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Abstract: 

Identifying fruit diseases is essential to prevent crop losses and reduce economic challenges for farmers 

and traders. Effective detection ensures quality standards, supports trade, and protects crops and ecosystems from 

disease spread. This study focuses on developing a fruit disease identification using datasets of Citrus, Guava, 

Papaya, and Apple fruits. These fruits are affected by various diseases. Citrus fruits are susceptible to blackspot, 

canker, screening, and scab. Guava fruits can be afflicted by Phytophthora, Root disease, and Scab. Papaya fruits 

face threats from Anthracnose, Black spot, Phytopthora, powdery mildew and ring spot. while Apple fruits are 

vulnerable to blotch, rot, and scab which can harm productivity and quality if not addressed early. The proposed 

system uses Enhanced Anisotropic Diffusion to preprocess images, enhancing important features and reducing 

noise. The ALR-AM-Net model combines tuned versions of AlexNet, LeNet, and ResNet with BiLSTM layers 

and an attention mechanism to focus on critical image details. Multi-level feature fusion used at the decision level 

ensures the model considers all extracted information for accurate classification. This approach enables early and 

accurate disease detection, reducing crop damage and improving agricultural sustainability. The results 

demonstrate that using Enhanced Anisotropic Diffusion with the ALR-AM-Net model achieves high accuracy, 

supporting better crop management and economic stability. 

Keywords: Anisotropic Diffusion, ALR-AM-Net Model, Attention Mechanism, Fruit Disease 

Identification 

Introduction: 

With the growing global population, food production has become one of the greatest challenges. It is 

estimated that food consumption will double by 2050, necessitating a more high-yielding and sustainable 

environment to increase plant yield [5]. 

India’s diverse climate, soil, and land types greatly impact what crops and fruits farmers choose to 

grow, with their economic value being a key factor. Agriculture is a major part of a country’s economy, as 

many nations depend on farming and related industries for income. Protecting and ensuring the safety of crops 

is essential for every country. In developing nations like India, challenges like malnutrition are closely tied to 

the need for better food security. 
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Pests and weeds are major factors that disrupt the natural growth of crops, reducing both quality and 

yield, and causing significant economic losses. Fruit trees play a vital role in a state's economy, while fruits 

are essential in human diets, providing key nutrients. With the global population rising, the demand for fruits 

and vegetables is growing rapidly. Early and accurate detection of fruit diseases is critical to prevent economic 

losses. Although experts can manually inspect and classify fruit diseases, this process is often time-consuming 

and expensive. Therefore, there is a strong need for smart, automated solutions. Since most infections appear 

visibly on fruits, computer vision-based methods are an effective way to detect diseases. To address the 

growing demand for food, it is imperative to integrate modern technology into the agriculture sector. In recent 

years, developing effective technology for agricultural monitoring has been challenging. Continuous 

monitoring of fruits is essential to take immediate precautions and prevent diseases from spreading to other 

parts of the fruit or adjacent fruits. Numerous studies, leveraging image processing, machine learning, and 

deep learning techniques, have significantly advanced the identification and recognition of fruit diseases. 

Our study focuses on citrus, guava, papaya, and apple fruits. Among these, citrus plants stand out for 

their high vitamin C content and widespread popularity across the Indian subcontinent, the Middle East, and 

Africa. Citrus fruits provide numerous health benefits and are extensively used in the agricultural industry as 

raw materials for products like jams, sweets, ice creams, and confectionery. However, citrus plants are 

vulnerable to diseases such as blackspot, canker, greening, and scab [7]. 

Guava, a member of the Myrtaceae family, is an important fruit originally from the American tropics. 

It was introduced to Portugal in the early 17th century [8]. Guava is popular in both tropical and non-tropical 

regions, including countries like Bangladesh, India, Pakistan, Brazil, and Cuba. It is rich in nutrients like 

phosphorus, calcium, and nicotinic acid [9]. Guava also offers health benefits, such as controlling blood 

pressure, managing diabetes, boosting immunity against dysentery, and relieving diarrhea. It grows well in 

various soil types with pH levels between 4.4 and 4.9 and can survive extreme climate changes [10]. Common 

guava diseases include Phytophthora, root disease, and scab. 

