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  Abstract. Important fundamental and spectral properties of the classes of quasi 𝑛-normal 
and 𝑘-quasi 𝑛-normal operators defined on a separable complex Hilbert space constitute 
the aim of the present paper. We prove that the considered operators satisfy Bishop’s 
property (𝛽) and that are polaroid, subscalar and decomposable. It’s also proved that a 𝑘-
quasi 𝑛-normal operator has a non trivial invariant subspace and Weyl’s theorem holds for 
this operator. Other results related to the Riesz idempotent of elements of these classes are 
also established. 
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1. Introduction and Background 

  Let 𝐻 denote a separable complex Hilbert space, and let 𝐵(𝐻) be the algebra of all 
bounded linear operators on 𝐻. An operator 𝐴 ∈ 𝐵(𝐻) is said to be normal if 𝐴 commutes 
with its adjoint 𝐴⋆, and 𝑛-normal if 𝐴⋆𝐴𝑛 = 𝐴𝑛𝐴⋆. It’s obvious that if 𝐴 is a 𝑛-normal 
operator, then 𝐴𝑛 is normal. An operator 𝐴 ∈ 𝐻 is said to be an isometry if 𝐴⋆𝐴 = 𝐼, where 𝐼 
is the identity operator on 𝐻, and a co-isomety if 𝐴⋆ is an isometry. 

An operator 𝐴 in 𝐵(𝐻) is said to have the Single Valued Extension Property (SVEP) at a 
complex number 𝛼, if for each open neighborhood 𝑈 of 𝛼, the zero function is the unique 
analytic solution on 𝑈 of the equation 

(𝐴 − 𝜆)𝑓(𝜆) = 0 

Moreover, 𝐴 is said to have SVEP if 𝐴 has SVEP at each complex scalar [1] . For 𝐴 ∈ 𝐵(𝐻), 
the smallest integer 𝑗 for which 𝑁(𝐴𝑗) = 𝑁(𝐴𝑗+1) is said to be the ascent of 𝐴 and is 

denoted 𝑝(𝐴). If such integer does not exist, we shall write 𝑝(𝐴) = ∞  [1].  
Also, if 𝐴 in 𝐵(𝐻), then the Riesz idempotent 𝐸 with respect to an isolated point 𝜇 in the 
spectrum 𝜎(𝐴) of 𝐴 is defined by 

𝐸 =
1

2𝜋𝑖
∫ (𝑧 − 𝐴)−1

∂𝒟

𝑑𝑧 

where the integral is taken in the positive sense, 𝒟 is a closed disk concentrated at 𝜆 with a 
small radius 𝑟 satisfying 𝒟 ∩ 𝜎(𝐴) = {𝜆} and ∂𝒟 denotes its boundary, . The operator 𝐴 ∈
𝐵(𝐻) is said to have Bishop’s property (𝛽) if for each open subset 𝐺 of ℂ, and all sequence 
𝑓𝑛: 𝐺 → 𝐻, of analytic functions such that (𝐴 − 𝜆)𝑓𝑛 converges uniformly to 0 in norm of 
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compact subsets of 𝐺, (𝑓𝑛)𝑛 converges uniformly to 0, in norm of compact subsets of 𝐺. 
See[1 ,9 ,10]  for more details. 
In this paper, we investigate the class of operators verifying 𝐴𝐴⋆𝑛𝐴𝑛 = 𝐴⋆𝑛𝐴𝑛+1 for an 
operator 𝐴 ∈ 𝐵(𝐻), and a natural integer 𝑛,  𝑛 ≥ 1. Elements of this class are said to be 
quasi-normal operators of order 𝑛, [7] . For 𝑛 = 1, the operator 𝐴 is quasi normal. We show 
that if 𝐴 is quasi-normal of order 𝑛, then 𝐴 has Bishop’s property  (𝛽), 𝐴 is isoloid and it 
satisfies Weyl’s Theorem. We also establish other spectral results related to the compacity 
and the Riesz idempotent. 

Example 1.  Matrices on ℂ2 of the form (
0 0
𝑎 0

) with 𝑎 ≠ 0 are quasi-normal of order 2 but 

not quasi normal. However, the matrix (
1 0
𝑖 0

), (𝑖2 = −1) is quasi-normal of order 𝑛 for all 

integer 𝑛,  𝑛 ≥ 1. 

