasting of Rice Production, Area, and Productivity in Manipur Using the 

ARIMA Method 

Year Future prediction for rice 

Forecasted value for 

Production (tonne) 

Forecasted value for 

Area (ha) 

Forecasted value for 

Productivity (t/ha) 

2023 484.25 178.55 2.72 

2024 509.42 177.90 2.77 

2025 503.56 176.79 2.79 

2026 520.42 175.81 2.84 

2027 520.82 174.99 2.88 

2028 533.39 174.30 2.92 

2029 537.25 173.72 2.96 

Table 3: Regression parameters estimated for rice production, area, and productivity from 

1980 to 2022. 

Crop Aspect  Value T value Sig. 

Rice Production Constant 2.419 117.034 0.000 

Coefficient(B) 1.002 2956.116 0.000 

Area Constant 2.201 309.502 0.000 

Coefficient(B) 1.000 78160.68 0.000 

Productivity Constant 0.212 12.697 0.000 

Coefficient(B) 1.018 320.706 0.000 

** denotes statistical significance at the 0.05 level. 

Table 4: Summary report for the fitted compound growth rate model 

Crop Aspect R  SE 

Rice Production 0.746 0.557 0.028 

Area 0.445 0.198 0.010 

Productivity 0.669 0.447 0.254 

** denotes statistical significance at the 0.05 level. 

Table 5: Exponential smoothing approach to assess rice production, area, and productivity 

trends between 1980 and 2022 

Crop Aspect  estimate SE t value Sig. 

Rice Production  0.142** 0.040 3.553 0.001 

Area 0.150** 0.041 3.662 0.001 

Productivity 0.175** 0.045 3.918 0.000 

** denotes statistical significance at the 0.05 level. 

Table 6: Overview of the Statistics for Fitted Exponential Smoothing Models 
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Crop Aspect Fit statistics Ljung -Box 

Statistics 

R-

square 

RMSE MAPE MAE Normalized 

BIC 

Statistics Sig. 

Rice Production 0.398 1.755 6.640 1.242 1.212 26.563 0.110 

Area 0.295 7.997 13.684 0.282 4.169 15.550 0.556 

Productivity 0.307 0.385 11.359 0.238 -1.823 22.662 0.182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Forecasting rice production using the exponential smoothing model 

 

Figure15. Forecasting rice area using the exponential smoothing model 

 

Figure 16. Forecasting rice productivity using the exponential smoothing model 

 



                        Journal of Computational Analysis and Applications                                                              VOL. 33, NO. 2, 2024 

 

                                                              1050                    Taibangjam Loidang Chanu et al 1036-1052 

 

Table 7 presents a comparison between the compound growth rate model, the 

exponential smoothing model, and the ARIMA model. It was found that the compound 

growth rate model performs better compared to the ARIMA and exponential smoothing 

models, as it has the highest R² value among the three. 

Table 7: Comparison of R² values for the ARIMA model, compound growth rate model and 

exponential smoothing model 

Particulars  value 

ARIMA model 

(1,1,2) 

Compound growth 

rate 

Exponential growth 

rate 

Production 0.545 0.557 0.398 

Area 0.260 0.198 0.295 

Productivity 0.422 0.447 0.307 

 The study reveals that the ARIMA model explains 54.5% of the variation in rice 

production, as indicated by the R-square value, based on the independent variables used. In 

comparison, the compound growth rate model accounts for 55.7% of the variation in 

production with the same variables. Similarly, the exponential smoothing model explains 

39.8% of the variation in production. For area and productivity, the ARIMA model accounts 

for 26.05% and 42.2% of the variation, respectively. The compound growth rate model 

explains 19.8% of the variation in area and 44.7% in productivity, while the exponential 

smoothing model captures 29.5% of the variation in area and 30.7% in productivity using the 

same independent variable. 

 The projected values indicate that rice production is on the rise, while the area 

under cultivation is gradually declining. Factors contributing to this trend could include: 

- Improved agricultural techniques: Use of better seeds, fertilizers, or farming 

methods. 

- Technological advancements: Implementation of modern machinery or 

irrigation systems. 

- Shifts in land use: Land previously used for rice cultivation might be 

repurposed for other crops, urban development, or other uses. 

- Intensification of farming practices: Higher yields achieved through focused, 

intensive farming on smaller areas. 

 This pattern reflects a transition towards more efficient use of agricultural land, but 

it might also raise concerns about long-term sustainability, soil health, or the risks of over-
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reliance on intensive practices. To ensure self-sufficiency in rice production, it is essential for 

the relevant authorities to take timely and appropriate measures.  
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