Apple is one of the most important tree fruits, ranking second in global fruit production [11]. In 2017, 

global apple production reached 83.1 million tons, highlighting its popularity worldwide [12]. Apples are 

versatile and can be eaten fresh or used in various products [13]. About 33% of apples are processed into 

items like juices, ciders, applesauce, dried apples, and other products [14]. However, the apple industry faces 

significant losses due to diseases that reduce product quality. Although visual inspection can identify diseased 

apples, human evaluation is often subjective and error-prone. Accurate and timely disease detection is 

essential to minimize losses. Apples are susceptible to diseases like blotch, rot, and scab. For our study, the 

dataset includes 16 classes, with 11,198 images of both healthy and diseased fruits, sourced from Kaggle. 

Papaya is a major fruit crop in India, the world's largest producer, with an annual output of around 3 

million tons. Despite its significance, research on papaya fruit quality classification remains limited [15]. 

Identifying healthy and diseased papayas accurately is vital for efficient marketing and export. Manual 

inspection often leads to errors, highlighting the need for an automated disease detection system. Common 

diseases affecting papayas include Anthracnose, Black Spot, Phytophthora, Powdery Mildew, and Ring Spot. 



Journal of Computational Analysis and Applications                                        VOL. 33, NO. 8, 2024   
 

 
 

 1777              G. Sathya Priya et al 1775-1797                   
 

Our proposed ALR-AM-Net model integrates anisotropic diffusion with advanced deep learning 

architectures, such as BiAlexNet, BiLeNet, and BiResNet, along with an attention mechanism and multimodal 

feature fusion techniques. This approach improves the model's ability to accurately identify and classify fruit 

diseases, aiding in effective agricultural management and boosting economic outcomes.  

 

Article Organization: 

 The article follows a structured approach, comprising different sections that address various aspects 

of the research. Section 2 provides an in-depth exploration of related works, offering a comprehensive 

overview of existing literature in the field. In Section 3, the methodology is presented in detail. Section 4 

encompasses performance evaluation, result analysis, and comparison with earlier studies. Finally, Section 5 

discusses conclusions. This structured approach ensures a systematic and organized presentation of the 

research, aiding in clear comprehension. 

Section - 2 

Related Work: 

The identification of fruit diseases has been extensively researched, with various machine learning 

and deep learning methods developed to enhance detection accuracy. Researchers have conducted numerous 

experiments using neural network models to classify and detect diseases from fruit images. 

Vinay Kukreja et al. [16] aimed to improve the quality assessment of agricultural products to increase 

market value and reduce waste. They utilized a Convolutional Neural Network (CNN) to classify citrus fruits 

as either healthy or defective. Initially, their model achieved 67% accuracy on 150 images without 

preprocessing or data augmentation. However, after applying preprocessing and data augmentation on an 

expanded dataset of 1,200 images, the model's accuracy improved significantly to 89.1%. This study 

highlights the crucial role of preprocessing and data augmentation in enhancing the performance of deep 

learning models for fruit defect detection. 

Asad Khattak et al. [17] proposed a CNN-based model to identify common citrus diseases, including 

black spot, canker, scab, greening, and melanose, in both fruits and leaves. The model uses multiple layers to 

extract key features and achieved a test accuracy of 94.55% on the Citrus and PlantVillage datasets. This 

accuracy surpasses other state-of-the-art models, offering a reliable solution for farmers to classify citrus 

diseases effectively. 

Zongshuai Liu et al. [18] introduced a deep learning approach for citrus disease recognition using 

image analysis. They created a database of images for six common citrus diseases and utilized the 

MobileNetV2 model as the primary network. MobileNetV2 excelled in accuracy, speed, and compactness, 

achieving an 87.28% classification accuracy while reducing prediction time and model size. This innovation 
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supports efficient, real-time disease detection on mobile devices, highlighting the potential of deep learning 

and mobile technology in managing agricultural diseases. 

Walaa N. Jasim et al. [19] explored using Convolutional Neural Networks (CNNs) for identifying and 

classifying citrus diseases. They used a dataset of 2,450 images, covering seven disease types, including 

anthracnose, brown rot, and citrus canker. Their CNN model achieved an impressive 88% accuracy, showing 

its strong performance. They also found that the RMSProp optimization algorithm performed slightly better 

than ADAM. Additionally, the study highlighted the effectiveness of CNNs in agricultural applications, 

especially with the use of data augmentation. 

Ashok Kumar Saini et al. [20] developed a deep learning system for early citrus disease detection in northern 

India, an important citrus-growing region. The system uses a CNN, enhanced with transfer learning and data 

augmentation, to analyze images of citrus leaves taken in the visible light spectrum. It categorizes diseases, 

pests, and nutritional issues into seven types. Integrated into an Android app, the system provides a quick, 

cost-effective alternative to traditional methods, achieving over 90% accuracy and minimal processing time, 

making it practical for field use. 