Example 2.  The matrices 𝐴 = (
1 0
0 0

) and 𝑆 = (
0 0
1 0

) are quasi-normal of order 2. 

Nonetheless, the matrix 𝐴 + 𝑆 is not quasi-normal of order 2. 

Finally, 𝑁(𝐴),  𝑅(𝐴) and |𝐴| = (𝐴∗𝐴)
1

2 denote respectively the null space, the range and the 
modulus of an operator 𝐴 in 𝐵(𝐻). 

2. Quasi-normal operators of order 𝒏 

Proposition 3. [7]  The class of quasi-normal operators of order 𝑛 contains the class of 𝑛-
normal operators. 

Proposition 4.  [7] Let 𝐴 ∈ 𝐵(𝐻) be a quasi-normal operator of order 𝑛, and let 𝐵 ∈ 𝐵(𝐻) be 
unitarily equivalent to 𝐴. Then, 𝐵 is a quasi-normal operator of order 𝑛 too. 

The following example shows that if 𝐴 and 𝐵 are quasisimilar, then the Proposition 4 is in 
general not true. 

Example 5.  The operator 𝐴 = (
1 0
0 0

) is quasi-normal of order 2, and 𝑋 = (
1 1
0 1

) is 

invertible and not unitary. The matrix 𝐵 = 𝑋𝐴𝑋−1 = (
1 −1
0 0

) is not quasi-normal of order 

2 since 

(
2 −2
0 0

) = 𝐵𝐵⋆2𝐵2 ≠ 𝐵⋆2𝐵3 = (
1 −1

−1 1
) 

It is also given in [7]  that a quasi-normal operator of order 2 needs not to be quasi-normal 
operator of order 3. 

Example 6.  The matrix 𝐴 = (
0 0 1
1 0 0
0 0 0

) is a 3-quasi-normal operator of order 2 but not 

quasi-normal of order 2. 
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Proposition 7.  Let 𝐴 ∈ 𝐵(𝐻) be an invertible quasi-normal operator of order 𝑛. Then, so is 
its inverse 𝐴−1. 

Proof. Under the hypotheses, 𝐴 is 𝑛-normal. Indeed, 𝐴𝑛 is also invertible, and 

𝐴𝐴⋆𝑛 = 𝐴𝐴⋆𝑛𝐴𝑛𝐴−𝑛 = 𝐴⋆𝑛𝐴𝑛+1𝐴−𝑛 = 𝐴⋆𝑛𝐴 

Hence, 

𝐴−1(𝐴−1)⋆𝑛𝐴−𝑛 = (𝐴𝑛𝐴⋆𝑛𝐴)−1 = (𝐴𝑛𝐴𝐴⋆𝑛)−1 = (𝐴𝑛+1𝐴⋆𝑛)−1

= (𝐴−1)⋆𝑛(𝐴−1)𝑛+1 

 ◻ 

Lemma 1.  If  𝐴 ∈ 𝐵(𝐻) is a quasi-normal operator of order 𝑛, then (𝐴∗𝑛𝐴𝑛)3 = 𝐴∗3𝑛𝐴3𝑛. 

Proof. By the hypothesis, (𝐴∗𝑛𝐴𝑛)2 = 𝐴∗2𝑛𝐴2𝑛. Then, 

(𝐴∗𝑛𝐴𝑛)3 = (𝐴∗𝑛𝐴𝑛)2𝐴∗𝑛𝐴𝑛 = 𝐴∗2𝑛𝐴2𝑛𝐴∗𝑛𝐴𝑛. 

Hence, 

𝐴∗2𝑛𝐴2𝑛𝐴∗𝑛𝐴𝑛 = 𝐴∗2𝑛𝐴2𝑛−1𝐴∗𝑛𝐴𝑛+1 = 𝐴∗2𝑛𝐴2𝑛−2𝐴∗𝑛𝐴𝑛+2

= 𝐴∗2𝑛𝐴2𝑛−3𝐴∗𝑛𝐴𝑛+3

= . . . . .
= 𝐴∗3𝑛𝐴3𝑛

 

 ◻ 

Definition 8.  An operator 𝐴 ∈ 𝐵(𝐻) is said to be paranormal if for all unit vector 𝑥 in 
𝐻 ‖𝐴𝑥‖2 ≤ ‖𝐴2𝑥‖. 

