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Abstract:  

In this article, in the presence of the aligned magnetic field, chemical reaction, and radiation 

absorption results, the research centered on the analysis-free convective flow of a viscous, 

incompressible, and electrically conducting fluid via an inclined plate through a porous 

medium. The free stream velocity could obey exponentially increasing small disruption law. 

Analytically, two-term harmonic and non-harmonic functions overcome non-dimensional 

governing equations. Distributions of velocity, temperature, and concentration are explored in 

depth by graphs for different parameter values entering the problem. The skin friction 

coefficient, heat transfer rate, and mass transfer rate are derived. This research is useful in the 

steel industry monitoring molten iron flow, nuclear plant liquid metal cooling, and 

meteorology. 

 

Keywords: Aligned magnetic field, Radiation absorption, MHD, Porous medium, Inclined 

angle, mixed convective flow. 

 

I. INTRODUCTION 

The phenomenon of free convection and mass movement flow of an electrically 

conducting fluid past an inclined heated surface under the effect of a magnetic field has 

drawn attention in its application to geophysics, astrophysics and many engineering problems 

such as cooling of nuclear reactors, aerodynamic boundary layer regulation and cooling 

towers. Mass transfer is one of the commonly observed phenomena of both chemical and 

biological sciences. As the fluid is at rest, the mass transfer occurs; mass is transmitted solely 

through molecular diffusion arising from gradients of concentration. Convective heat and 

mass transfer mechanism are identical in design with the limited concentration of group in 

fluid and higher mass transfer speeds. Several studies have also been carried out of 

simultaneous heat and mass transfer, assuming different physical conditions. In specific 

chemical engineering methods, the chemical reaction between a foreign mass and the fluid in 

which the plate lies happens. These processes exist in various industrial applications, 

including polymer manufacturing, ceramics or glassware processing, and food procession. 

Mohammed Ibrahim[1] analysed a two-dimensional unstable  

Raghunath et al.[10] introduced Hall Effects on MHD Convective Rotating Flow across 

Endless Vertical Plate Past Porous Medium. Raghunath et al.[12] presented Heat and Mass 
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Movement of a Visco-Elastic Fluid Past Endless Vertical Oscillating Porous Plate Suresh 

Babu G et al.[13] mentioned Free Convection Heat Transfer Flow Study in a Vertical Conical 

Annular Porous Media. Nagendra Prasad et al.[14] studied Visco-elastic fluid MHD flow 

over an unbounded, rotating porous plate with the heat source and chemical reaction. 

Our research focuses on the impact of introducing a second fluid on mixed convection 

flow. Orphan Aydm et al.[15] had an MHD mixed heat transfer flow across an inclined plate. 

Reddy et al. researched thermal diffusion and homogeneous chemical reaction results on 

MHD mixed convection flow with Ohmic heating[16]. Reddy et al. explored unstable MHD 

radiative, and chemical-reactive natural convection flows near a moving porous plate through 

a porous medium[17]. Raju et al.[18] considered MHD convective and dissipative fluid flow 

over porous medium in a flat channel with an isolated and impermeable bottom wall in Joule 

heating. Ravikumar et al.[19] addressed the combined results of a non-Newtonian fluid's heat 

absorption and magnet convective movement, namely, Rivlin-Ericksen movement past a 

semi-infinite vertical porous layer. Raju et al.[20] performed exact solutions for MHD-free 

convective boundary layer flow past a porous vertical surface in the presence of chemical 

reaction, thermal radiation, and suction. 

In the context of an aligned magnetic field, chemical reaction and radiation absorption 

results, this analysis focuses on researching the free convective movement of a viscous, 

incompressible and electrically conducting fluid past an inclined plate via a porous medium. 

The freestream velocity could obey exponentially increasing small disruption law. 

Analytically, two-term harmonic and non-harmonic functions overcome non-dimensional 

governing equations. Distributions of velocity, temperature, and concentration are explored in 

depth by graphs for different parameter values entering the problem. Skin friction coefficient, 

heat transfer rate, and mass transfer rate are derived. 

II . PHYSICAL AND STATISTICAL FORMULATION 

Consider laminar, incompressible, viscous, electrically conducting and heat-absorbing 

fluid two-dimensional flow past an inclined plate inserted in a porous medium in the presence 

of chemical reaction and Dufour results. The flow is believed to be in the x-direction, taken 

around the semi-infinite inclined plate and standard y-axis. A magnetic field of uniform 

intensity B0 is added at flow path angle α. Free stream velocity meets exponentially 

increasing small disruption law. 
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Figure 1: Physical problem-setting 
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The governing equations for this investigation are focused on mass, linear momentum, energy 

and concentration species equilibrium. 
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The apporpriate boundary conditions for the corresponding fields are  

0at*,*0* ==== yCCTTu ww  
→→→→ 

 yCCTTu as**,0*
                                                                   (5)

 

Introduction of non-dimensional numbers, 
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Where Gr is the Grashof number, Gm is the Grashof number, Pr is the Prandtl 

number, Sc is the Schmidt number, Ec is the Eckert number, M is the magnetic parameter, Ko 

is the porous medium and Kr is the chemical reaction parameter. 