Sukanya S. Gaikwad et al. [21] studied the classification of fruit leaf diseases using deep convolutional neural 

networks (CNNs), focusing on Apple, Custard Apple, and Guava leaves from the Hyderabad and Karnataka 

regions in India. The study aimed to address the gap in fungal classification by introducing a dataset of 14,181 

images, spanning ten disease types, with variations in color, black and white, and grayscale images. They 

trained two CNN models, AlexNet and SqueezeNet, achieving recognition accuracies of 86.8% and 86.6% on 

color images, respectively. The results highlight the effectiveness of color images for disease classification 

and the potential for improving fungal classification with diverse dataset variations. 

Hashan et al. [22] developed an advanced guava fruit disease detection system (GFDI) to improve production 

and reduce economic losses. The system uses an enhanced convolutional neural network (improved-CNN) 

based on AlexNet, incorporating techniques such as data augmentation, contrast enhancement, image resizing, 

and dataset splitting. Trained on 612 images, the improved-CNN achieved 98% accuracy on training data and 

93% accuracy on test data with a learning rate of 0.001, while reducing model parameters by over 50 million 

compared to traditional AlexNet. This study highlights the model's effectiveness in improving disease 

detection accuracy and convergence rates, marking a significant advancement in guava disease management. 

Abdur Nur Tusher et al. [23] looked at using deep learning to detect crop diseases in Bangladesh, where 

agriculture is a major part of the economy. Diseases like bacterial blight and leaf brown spot threaten crops 

such as guava, mango, rice, corn, and peach. Early detection is key to reducing crop damage, but many farmers 

still rely on manual methods, which are slow and often inaccurate. To solve this, the researchers developed 

an automated system using Convolutional Neural Networks (CNN) for disease detection. Their model, trained 

on a large dataset, achieved an impressive accuracy of 95.26%. This system can help farmers detect diseases 

faster and more accurately, improving crop management. 
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Piyush Kumar Pareek et al. [24] focused on using deep learning to detect diseases in grapefruit leaves. With 

grapefruits being an important crop worldwide, it's crucial to catch diseases early, but many farmers lack the 

skills to do so, leading to poor yields. The study proposed a system that first uses K-means clustering to isolate 

image backgrounds and then applies a CNN for disease classification. They also improved the model's 

accuracy by fine-tuning its settings using Firefly and cyclic randomization techniques. The CNN model 

achieved 95% accuracy, which is much better than previous models, which only reached 88-90%. This 

research shows how combining deep learning and image processing can greatly improve disease detection 

and crop management. 

Lili Fu et al. [25] worked on improving the detection and management of apple leaf diseases, which are crucial 

for the global apple industry. They designed a Convolutional Neural Network (CNN) based on AlexNet to 

identify five specific apple leaf diseases. Their model includes advanced techniques like dilated convolution 

to extract large-scale features with fewer parameters, a parallel convolution module for multi-scale feature 

extraction, and shortcut connections to handle additional complexities. An attention mechanism enhances the 

model's focus on relevant features while minimizing background interference. Global pooling replaces fully 

connected layers to reduce parameters and preserve feature integrity. The model achieved an impressive 

97.36% accuracy and is compact at just 5.87 MB, offering a lightweight and effective solution for apple leaf 

disease identification. 

Section - 3 

Methodology 

 This study introduces the ALR-AM-Net model for precise fruit disease identification. The proposed 

workflow is illustrated in Figure 1. The process is organized into several key steps, each of which is detailed 

below. 

 

Fig 1: General flow diagram of the proposed ALR-AM-NET model 



Journal of Computational Analysis and Applications                                        VOL. 33, NO. 8, 2024   
 

 
 

 1780              G. Sathya Priya et al 1775-1797                   
 

Data Acquisition: 

In this study, a total of 12,838 images were utilized sourced from Kaggle [26,27,28,29], encompassing a 

variety of fruits and their conditions. The dataset includes both healthy and diseased fruits of citrus, guava, 

papaya and apple. The classification for each fruit diseases is as follows: 

• Citrus: Categories include black spot, canker, greening, and scab. 

• Guava: Disease categories consist of Phytophthora, root rot, and scab. 

• Papaya: Diseases are classified into Anthracnose, black spot, phytopthora, powdery mildew and 

ring spot. 

• Apple: Images are categorized into blotch, rot, normal and scab. 

As outlined in Table 1, the dataset is split for training and testing purposes, with 80% of the data allocated for 

model training and 20% reserved for testing. This approach ensures that the model is evaluated on a 

representative subset of the data, facilitating an accurate assessment of its performance. 