We’ve then, 

Proposition 9.  If 𝐴 ∈ 𝐵(𝐻) is a quasi-normal operator of order 𝑛, then 𝐴𝑛 is paranormal. 

Proof. According to the hypothesis and Lemma 1, (𝐴∗𝑛𝐴𝑛)2 = 𝐴∗2𝑛𝐴2𝑛. Then, for each unit 
vector 𝑥 in 𝐻, 

‖𝐴∗𝑛𝐴𝑛𝑥‖2 = ⟨(𝐴∗𝑛𝐴𝑛)2𝑥, 𝑥⟩ = ⟨𝐴∗2𝑛𝐴2𝑛𝑥, 𝑥⟩ = ‖𝐴2𝑛𝑥‖2 

By Cauchy-Schwarz inequality, we get 

‖𝐴𝑛𝑥‖2 = ⟨𝐴∗𝑛𝐴𝑛𝑥, 𝑥⟩ ≤ ‖𝐴∗𝑛𝐴𝑛𝑥‖‖𝑥‖ = ‖𝐴∗𝑛𝐴𝑛𝑥‖ = ‖𝐴2𝑛𝑥‖ = ‖(𝐴𝑛)2𝑥‖ 

This shows the paranormality of 𝐴.  

Definition 10.  [1] For 𝐴 ∈ 𝐻, the smallest integer 𝑗 for which 𝑁(𝐴𝑗) = 𝑁(𝐴𝑗+1) is said to 

be the ascent of 𝐴 and is denoted 𝑝(𝐴). If such integer does not exist, we shall write 𝑝(𝐴) =
∞. 

In view of [1, Theorem3.8] , operators that have finite ascent have SVEP too. We’ve then 
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Theorem 11.  Let 𝐴 be quasi-normal of order 𝑛. Then, 𝑁(𝐴𝑛) = 𝑁(𝐴𝑛+1). 

Proof. Let 𝑥 be in 𝑁(𝐴𝑛+1). Then, 𝐴𝑛+1𝑥 = 0. Since 𝐴 is quasi-normal of order 𝑛, 

𝐴𝐴⋆𝑛𝐴𝑛𝑥 = 0 

Hence, 

⟨𝐴𝐴⋆𝑛𝐴𝑛𝑥, 𝑧⟩ = ⟨𝐴⋆𝑛𝐴𝑛𝑥, 𝐴⋆𝑧⟩ = 0 

for all 𝑧 ∈ 𝐻. Thus, 

𝐴⋆𝑛𝐴𝑛𝑥 ∈ 𝑅(𝐴⋆)⊥ ∩ 𝑅(𝐴⋆𝑛) 

Since 𝑅(𝐴⋆)⊥ ⊂ 𝑅(𝐴⋆𝑛)⊥, 

𝐴⋆𝑛𝐴𝑛𝑥 ∈ 𝑅(𝐴⋆𝑛)⊥ ∩ 𝑅(𝐴⋆𝑛) = {0} 

Finally, 𝐴𝑛𝑥 = 0. That is 𝑥 ∈ 𝑁(𝐴𝑛). This achieves the proof since the second inclusion is 
evident. ◻ 

Corollary 12.  If 𝐴 is quasi-normal of order 𝑛, then 𝑝(𝐴) ≤ 𝑛. 

Corollary 13.  Quasi-normal operators of order 𝑛 have SVEP at 0. 

        𝟑.  𝒌-quasi-normal operators of order 𝒏 

Definition 14.  An operator 𝐴 ∈ 𝐵(𝐻) is said to be 𝑘-quasi-normal of order 𝑛. If 

𝐴⋆𝑘(𝐴𝐴⋆𝑛𝐴𝑛 − 𝐴⋆𝑛𝐴𝑛+1)𝐴𝑘 = 0 

1-quasi-normal operators of order 𝑛 are quasi-normal of order 𝑛. 