The simple field EQs (2)-(4) may be represented as non-dimensional. 
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The corresponding boundary conditions in dimensionless form are reduced to 

1,1,0,0At ==== uy
 

1,1,0,As →→→→ uy
                                                                                    

(10)
 

Equations (7) – (9) describe a series of partial differential equations that can not be closed. 

However, it can be reduced to a series of regular, dimensionless differential equations that 

can be solved analytically. This can be achieved by reflecting tempo, temperature, and 

concentration. 
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Using Equation (11) in Equations (7)–(9) and equating Ec's similar power coefficient 

Zero order terms:  
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First order terms: 

1110

22

11 cos Gm - cosGr  - u)K(M-  =++ Sinuu                   

1

2

0

22

0111 MPr -)u(Pr - = PrPr  RuQ −++          (16) 

0111 =−+  KrSc
                                                                                                   (17)

  

Appropriate boundary conditions 

→→→→→→→

=======

yasuu

yatuu

0,0,0,0,0,0 

00,1,0,1,0,0

101010

101010




      (18) 

 

Solving equations (14) – (19) under the boundary conditions (20), the following solutions are 

obtained 
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The following solutions are obtained under boundary conditions (14) – (19) the velocity, 

temperature and concentration distribution in the boundary layer as follows 
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Skin Friction: 

The surface's non-dimensional skin friction 
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Nusselt Number : 

The heat transfer rate in Nusselt is calculated by 
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Sherwood Number : 

The amount of mass transfer on the wall in Sherwood numbers 
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4. RESULTS AND DISCUSSION 

 
For computations, the following default parameter values are used in this study: 

Gr=5.0, α=30, α=30, Gm 5.0, Ko=1.0, M=1.0, Pr=0.71, Ec=0.001, Q=0.1, Sc=0.6, Kr=0.1, 

R=0.5. Therefore, all graphs conform to these values, unless explicitly stated in  

 

Velocity Profiles: 

Figure 2 indicates the α-inclined angle impact on the velocity profile. We observed the 

velocity reducing to the inclined angle α values. Figure 3 demonstrates the effects on velocity 

profile of aligned magnetic field parameter π. We found that the velocity declines as the 

aligned magnetic field parameter π rises. Figure 4 shows the influence of thermal Grashof 

number Gr on velocity.  

 

This figure indicates that fluid velocity increases as Gr rises. This is attributed to a buoyancy 

impact that improves momentum. Figure 5 shows magnetic field influence in velocity spread. 

The existence of transverse magnetic field renders the fluid flow resistive. This force is called 

the Lorentz force, which slows down the fluid flow. Figure 6 displays the velocity profiles 

against the span-wise coordinate in the presence of the permeability parameter. We note that 

velocity decreases as parameter Ko. Figure 7 displays velocity profiles against changed 

Grashof number.  

 

We note speed changes as changed Grashof number Gm changes. Figure 8 elucidates the 

influence of velocity profiles on various chemical reaction parameter (Kr) values. Figure 9 
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indicates that pace rises as Schmidt number Sc rises. Figure 10 demonstrates the influence of 

Radiation absorption parameter R on velocity distribution; from this figure, we found that the 

velocity increases with rises of Radiation absorption parameter. In Figure 11, reversal activity 

is observed to raise Prandtl number Pr. 

 
Fig 2: Velocity profiles for different values of α. R=0.5, , Sc=0.6, Pr=0.71, Gr=5, 

Ko=1, Kr=0.1, M=1, Q=0.1, R=1, Gm=5, Ec=0.001 

 
Fig 3: Velocity profiles for different values of α. R=0.5, , Sc=0.6, Pr=0.71, Gr=5, 

Ko=1, Kr=0.1, M=1, Q=0.1, R=1, Gm=5, Ec=0.001 

 
Fig 4: Velocity profiles for different values of Gr. R=0.5, Sc=0.6, Pr=0.71, Ko=1, =30, 

α=30, Kr=0.1, M=1, Q=0.1, R=1, Gm=5, Ec=0.001 
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Fig 5: Velocity profiles for different values of M. R=0.5, Sc=0.6, Pr=0.71, Ko=1, =30, 

α=30, Kr=0.1, Gr=5, Q=0.1, R=1, Gm=5, Ec=0.001 

 
 

 

Fig 6: Velocity profiles for different values of Ko. R=0.5, M=1, Sc=0.6, Pr=0.71, α=30, 

Kr=0.1, =30, Gr=5, Q=0.1, R=1, Gm=5, Ec=0.001 

 
 