Table 1 

The total number of samples for each class in the citrus and guava fruit disease dataset (After 

augmentation). 

Class Number of Samples 

 Apple 

Blotch 1280 

Normal 800 

Rot 1460 

Scab 1000 

Total 

Images 
4540 

 Citrus 

Blackspot 1230 

Canker 1023 

Greening 160 

Scab 241 
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Healthy 416 

    Total Images        3070 

 Guava 

Phytopthora 1520 

Root 310 

Scab 1240 

     Total Images        3070 

 Papaya 

Anthracnose 380 

Black spot 340 

Healthy 288 

Phytopthora 310 

Powdery 

mildew 
310 

Ring spot 530 

    Total Images 2158 

Preprocessing: 

Preprocessing encompasses Image Enhancement, Noise Removal and Data augmentation 

Image Enhancement: 

To enhance fruit disease images, the Contrast Limited Adaptive Histogram Equalization (CLAHE) 

method is utilized. CLAHE is designed to improve image contrast, making intricate details more discernible 

and significantly boosting overall image quality. This technique is particularly effective for images captured 

under non-uniform illumination or varying light conditions, where traditional methods might struggle. Unlike 

standard histogram equalization, CLAHE limits noise amplification during the contrast enhancement process, 

thereby preserving image quality and preventing the introduction of unwanted artifacts. The adaptive nature 

of CLAHE allows for localized contrast adjustments, meaning that different regions of an image can be 

enhanced independently based on their specific lighting conditions. This targeted enhancement ensures that 

the natural appearance of the image is maintained, while critical details are highlighted, making it easier to 
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analyze and interpret. This is especially valuable in applications where clear visibility and high contrast are 

essential for accurate disease diagnosis and analysis in fruit images. 

Noise Removal: 

To remove noise from the fruit disease data, anisotropic diffusion is applied. This sophisticated image 

processing technique is designed to reduce noise while preserving crucial features like edges. Anisotropic 

diffusion smooths out noise without blurring important details, ensuring that key information, such as edges, 

remains intact. Here's process and the parameters used in anisotropic diffusion: 

• In the anisotropic diffusion process, gradients are computed in four directions—north, south, east, and 

west—using the np.roll function to measure intensity differences between each pixel and its neighbors. 

The diffusion coefficients, which control the amount of smoothing, are calculated based on the chosen 

formula: exponential decay of squared gradients (Option 1), inverse quadratic function of gradients 

(Option 2), or exponential decay of absolute gradients (Option 3).  

• A dynamic threshold is set, derived from the mean gradient magnitude, to adapt the diffusion process to 

the image's characteristics and regulate smoothing. The image is updated iteratively by adjusting each 

pixel's intensity according to the weighted sum of neighboring gradients, influenced by the diffusion 

coefficients. After each iteration, the algorithm checks if the mean diffusion value falls below the 

threshold; if so, the process halts early, signaling that the image has converged and further iterations 

would yield minimal changes. 

Parameters Used in Anisotropic Diffusion: 

In this anisotropic diffusion process, 20 iterations are used for smoothing the image. The kappa value 

of 50 balances edge sensitivity, allowing more smoothing while preserving edges. The gamma parameter, set 

at 0.2, controls the diffusion rate per iteration, ensuring moderate smoothing. The option parameter 1 employs 

an exponential function to calculate diffusion coefficients, effectively balancing noise reduction and edge 

preservation. The delta_thresh of 1e-4 serves as a convergence criterion, stopping the process when changes 

between iterations are minimal. 

Fig:2 Sample images of citrus, guava, papaya and apple fruit disease dataset 
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Data Augmentation: 

 Data augmentation is a powerful technique for enhancing the diversity of a dataset by applying various 

transformations to existing data. Although it doesn't create new data points, it significantly improves the 

performance and generalizability of deep learning models. By generating augmented versions of input data, 

techniques such as random rotations, shifts, flips, shearing, and zooming introduce variability that helps the 

model learn better. The fill_mode parameter determines how newly generated pixels are filled, with options 

like 'nearest,' which uses neighboring pixel values. Additional techniques such as centering, normalizing, and 

Zero-phase Component Analysis (ZCA) whitening can also be employed to further improve data quality and 

model training.  