Theorem 15.  Let 𝐴 be a 𝑘-quasi-normal operator of order 𝑛. Assume that 𝑅(𝐴𝑘) is dense in 
𝐻. Then, 𝐴 is quasi-normal of order 𝑛. 

Proof. Since 𝐴 is 𝑘-quasi-normal of order 𝑛, 

𝐴⋆𝑘(𝐴𝐴⋆𝑛𝐴𝑛 − 𝐴⋆𝑛𝐴𝑛+1)𝐴𝑘 = 0 

Let 𝑥 be in 𝐻. Since 𝑅(𝐴𝑘) = 𝐻, 𝑥 = lim
𝑛→∞

𝐴𝑘𝑥𝑛 for some sequence (𝑥𝑛)𝑛 of elements of 𝐻. 

Since 𝐴 is 𝑘-quasi-normal of order 𝑛, 

0 = lim
𝑛→∞

⟨𝐴⋆𝑘(𝐴𝐴⋆𝑛𝐴𝑛 − 𝐴⋆𝑛𝐴𝑛+1)𝐴𝑘𝑥𝑛, 𝑥𝑛⟩

= lim
𝑛→∞

⟨(𝐴𝐴⋆𝑛𝐴𝑛 − 𝐴⋆𝑛𝐴𝑛+1)𝐴𝑘𝑥𝑛, 𝐴𝑘𝑥𝑛⟩
 

Then, 

0 = ⟨(𝐴𝐴⋆𝑛𝐴𝑛 − 𝐴⋆𝑛𝐴𝑛+1) lim
𝑛→∞

𝐴𝑘𝑥𝑛, lim
𝑛→∞

𝐴𝑘𝑥𝑛⟩ 
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by the continuity of the inner product. Hence, 

⟨𝐴𝐴⋆𝑛𝐴𝑛 − 𝐴⋆𝑛𝐴𝑛+1)𝑥, 𝑥⟩ = 0 

This shows that 𝐴 is 𝑘-quasi-normal of order 𝑛. ◻ 

Corollary 16.  If 𝐴 is 𝑘-quasi-normal operator of order 𝑛 such that 𝐴 is not quasi-normal of 
order 𝑛, then 𝐴 is not invertible. 

Theorem 17.  The restriction of a 𝑘-quasi-normal operator 𝐴 ∈ 𝐵(𝐻) of order 𝑛 on an 
invariant closed subspace 𝑀 ⊂ 𝐻 is also 𝑘-quasi-normal of order 𝑛. 

Proof. 𝐴 = (
𝐴1 𝐴2

0 𝐴3
) under the orthogonal decomposition 𝐻 = 𝑀 ⊕ 𝑀⊥. Since 𝐴 is 𝑘-quasi 

𝑛-normal, 

0 = 𝐴⋆𝑘(𝐴𝐴⋆𝑛𝐴𝑛 − 𝐴⋆𝑛𝐴𝑛+1)𝐴𝑘

= (𝐴1
⋆𝑘(𝐴1𝐴1

⋆𝑛𝐴1
𝑛 − 𝐴1

⋆𝑛𝐴1
𝑛+1)𝐴1

𝑘 𝑅
𝑆 𝑇

)
 

for certain operators 𝑅, 𝑆, 𝑇 ∈ 𝐵(𝐻). Hence, 

𝐴1
⋆𝑘(𝐴1𝐴1

⋆𝑛𝐴1
𝑛 − 𝐴1

⋆𝑛𝐴1
𝑛+1)𝐴1

𝑘 = 0 

The desired result is proved.  

Theorem 18.  Let 𝐴 be a 𝑘-quasi-normal operator of order  𝑛, for which 𝑅(𝐴𝑘) ≠ 𝐻. If 𝐴 =

(
𝐴1 𝐴2

0 𝐴3
) on 𝐻 = 𝑅(𝐴𝑘) ⊕ 𝑁(𝐴⋆𝑘), then 

• 𝐴1 is quasi-normal of order  𝑛. 

• 𝐴3
𝑘 = 0 and 𝜎(𝐴) = 𝜎(𝐴1) ∪ {0}. 

