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Abstract

In this paper we will define a new class Sy, (a) which is subordinate to function
e*p(z), we will find the Fekete - Szegd inequality for this class, Further we have
solved the second Hankel determinant of this new class.
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1 Introduction

The class of all the analytic functions in a unit disk D: = {z € C: |z| < 1}, whose Taylor's series
expansion is of the form

h(z):=z+ Z az" =z + ayz® + azz® + a,z* - vz €D (1.1)

n=2

and normalized by the conditions: h(0) = 0, h'(0) = 1, is denoted by A.
Let § denotes a subclass of A of all univalent analytic functions In the unit disk ID. The class of
Analytic -Univalent functions, with Taylor's series expansion of the form

p(z) =1+ cnz" (1.2)
in D, such that Re(P(z)) > 0 is denoted by P

In 1916 a German Mathematician Ludwig Bieberbach proposed a conjecture on the coefficients
of analytic functions of from (1.1) in S, i.e

la,| <nneN
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This conjecture was known by the name of Bieberbach conjecture (1916) [1]. Until 1985 this
conjecture was considered as very challenging problem in Geometric function theory of Complex
Analysis.

after 69 years of this conjecture, a French-American Mathematician Louis de Branges de
Bourcia(1985) solved this conjecture [2]. Before de Branges's proof many scholars around the
world tried to prove or disprove this conjecture, as a consequences of their these efforts they
found multiple subfamilies of class S.

The most common subfamilies of S are convex, star-like and close-to-convex functions whose set
builder form is given by

(o (@R
C:= {h € S:Re (—h’(z) ) >0,vVz € ]D)}

zh'(2)
S*:={h € S§:Re >0,VzeD

h(z)
R:={h € §:Re[h'(2)] > 0,Vz € D}

Subordination

Two functions h and g in A, h is said to be subordinated to g, or written as h(z) < g(z), if we
have a Schwarz functions w(z) analytic over D with w(0) = 0 and also |w(z)| < 1, such that

h(z) =g(w(z))VzeED
, but if function g(z) is univalent in D, then
h(z) < g(2) ift h(0) = g(0) and h(D) c g(D)

Ma and Minda [3] introduced two classes of analytic functions which are.

S*($): = {h = A:Z:;) < $(2),Vz € 11»}
and
C($): = {h €A1+ Z:(S) < $(2),Vz € 11))}

The function ¢(z) is an univalent analytic function with positive real part in the unit disk D such
that ¢(0) = 1,¢'(0) > 0 where ¢ maps the open unit disk onto a region starlike with respect to
1 and symmetric with respect to the real axis, several other classes can be formed by varying the
function ¢, some of the examples are as follows

o When ¢ = eZ, this class is denoted by S; check out [5, 6] for more Details.

1+/z
1-Vz

(=1 <D < C <1)weqgettheclass S*(C, D). See [8] for more Details.

2
o When¢p =1+ % (log ) we get a new class, for further details see [7]

1+Cz
1+Dz

o Wheng¢ =
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e When ¢ = cosh (z), this new class is denoted by S¢,q, see.[9]

e When ¢ =1+ sin (2), the class is denoted by S, , For more details see [4,5]

C. Pommerenke (1966-67), [6, 7] stated the p™ Hankel determinant for p > 1 andn > 1
where p,n € N of functions h of form 1.1 is defined as

an An+1 ° Apip-1

An+1 An+2 ' Qnip
}[(P,n)(h) = | : : :

An+p-1 An+p = Qni2p-2

In Geometric function theory of Complex analysis finding upper bounds of Hankel determinant
of various subfamilies of A is a widely famous and an interesting problem. Noonan(1976) and
Noor(1983)[8,9] studied the growth rate of H,, ,,, for fixed values of p and n, as n — oo of
different subfamilies of the univalent function of class S.

where

2 a3

- 2
5 a4| = a0, — Az

a
Heon(f) = |a

From past many years, a huge collection of research papers have been dedicated for finding the
upper bounds for various orders of Hankel determinant, some recent work on second, third and
fourth - order Hankel determinants see [[10] - [11]], Recently, Cho et al. [4] introduced the
following function class Sg;

zh'(z)
h(z)

Various researchers established Fekete - Szeg6 inequality for various classes afterwards ([12] -

[13])

Ss*in::{hEc/q:1+ <1+SinZ,VZE]D)}

Definition 1(a)

Lets define a new subclass Sy, (a) of $*. This subclass contains all those Analytic univalent
functions in A such that,

zh'(2)
h(z)

Sp(a):= {h € A: < eazl,b(z)}

where ¥ (z) is a univalent function such that Y(z) = 1 + };=; A, z™ with positive real part and

P'(0)>0

2 Preliminary Lemmas.

Let P denotes the class of analytic functions of the form

p(z) =1+ z cnz",z€D
n=1
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where Re(p(z)) > 0inD

Let p(z) belongs to P, such that

1+ w(z)

p(z) = T=w()

solving above for w(z) we have
c12 c c? 1 1 c
w(z) = 2=+ (;2—:1) 7%+ (Z(—C1)Cz +ooi(cf —2¢) + 33) z3 4

2

Lemma 2.1. (see [13]) If p(z) € P, and c,, be the n'" cofficients of P(z), then

lc,l <2 foralln € N

@2
c; —yc?| < 2max{1,|2y — 1|} wherey € C
@3)
2 2
€1 |es |
A<=
273= 2
(2.4)
Cnam — YCnCm| < 2,y € [0,1], Wheren,m € N
@5)
—45+2, if5<0,
e, — 8¢ <42, fo<s<1,
46 -2, If1<56,
2.6)