Proposed model 

 The ALR-AM-NET model is designed by integrating hybrid architectures, where tuned versions of 

AlexNet, LeNet, and ResNet are combined with BiLSTM and it is named as BiAlexNet, BiLeNet, and 

BiResNet. An attention mechanism is applied to extract significant features, ensuring that key information is 

highlighted during the learning process. Following this, multilevel feature fusion is performed, which merges 

features at different levels, and the final decision is made by fusing these features at the decision level for 

more accurate classification results. 

 

Layers used for BiAlexNet:  

This model extends the classic AlexNet by incorporating five convolutional layers. The architecture 

starts with a convolutional layer that applies 16 filters of size 3x3 with a stride of 1 and 'same' padding, 

followed by a max-pooling layer with a 2x2 window. This is followed by batch normalization. The second 

convolutional layer uses 32 filters of size 3x3, followed by another max-pooling layer (2x2) and batch 

normalization. The third convolutional layer applies 64 filters (3x3), with max-pooling (2x2) and batch 

normalization. The fourth layer uses 124 filters (3x3), followed by max-pooling (1x1) and batch 

normalization. The final convolutional layer applies 184 filters (3x3), with max-pooling (1x1) and batch 

normalization. An attention mechanism is used to highlight critical features, followed by a flattening layer. 

This is then processed by two BiLSTM layers with 150 and 200 units, respectively. The output is passed 

through two fully connected dense layers with 4096 and 3096 units, respectively, using ReLU activation. 

Dropout is applied with a rate of 0.2 to prevent overfitting, and the final output is produced by a softmax layer 

for classification. 

Layers used for BiLeNet 

This model extends the classic LeNet architecture by incorporating three convolutional layers. The 

architecture begins with a convolutional layer that applies 16 filters of size 5x5 with ReLU activation, 

followed by an average pooling layer with a 2x2 window. The second convolutional layer uses 32 filters of 

size 5x5, followed by another average pooling layer (2x2). The third convolutional layer applies 64 filters of 

size 5x5, followed by average pooling with a 1x1 window. An attention mechanism is then used to emphasize 
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key features, followed by a flattening layer. The flattened output is processed by two Bidirectional LSTM 

(BiLSTM) layers with 150 and 200 units, respectively. The output is then passed through two fully connected 

dense layers with 4096 and 3096 units, respectively, using ReLU activation. Dropout is applied with a rate of 

0.5 to prevent overfitting, and the final output is produced by a softmax layer for classification. 

Layers used for BiResNet 

This model extends the classic ResNet architecture by incorporating five convolutional layers with 

residual connections. The architecture starts with a convolutional layer that applies 16 filters of size 3x3 with 

ReLU activation and batch normalization, followed by max-pooling with a 2x2 window. The second 

convolutional layer uses 32 filters of size 3x3, followed by batch normalization, max-pooling with a 2x2 

window, and additional batch normalization. The third convolutional layer applies 64 filters of size 3x3, with 

batch normalization, max-pooling (2x2), and more batch normalization. The fourth layer uses 128 filters of 

size 3x3, followed by batch normalization, max-pooling (2x2), and additional batch normalization. The final 

convolutional layer applies 184 filters of size 3x3, with batch normalization and max-pooling (1x1). An 

attention mechanism is utilized to highlight important features, followed by a flattening layer. The flattened 

output is processed by two Bidirectional LSTM (BiLSTM) layers with 150 and 200 units, respectively. The 

output is then passed through two fully connected dense layers with 4096 and 3096 units, respectively, using 

ReLU activation. Dropout is applied with a rate of 0.5 to prevent overfitting, and the final output is produced 

by a softmax layer for classification. 

In the ALR-AM-NET model, multi-level feature fusion is strategically employed to enhance 

classification accuracy and robustness. The process begins with extracting features from three distinct 

architectures: BiAlexNet, BiLeNet, and BiResNet. Each of these models uses a tuned alexnet, lenet, restnet 

and attention mechanism is used to highlight and prioritize critical features, ensuring that key information is 

effectively captured. Once these features are extracted, they are flattened and concatenated, creating a unified 

and comprehensive representation of the input data. The concatenated features are then processed through 

two Bidirectional LSTM layers. These LSTM layers are designed to capture complex sequential dependencies 

and patterns within the feature data, further enriching the feature representation. The attention mechanism 

applied earlier aids in emphasizing the most relevant features during this process. Following LSTM 

processing, the model passes the output through two fully connected dense layers. These layers refine and 

consolidate the information from the LSTM layers, improving the model's ability to make accurate 

predictions. Dropout (with rates of 0.2 or 0.5) and batch normalization are applied to these dense layers to 

prevent overfitting and ensure better generalization of the model. 