Proof. Let 𝑥 ∈ 𝐻. Since 𝐴 is 𝑘-quasi-nomal of order 𝑛, 

0 = ⟨𝐴⋆𝑘(𝐴𝐴⋆𝑛𝐴𝑛 − 𝐴⋆𝑛𝐴𝑛+1)𝐴𝑘𝑥, 𝑥⟩

= ⟨(𝐴𝐴⋆𝑛𝐴𝑛 − 𝐴⋆𝑛𝐴𝑛+1)𝐴𝑘𝑥, 𝐴𝑘𝑥⟩
 

Then, for all 𝑦 ∈ 𝑅(𝐴𝑘) 

⟨(𝐴𝐴⋆𝑛𝐴𝑛 − 𝐴⋆𝑛𝐴𝑛+1)𝑦, 𝑦⟩ = 0 

Hence, 

(𝐴𝐴⋆𝑛𝐴𝑛 − 𝐴⋆𝑛𝐴𝑛+1) |
𝑅(𝐴𝑘)

= 𝐴1𝐴1
⋆𝑛𝐴1

𝑛 − 𝐴1
⋆𝑛𝐴1

𝑛+1 = 0 

Thus, 𝐴 is quasi-normal of order 𝑛. 

Let now 𝑃 be the orthogonal projection on 𝑅(𝐴𝑘). For all 𝑥 = 𝑥1 + 𝑥2, 𝑦 = 𝑦1 + 𝑦2 ∈ 𝐻, 

⟨𝐴3
𝑘𝑥2, 𝑦2⟩ = ⟨𝐴𝑘(𝐼 − 𝑃)𝑥, (𝐼 − 𝑃)𝑦⟩ = ⟨(𝐼 − 𝑃)𝑥, 𝐴∗𝑘(𝐼 − 𝑃)𝑦⟩ = 0 
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Thus, 𝐴3 is nilpotent of order 𝑘. 

Moreover, 𝜎(𝐴) ∪ 𝜎(𝐴3) = 𝜎(𝐴) ∪ 𝛺, where 𝛺 is the union of holes in 𝜎(𝐴) which happen to 
be a subset of 𝜎(𝐴) ∩ 𝜎(𝐴3) by [4, Corollary 7] , with the interior of 𝜎(𝐴) ∩ 𝜎(𝐴3) is empty 
and 𝐴3 is nilpotent. Thus, 𝜎(𝐴) = 𝜎(𝐴3) ∪ {0}.  

4. Spectral study 

Theorem 19.  Let 𝐴 ∈ 𝐵(𝐻) be a quasi-normal operator of both order 2 and 3. Then, 
equation 𝐴𝑥 = 𝜇𝑥 implies 𝐴⋆𝑥 = 𝜇𝑥 for some 𝑥 ∈ 𝐻 and a nonzero complex scalar 𝜇. 

Proof. Since 𝐴 is quasi-normal operator of order 2, 

𝐴𝐴∗2𝐴2 = 𝐴∗2𝐴3 

Then, 

𝐴2𝐴∗2𝐴3 = 𝐴𝐴∗2𝐴4 

and so for each 𝑥 ∈ 𝐻 

⟨𝐴2𝐴∗2𝐴3𝑥, 𝑥⟩ = ⟨𝐴𝐴∗2𝐴4𝑥, 𝑥⟩ 

Since 𝜇 ≠ 0, 

                                                   ‖𝐴∗2𝑥‖ = |𝜇2|‖𝑥‖                                        (19.1) 

Thus, for all vector 𝑥 in 𝐻, 

‖(𝐴2 − 𝜇2)∗𝑥‖2 = ‖𝐴∗2𝑥‖2 + |𝜇|2‖𝑥‖2 − 2|𝜇|2‖𝑥‖2 = 0 

By (19.1). that is, 

𝐴∗2𝑥 = 𝜇2𝑥                                                                        (19.2)                                                       

Analogously, since 𝐴 is also quasi-normal of order 3, 

𝐴𝐴∗3𝐴3 = 𝐴∗3𝐴4 

Then, 

𝐴3𝐴∗3𝐴3 = 𝐴2𝐴∗3𝐴4 = 𝐴𝐴𝐴∗3𝐴3𝐴 = 𝐴𝐴∗3𝐴4𝐴 = 𝐴𝐴∗3𝐴3𝐴2

= 𝐴∗3𝐴4𝐴2

= 𝐴∗3𝐴6

 