Fig 7: Velocity profiles for different values of Gm. R=0.5, M=1, Sc=0.6, Pr=0.71, Ko=1, 

α=30, =30, Kr=0.1, Gr=5, Q=0.1, R=1, Ec=0.001 
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Fig 8: Velocity profiles for different values of Kr. Q=0.5, M=1, Sc=0.6, Pr=0.71, Ko=1, 

α=30, =30, Gr=5, Q=0.1, R=1, Gm=5, Ec=0.001 

 

 
Fig 9: Velocity profiles for different values of Sc. R=0.5, M=1, Pr=0.71, Ko=1, α=30, =30, 

Kr=0.1, Gr=5, Q=0.1, R=1, Gm=5, Ec=0.001 

 
Fig 10: Velocity profiles for different values of R. M=1, Sc=0.6, Pr=0.71, Ko=1, α=30, =30, 

Kr=0.1, Gr=5, Q=0.1, R=1, Gm=5, Ec=0.001 
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Fig 11: Velocity profiles for different values of Pr. R=0.5, M=1, Sc=0.6, Pr=0.71, Ko=1, 

α=30, =30, Kr=0.1, Gr=5, Q=0.1, R=1, Gm=5, Ec=0.001 

 

Temperature Profiles: 

Figure 12 demonstrates the influence of heat source parameter Q on temperature 

distribution—the temperature declines as the heat source parameter Q rises. Figure 13 

indicates that temperature declines as Prandtl rises. Figure 14 demonstrates the influence of 

Radiation absorption on temperature. Temperature is found to raise the Radiation absorption 

parameter R. 

 

Fig 12: Temperature profiles for different values of Q. R=0.5, M=1, Sc=0.6, Pr=0.71, Ko=1, 

α=30, =30, Kr=0.1, Gr=5, R=1, Gm=5, Ec=0.001 

 

Fig 13: Temperature profiles for different values of Pr. R=0.5, M=1, Sc=0.6, Q=0.1, Ko=1, 

α=30, =30, Kr=0.1, Gr=5, R=1, Gm=5, Ec=0.001 
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Fig 14: Temperature profiles for different values of R., Q=0.5, M=1, Sc=0.6, Pr=0.71, Ko=1, 

α=30, =30, Kr=0.1, Gr=5, R=1, Gm=5, Ec=0.001 

 

Concentration Profiles: 
Figure 15 indicates that the concentration decreases with rising values of the Kr parameter 

chemical reaction. Figure 16   obvious that the layer thickness of the limit concentration 

decreases with Sc, and also that the concentration decreases exponentially and enters a free 

stream state for high Sc values. 

 
Fig 15: Concentration profiles for different values of Kr. 

 
Fig 16: Concentration profiles for different values of Sc 
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Skin Friction (τ) 

Gr Gm M Ko  α Q Τ 

5       7.1611 

10       10.6733 

15       14.1925 

 5      7.1611 

 10      10.8155 

 15      14.4673 

  1.5     6.9677 

  2     6.4417 

  2.5     5.8393 

   1    7.1611 

   5    3.6578 

   7.5    0.3186 

    π/10   0.3187 

    π/6   0.3186 

    π/3   0.3185 

     π/10  0.3499 

     π/6  0.3186 

     π/3  0.1840 

      0.25 5.0642 

      0.50 5.2755 

      0.75 5.4549 

 
Nusselt Number (Nu) 

Pr Ec Q R Nu 

0.75    -0.6312 

0.80    -0.6828 

0.85    -0.7342 

 1   -0.5879 

 5   -0.5810 

 10   -0.5724 

  0.1  -0.4717 

  0.15  -0.5144 

  0.20  -0.5366 

   0.25 -7.0111 

   0.50 -4.6990 

   0.75 -2.8333 

 

Sherwood Number (Sh) 

Sc Kr Sh 

0.6  -0.6145 

1.2  -1.1013 

1.8  -2.5014 

 0.001 0.3581 

 0.003 0.1430 

 0.005 0.0052 
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Conclusion 

The findings of this study are as follows. 

1. Velocity decreases for increasing values of α, ,M, Kr, Ko, R and Sc where as it shows 

reverse tendency in the case of Gr, Gm . 

2. Temperature distribution decreases with an increase in Pr and (R), where as it is enhances 

with increasing Q. 

3. Concentration boundary layer decreases with an increase in Kr and Sc where as it is increases 

with increasing values of So. 
4. skin-friction increases with an increase in (Gr), (Gc), (Ko) and ( ), where as it decreases 

under the influence of (M) and (α). 

5. Nusselt number increases with an Ec, where as it decreases under the influence of (Pr) and 

(Q). 

6. Sherwood number increases with an increase in So but a reverse effect is noticed in the case 

of Sc and Kr. 

7.  
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