Finally, the model outputs class probabilities through a softmax layer, providing the final classification 

result. The multi-level feature fusion approach integrates features extracted at different levels of abstraction 

and combines them at the decision level, allowing the ALR-AM-NET model to leverage the strengths of each 

architecture. This comprehensive feature integration, enhanced by the attention mechanism, contributes to the 

model's improved accuracy and robustness. 
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Fig: 3 Proposed ALR-AM-Net model with Attention mechanism based on multi modal feature fusion 

 

Table 2: Layers and parameters for the proposed ALR-AM-Net model 

Layer Name Kernel Size/Pool Size Stride Padding Output channel 

Conv2D 3*3 1*1 Same 16 

Maxpooling 2D 2*2 - - - 

Conv2D 3*3 1*1 Same 32 

Maxpooling 2D 2*2 - - - 

Conv2D 3*3 1*1 Same 64 

Maxpooling 2D 2*2 - - - 

Conv2D 3*3 1*1 Same 122 

Maxpooling 2D 2*2 - - - 

Conv2D 3*3 1*1 Same 184 

Maxpooling 2D 2*2 - - - 
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Conv2D 5*5 - - 16 

AveragePooling2D 2*2    

Conv2D 5*5 - - 32 

AveragePooling2D 2*2    

Conv2D 5*5 - - 64 

AveragePooling2D 1*1 - - - 

Conv2D 3*3 1*1 Same 16 

Conv2D 3*3 1*1 Same 32 

Maxpooling 2D 2*2 - -  

Conv2D 3*3 1*1 Same 64 

Maxpooling 2D 2*2 - -  

Conv2D 3*3 1*1 Same 128 

Maxpooling2D 2*2 - -  

Conv2D 3*3 1*1 Same 182 

Maxpooling2D 2*2 - - - 

Bidirectional - - - 150 

Bidirectional - - - 200 

Dense - - - 4096 

Dense - - - 3096 

Dense - - - 5 

Each block utilizes the batch normalization after the maxpooling layer 
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Table 4: Training Parameters 

Optimizer Epoch Batch Size Learning Rate Weight_decay Beta_1 Beta-2 

Adam 300 32 0.00001 0.0001 0.9 0.999 

 

Table 5: Callback: Reduce Learning Rate on Plateau 

Parameter Monitor patience Factor min_lr 

Value val_accuracy 5 0.2 0.0001 

 

Mathematical representation of the ALR-AM-NET model: 

 The ALR-AM-NET model integrates convolutional neural networks (CNNs) such as AlexNet, LeNet, 

and ResNet, along with Bidirectional LSTM (BiLSTM) and attention mechanisms to form a hybrid 

architecture. This model also uses multi-level feature fusion and decision-level fusion to improve accuracy in 

disease identification tasks. Below is a mathematical representation of the components and the entire model. 

BiAlexNet layer representation: 

 For an input image, 𝑋𝑎𝑙𝑒𝑥𝑛𝑒𝑡 ∈ 𝑅𝐻∗𝑊∗𝐶AlexNet consists of several convolutional, max-pooling, and 

normalization layers. For each convolutional layer, the operation is defined as: 

𝐴𝑎𝑙𝑒𝑥𝑛𝑒𝑡
𝑙

= ReLU(𝑤𝑎𝑙𝑒𝑥𝑛𝑒𝑡 
−𝑙

* 𝐴𝑎𝑙𝑒𝑥𝑛𝑒𝑡
𝑙−1

 + 𝑏𝑎𝑙𝑒𝑥𝑛𝑒𝑡
𝑙

) 

where 

* represents the convolution operation. 

𝑤𝑎𝑙𝑒𝑥𝑛𝑒𝑡
𝑙  is the weight matrix at layer l. 

𝐴𝑎𝑙𝑒𝑥𝑛𝑒𝑡
𝑙−1  is the input from the previous layer. 

𝑏𝑎𝑙𝑒𝑥𝑛𝑒𝑡
𝑙  is the bias. 

ReLU is the activation function. 