So for each 𝑥 ∈ 𝐻, 

⟨𝐴3𝐴∗3𝐴3𝑥, 𝑥⟩ = ⟨𝐴∗3𝐴6𝑥, 𝑥⟩ 

Since 𝜇 ≠ 0, 

‖𝐴∗3𝑥‖ = |𝜇3|‖𝑥‖                                                   (19.3)                                                                          
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Thus, for all vector 𝑥 in 𝐻, 

‖(𝐴3 − 𝜇3)∗𝑥‖2 = ‖𝐴∗3𝑥‖2 + |𝜇|3‖𝑥‖2 − 2|𝜇|3‖𝑥‖2 = 0 

by (19.3). That is,                                                    

𝐴∗3𝑥 = 𝜇3𝑥                                                          (19.4)                                                        

Finally, for each 𝑥 ∈ 𝐻, 

|𝜇3|2‖𝑥‖2 = ‖𝐴∗3𝑥‖2 = ⟨𝐴∗𝐴∗2𝑥, 𝐴∗𝐴∗2𝑥⟩ = 𝜇2𝜇2⟨𝐴2𝑥, 𝐴∗𝑥⟩ = |𝜇2|2‖𝐴∗𝑥‖2 

Thus, 

‖𝐴∗𝑥‖ = |𝜇|‖𝑥‖ 

‖(𝐴 − 𝜇)∗𝑥‖2 = ‖𝐴∗𝑥‖2 + |𝜇|2‖𝑥‖2 − 2|𝜇|2‖𝑥‖2 = 0 

by (19.2) and (19.4). Then, 𝐴∗𝑥 = 𝜇𝑥. ◻ 

Corollary 20.  Let 𝐴 ∈ 𝐵(𝐻) be 𝑘-quasi-normal operator of order 𝑛. Then, 𝑁(𝐴 − 𝜇) =
𝑁(𝐴 − 𝜇)𝑚, for all non-zero complex scalar 𝜇 and all integer 𝑚 ≥ 1. 

Corollary 21.  If 𝐴 ∈ 𝐵(𝐻) is 𝑘-quasi-normal operator of order 𝑛, then 𝐴 has SVEP. 

Proof. A straightforward consequence of Theorem 11 and the previous Corollary.  

Definition 22.  An operator 𝐴 ∈ 𝐵(𝐻) is said to be isoloid, if every isolated point of its 
spectrum is an eigenvalue of 𝐴. 

We’ve then, 

Theorem 23.  If 𝐴 ∈ 𝐵(𝐻) is a 𝑘-quasi-normal operator of both orders 𝑛 and 𝑛 + 1, then 𝐴 is 
isoloid. 

Proof. According to Theorem 18, 𝐴 = (
𝐴1 𝐴2

0 𝐴3
). under the decomposition 𝐻 = 𝑅(𝐴𝑘) ⊕

𝑁(𝐴⋆𝑘). Let 𝜆 ∈ 𝜎(𝐴) be an isolated point of 𝐴. Since 𝜎(𝐴) = 𝜎(𝐴1) ∪ {0} by Theorem 18, 𝜆 
is an isolated point in 𝜎(𝐴1) or 𝜆 = 0. 
a. If 𝜆 is an isolated point in 𝜎(𝐴1), then 𝜆 is in the ponctual spectrum 𝜎𝑝(𝐴1) of 𝐴1. 

b. Assume that 𝜆 = 0 and 𝜆 ∉ 𝜎(𝐴1). Then, for all 𝑥 ∈ 𝑁(𝐴3), 

𝐴(−𝐴1
−1𝐴2𝑥 ⊕ 𝑥) = 0 

That is, 𝑢 = (−𝐴1
−1𝐴2𝑥 ⊕ 𝑥) ∈ 𝑁(𝐴3).  

Theorem 24.  Let 𝐴 ∈ 𝐵(𝐻) be a 𝑘-quasi-normal operator of order 𝑛, and let 𝑀 ⊆ 𝐻 be a 
closed invariant subspace for 𝐴. If the restriction 𝐴|𝑀 of 𝐴 on 𝑀 is one-to-one and normal, 
then 𝑀 reduces 𝐴, that is, 𝑀 is invariant for 𝐴∗ too. 