Lemma 2.2. (see[17]) If P(z) € P then there exists x,z € D with |x| < 1, |y| < 1, such that
2c, =ci +x(4—c?)
@7)
des=c34+24 —cADox — (G —c)ex? +2(4— DA — x|y

(2.8)
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3 Important Theorems

Theorem 3.1. If the function h(z) € Sy, (@) and is of the form (1.1), then

|a2| < |a+A1|
(a+4,) 3a? + 242 + 24, + 6aA,
las| STmax 1, |-

2(a+Ay)

}

4a%u —3a® + 8aA u + A2(4u — 2) — 24, — 6aA,
2(a+ A7)

and

|a3 - ua%| < 2 -;Al max{l

j

Proof. From definition 1(a) we have

zh'(2)
h(z)

Sy (@) = {h € A: < eazw(z)}

After simplifying (??), we Have

%S) =1+ ayz+ (2a; — a3)z? + (a3 — 3asa, + 3a,4)z® + (—aj + 4azab — 4asa, — 2a3 + 4as)z*
+... 3.1)

Using principal of subordination and expending e®"®y(w(z))

1 1
1+ Ez(acl +A;c)) + —zz(azcl2 + c2((2a)A,) — (2a)c? + (4a)c, — (2A7)c? + (245)c2 + (44))cy)

2 2
+73 <i <%a2C1 + (2a) (_ — C_>) (Aicy) + Il (ClCl) (la C1 + (2a) <_ - %)) + (% - C_> (a? c1)

1 1 ) C3 1 5 1 ; 1.,
+(3a) (Z (—c1)ep + §C1(C1 —2¢;) + ?>] + = (acy) A2C1 Al(C1 —2¢;) |+ §A3C1 2 (cf — 2¢2)(Az¢q)

- (3.2)

Comparing (3.1) and (3.2), we will Get

1

az = Ecl(a + Al) (33)

as; = —C1 2(3a% — 2a + 242 — 2A; + 24, + 6a A,) + cz(4a + 44,) (3.4

Ay = 520201 (60a? + 120aA; — 48a + 3642 — 484, + 484,) + — pyols c3(17a® + 51a%4, —

30a%24+36a4? — 60aA, + 30aA, + 12a + 643 — 1842 + 124, + 184, A, — 244, + 1243) +

—c3(48a + 484,) (3.5)
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From equation (3.3) and (3.4)

laz| < la + A4
_[a+4A; c?(—3a% + 2a — 243 + 2A; — 2A, — 6a4,)
=7y |\« 4(a + Ay

Now from lemma we have

a+A 3a%+2A3+24,+6aA
las| < umax{l, |— e L } (3.6)
2(a+A4Aq)
2 _ (a+4;) 4a?u-3a%+A,(8au+2)+2a+A%(4p-2)—24,-6aA;\ -
az —paz; = ——|[€C2 — €1 (3.7)
4 4(a+Aq)

Again using lemma we will Have

a+A 4a%u —3a® + 8aA u + A2(4u — 2) — 24, — 6a4
— a2l < 1 1 1 1 2 1 3.8
|a3 l’la2| == 2 maX{ , 2(a+A1) ( )
Theorem 3.2 : If function h € Sy, (a), then |a; — paj|
((—4a?p + 3a? — 8aAu + A?(2 — 4u) + 24, + 6a4,) < 3a% — 2a + 243 — 2A, + 24, + 6a4,
4 HH= 4(a + A,)?
<) a+ 4, _f3az—2a+2,4§—2,<1l+2,42+6aA1 - <3az+2a+2,4';’+2,41+2,42+6aA1
=12 ! 4(a + A,)? =H= 4(a + A,)?
(4a’u — 3a? + 8adu + A?(4p — 2) — 2A, — 6aA,) o 3a + 2a + 242 + 24, + 24, + 6aA, -
4 ! 4(a+ A,)? =H

Proof. From (3.7) we have

2 _
az —paz; =

(a+A4;) o 4a’u —3a® + A;(8ap + 2) + 2a + A3(4u — 2) — 2A, — 6a4, 22
4 z 4(a + Ay) 1

this can be written as

(a+ 4,
az — paz = — —Ilc; — xci]

4a’p—3a%+A,(8au+2)+2a+A%(4u—2)-24,—6aA,
4(a+4q)
Using lemma [2.1] in (3.8) we have |a; — pa3

where k: =
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((—4a%u+ 3a% —8aA,u + A?(2 — 4p) + 24, + 6a4,) . 3a% — 2a + 242 — 2A, + 24, + 6a4,
4 ifu =< 4(a + 4,)2
<Jatd if3aZ—2a+2A§—2Al+2AZ+6aA1<M<3az+2a+2A§+2Al+2AZ+6aA1
- 2 4(a+ A;)? - 4(a+ A;)?
(4a’u —3a% + 8aAu + A?(4u — 2) — 2A, — 6ad;) . 3a®+ 2a + 242 + 2A, + 24, + 6aA,
L 4 it 4(a + 4,)? SH

Corollary: using (3.8) we can see that

a® + 2aA, + 243 — 24,
2(a+A;)

j

When a = 0 and function p(z) = = thisis the class Sg;[15] studied by the Khan,
Muhammad Ghaffar and Ahmad, Bakhtiar et. al using the (3.8) we have

a+A
|[Hony(R)| = |as — a3 < 5 1max{l,

1
|H(2,1) | < 2

4 Conclusions

In this paper we have introduced a new class Sy, (a), where (0 < a < 1), and have worked on
the Fekete-Szeg6 inequality along with upper bound of second Hankel determinant.
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