 

Each convolution layer is followed by max-pooling and batch normalization: 

 

𝑃𝑎𝑙𝑒𝑥𝑛𝑒𝑡
𝑙 =MaxPooling(𝐴𝑎𝑙𝑒𝑥𝑛𝑒𝑡

𝑙 ), 𝑁𝑎𝑙𝑒𝑥𝑛𝑒𝑡
𝑙 =BatchNorm(𝑃𝑎𝑙𝑒𝑥𝑛𝑒𝑡

𝑙 ) 

 

The output of the final AlexNet convolution layer is flattened: 

𝐹𝑎𝑙𝑒𝑥𝑛𝑒𝑡=Flatten(𝑁𝑎𝑙𝑒𝑥𝑛𝑒𝑡
𝑙 ) 
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2. BiLeNet Layer Representation: 

 For an input image 𝑋𝑙𝑒𝑛𝑒𝑡 ∈ 𝑅𝐻∗𝑊∗𝐶, LeNet is defined similarly with convolutional and pooling 

layers: 

 

𝐴𝑙𝑒𝑛𝑒𝑡
𝑙 =ReLU(𝑊𝑙𝑒𝑛𝑒𝑡

𝑙 *𝐴𝑙𝑒𝑛𝑒𝑡
𝑙−1 +𝑏𝑙𝑒𝑛𝑒𝑡

𝑙 ) 

𝑃𝑙𝑒𝑛𝑒𝑡
𝑙 =AvgPooling(𝐴𝑙𝑒𝑛𝑒𝑡

𝑙 ) 

Flatten the final LeNet output: 

𝐹𝑙𝑒𝑛𝑒𝑡=Flatten(𝑃𝑙𝑒𝑛𝑒𝑡
𝐿 ) 

 

3. BiRestNet Layer Representation: 

 

ResNet uses residual blocks with skip connections. The residual block operation is 

𝑅𝑟𝑒𝑠𝑛𝑒𝑡
𝑙 =ReLU(𝑊𝑟𝑒𝑠𝑛𝑒𝑡

𝑙 *𝐴𝑟𝑒𝑠𝑛𝑒𝑡
𝑙−1 +𝑏𝑟𝑒𝑠𝑛𝑒𝑡

𝑙 )+𝐴𝑟𝑒𝑠𝑛𝑒𝑡
𝑙−1  

Here, 𝑅𝑟𝑒𝑠𝑛𝑒𝑡
𝑙  is the residual output of the block, where the input is added to the output of the convolution 

layers. 

The final output of ResNet is: 

𝐹𝑟𝑒𝑠𝑛𝑒𝑡+=Flatten(𝑅𝑟𝑒𝑠𝑛𝑒𝑡
𝐿 ) 

 

4. Feature Fusion: 

 After extracting the features from AlexNet, LeNet and Resnet, the features are concatenated: 

𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑=Concatenate(𝐹𝑎𝑙𝑒𝑥𝑛𝑒𝑡,𝐹𝑙𝑒𝑛𝑒𝑡,𝐹𝑟𝑒𝑠𝑛𝑒𝑡) 

 

5. Attention Mechanism: 

 The attention mechanism is applied to the concatenated features 𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑. The attention weights α 

are computed as: 

𝑒𝑖=tanh(𝑊𝑎𝑡𝑡𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑+𝑏𝑎𝑡𝑡) 

αi=
𝑒𝑥𝑝(𝑒𝑖 )

∑𝑗 𝑒𝑥𝑝(𝑒𝑗)
 

The output after attention is: 

𝐹𝑎𝑡𝑡=∑ 𝛼𝑖𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 

             i 

6. BiLSTM Layers: 

 The output from the attention mechanism Fatt is fed into two bidirectional LSTM layers, for each 

LSTM layer, the forward and backward LSTMs are calculated as: 

ht = LSTM(Fatt,ht-1) 

ht = LSTM(Fatt,ht+1) 

The final hidden state is: 

Ht=Concatenate(ℎ𝑡,ht) 

This process is repeated for both BiLSTM layers, resulting in 

Hbilstm = Hbilstm2(Hbilstm1(Fatt)) 
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7. Fully Connected Layers: 

The BiLSTM output is passed through dense (fully connected) layers: 

D1 = ReLU(W1Hbilstm +b1) 

D2 = ReLU(W2D1 +b1) 

 

8. Classification output: 

The final layer is a softmax classifier for multi-class output: 

y=Softmax(W3D2+b3) 

The softmax operation ensures that the output is a probability distribution over C classes: 

yi=
𝑒𝑥𝑝(𝑦𝑖)

∑𝑗=1
𝐶 𝑒𝑥𝑝(𝑦𝑖)

 

 

Complete Model Equation: 

The overall function of the ALR-AM-NET model is: 

𝑦=Softmax(W3ReLU(W2ReLU(W1Hbilstm+b1) +b2) +b3) 

Where Hbilstm is the output of the BiLSTM layers applied to the attention-modified combined features Fatt. 

This summarizes the mathematical flow of the ALR-AM-NET model, covering convolutional layers, feature 

fusion, attention mechanism, BiLSTM and fully connected layer leading to classification. 