Proof. Suppose that 𝑃 is an orthogonal projection of 𝐻 onto 𝑅(𝐴𝑘). Since 𝐴 is 𝑘-quasi-
normal of order 𝑛, 
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𝑃(𝐴∗2𝐴2 − 𝐴𝐴∗)𝑃 ≥ 0 

By the hypothesis, 𝐴|𝑀 is an injective and normal operator. Then, 𝐸 ≤ 𝑃 for the orthogonal 

projection 𝐸 of 𝐻 onto 𝑀, and 𝑅(𝐴𝑘|𝑀) = 𝑀 because 𝐴|𝑅(𝐴𝑘) and hence 

𝐸(𝐴∗2𝐴2 − 𝐴𝐴∗)𝐸 ≥ 0. 

Let 

𝐴 = (
𝐴|𝑀 𝐴2

0 𝐴3
), 

on 𝑀 ⊕ 𝑀⊥. Then, 

𝐴𝐴∗ = (
𝐴|𝑀𝐴∗|𝑀 + 𝐴2𝐴2

∗ 𝐴2𝐴3
∗

𝐴3𝐴2
∗ 𝐴3𝐴3

∗ ) 

and  

𝐴⋆2𝐴2 = (𝐴∗2|𝑀𝐴2|𝑀 𝑆
𝑇 𝑅

) 

for some bounded linear operators 𝑆, 𝑇 and 𝑅. Thus, 

(
𝐴|𝑀𝐴∗|𝑀 + 𝐴2𝐴2

∗ 0
0 0

) = 𝐸(𝐴𝐴∗)𝐸 = 𝐸|𝐴∗|²𝐸 ≤ 𝐸(𝐴∗2𝐴2)
1

2𝐸   

≤  (𝐸(𝐴∗2𝐴2)𝐸)
1

2    

= (𝐴∗2|𝑀𝐴2|𝑀 0
0 0

)

1

2
 

This implies that 

𝐴|𝑀𝐴∗|𝑀 + 𝐴2𝐴2
∗ ≤ 𝐴|𝑀𝐴∗|𝑀. 

Since 𝐴|𝑀 is normal and 𝐴1𝐴1
∗  is positive, it  follows that 𝐴2 = 0. Hence 𝑀 reduces 𝐴.  

Remark 25.  The previous result is in general false if the restriction 𝐴|𝑀 is not injective. In 

fact, if 𝐴 is a nilpotent operator of order 𝑘, such that 𝐴𝑘−1 ≠ 0, then 𝐴 |𝑅(𝐴𝑘−1) = 0 is a 

normal operator. Assume that 𝑅(𝐴𝑘−1) reduces 𝐴. Then, 𝐴⋆𝐴𝑘−1𝐻 ⊂ 𝑅(𝐴𝑘−1). Thus, 

𝐴∗𝑘−1𝐴𝑘−1𝐻 ⊂ 𝑅(𝐴𝑘−1)and 𝑁(𝐴∗𝑘−1) ⊂ 𝑁(𝐴∗𝑘−1𝐴𝑘−1) = 𝑁(𝐴𝑘−1) Since 𝐴∗𝑘 = 𝐴∗𝑘−1𝐴∗ = 0, 
𝐴𝑘−1𝐴∗ = 0. Hence, 𝐴𝑘−1𝐴∗𝑘−1 = 0. Therefore, 𝐴𝑘−1 = 0. This contradicts the hypotheses on 
𝐴. 

Definition 26.  For an operator 𝐴 in 𝐵(𝐻), the Riesz idempotent 𝐸 with respect to an 
isolated point 𝜇 in the spectrum 𝜎(𝐴) of 𝐴 is defined by 

𝐸 =
1

2𝜋𝑖
∫ (𝑧 − 𝐴)−1

∂𝒟

𝑑𝑧 
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Here, the integral is taken in the positive sense, 𝒟 is a closed disk concentrated at 𝜆 with a 
small radius 𝑟 satisfying 𝒟 ∩ 𝜎(𝐴) = {𝜆} and ∂𝒟 denotes its boundary. 