Section - 4 

Results and Discussion: 

 The experimental assessment of the ALR-AM-NET model relies on the specified architectural and 

training parameters. The algorithm's performance is evaluated using test data on a laptop PC featuring an 

Intel(R) Core (TM) i3-6100U CPU @ 2.30GHz, with 4.00 GB of RAM. The deep learning model and result 

calculations are executed within the Python Idle environment. The training time for the ALR-AM-NET model 

varies by dataset size, with a maximum of 38 seconds per epoch for papaya fruit disease identification, 60 

seconds for apple, 45 seconds for citrus, and 41 seconds for guava. The model is trained with a batch size of 

32 and 300 epochs. The training and test accuracy and loss graphs for the ALR-AM-NET model are illustrated 

in Figures 10 and 11. Both training and test losses gradually converge towards a minimum, indicating effective 

learning and model generalization by the conclusion of the graph. The resulting confusion matrix, shown in 

Figure 12, provides a graphical depiction of the classification accuracy for each category. Additionally, 

performance indicators such as F1-score, accuracy, recall, and precision are calculated. These metrics offer a 

comprehensive evaluation of the model's performance in classification tasks and illustrate its ability to 

recognize and differentiate between various classes. 
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Fig 4,5,6: Confusion matrix for ALR-AM-Net model with Attention mechanism based on multi modal 

feature fusion 
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Table 6: Predicted results of the proposed ALR-AM-Net model 

 

Dataset 

 

Accuracy 

 

Precision 

 

F1-Score 

 

Specificity 

 

Sensitivity 

Citrus 98.49 99.03 98.76 98.88 99.56 

Guava 98.53 97.39 98.84 98.07 99.20 

Apple 99.00 99.04 98.93 98.98 99.65 

Papaya 98.84 98.93 98.70 98.79 99.76 
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Fig 7: Proposed accuracy results for various dataset 

 

Comparison between the proposed approach and previous research: 

 In the area of fruit disease identification, various studies have employed distinct methods, each 

showcasing its own level of accuracy. The fundamental objective of this research is to demonstrate the 

efficiency of the ALR-AM-Net model in accurately identifying fruit diseases. Unlike previous research based 

on deep learning, our study stands out due to its methodological contributions.  

In Below, we compare our study with previous works that employed different deep learning methods, focusing 

on accuracy as a key metric. The results demonstrate the efficacy of our proposed approach achieves 

comparable accuracy to previous studies and it shows effectiveness in fruit disease identification. Notable 

studies and their respective methods, along with the achieved accuracies, are outlined below 

1. Monali Parmar [30]: Leveraged Deep Learning techniques identifying papaya disease using vision 

transformers with the accuracy of 91%. 

2. Xulu Gong et al. [31] utilized the improved Faster R-CNN for finding the apple leaf Disease with 

63.01% accuracy. 

3. Piyush Kumar Pareek et al [32] proposed the 1-d CNN for grape fruit disease identification with the 

accuracy of 95%. 

4. Khandakar Rabbi Ahmed et al [33] employs transfer learning approach for guava fruit disease 

identification with 74.02% 

5. Varun Kumar et al [34] employs a CNN and random forest for papaya leaf disease identification wth 

an accuracy of 94.49%. 

6. Radhika Gupta et al. [35]: Utilized lemon for classify various lemon disorders using hybrid model that 

incorporates Support Vector Machines (SVM) and Convolutional Neural Networks (CNN)resulting 

in an accuracy of 89.6%. 
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Section - 5 

Conclusion: 

 This study addresses the critical need for effective fruit disease identification to prevent crop losses 

and economic burdens. By utilizing datasets of Citrus, Guava, Papaya, and Apple fruits, we have developed 

a robust identification system designed to address the diverse range of diseases affecting these fruits. Our 

approach combines Enhanced Anisotropic Diffusion with the advanced ALR-AM-NET model, which 

preprocesses images to emphasize critical features and reduce noise, ensuring precise identification. The 

ALR-AM-NET model integrates BiAlexNet, BiLeNet, BiRestNet and an attention mechanism, enhancing the 

model's ability to focus on relevant features for accurate classification. Multi-level feature fusion, utilizing 

late fusion to combine features from various layers and modalities at the decision level, further refines the 

model, ensuring comprehensive and reliable disease identification. This research advances fruit disease 

detection, aiming to reduce disease spread and improve crop management. The proposed method offers 

practical benefits for stakeholders, supporting better crop health and productivity. 
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