It’s known that 𝐸2 = 𝐸,  𝐸𝐴 = 𝐴𝐸 and 𝜎(𝐴|𝐸𝐻) = {𝜆}. Reader is refered to [1, 8]  for more 
information. 

Theorem 27.  Let 𝐴 ∈ 𝐵(𝐻) be a 𝑘-quasi-normal operator of order 𝑛, and let 𝜇 ∈ ℂ be a 
nonzero isolated point of 𝜎(𝐴). The Riesz idempotent 𝐸 with respect to 𝜇 satisfies 𝐸𝐻 =
𝑁(𝐴 − 𝜇) = 𝑁(𝐴 − 𝜇)⋆ Furthermore, 𝐸 is self-adjoint. 

Proof. By Theorem 23, 𝜇 is an eigenvalue of 𝐴, and 𝐸𝐻 = 𝑁(𝐴 − 𝜇). According to Theorem 
19, it sufficies to show that 𝑁(𝐴 − 𝜇)⋆ ⊂ 𝑁(𝐴 − 𝜇). The subspace 𝑁(𝐴 − 𝜇) reduces 𝐴 by 
Theorem 19, and the restriction of 𝐴 on its reducing subspace is also 𝑘-quasi-normal of 
order 𝑛 by Theorem 17. It follows that 

𝐴 = 𝜇 ⊕ 𝐵 on 𝐻 = 𝑁(𝐴 − 𝜇) ⊕ (𝑁(𝐴 − 𝜇))
⊥

 

where 𝐵 is 𝑘-quasi-normal of order 𝑛, and 𝑁(𝐵 − 𝜇) = {0}. We’ve 

𝜇 ∈ 𝜎(𝐴) = {𝜇} ∪ 𝜎(𝐵) 

and 𝜆 is isolated. Then, either 𝜇 ∉ 𝜎(𝐵), or 𝜇 is an isolated point of 𝜎(𝐵), which contradicts 

the fact that 𝑁(𝐵 − 𝜇) = {0}. Since 𝐵 is invertible on (𝑁(𝐴 − 𝜇))
⊥

, 

𝑁(𝐴 − 𝜇) = 𝑁(𝐴 − 𝜇)⋆ 

Furthermore, since 𝐸𝐻 = 𝑁(𝐴 − 𝜇) = 𝑁(𝐴 − 𝜇)⋆, 

((𝑧 − 𝐴)⋆)−1𝐸 = (𝑧 − 𝜇)−1𝐸 

Thus, 

𝐸⋆ = −
1

2𝜋𝑖
∫ ((𝑧 − 𝐴)⋆)−1

∂𝐷

𝐸 𝑑𝑧 = −
1

2𝜋𝑖
∫ (𝑧 − 𝜇)−1

∂𝐷

𝐸 𝑑𝑧

=
1

2𝜋𝑖
∫ (𝑧 − 𝜇)−1

∂𝐷

 𝑑𝑧 𝐸

= 𝐸

 

𝐸 is then self-adjoint. 

Definition 28.  An operator 𝐴 ∈ 𝐵(𝐻) is said to be polaroid, if each isolated point of its 
spectrum is a pole of the resolvent of 𝐴. 

Theorem 29.  Let 𝐴 ∈ 𝐵(𝐻) be a 𝑘-quasi-normal operator of order 𝑛. Then, Weyl’s theorem 
holds for 𝐴. 

Proof. According to the hypotheses and by Corollary 12, 𝐴 has SVEP at zero. Suppose that 𝐴 

admits a representation as in Theorem 18. Either 𝜎(𝐴) ⊆ ∂𝒟 or 𝜎(𝐴) = 𝒟, where 𝒟 is the 
open unit disc, and ∂𝒟 denotes its boundary. 
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If 𝜎(𝐴) ⊆ ∂𝒟, then 𝐴 has SVEP everywhere: else 𝜎(𝐴) = 𝒟. The operator 𝐴 has SVEP on 
𝜎(𝐴)\𝑤(𝐴), then < 0dim(𝐴 − 𝜆) < ∞. We have 

𝜆 ∈ 𝜎𝑝(𝐴) ⊆ ∂𝒟 ∪ {0} 

An operator such that its point spectrum has empty interior has SVEP . Hence 𝐴 has SVEP 
[1, Remark 2.4(d)] . Also, if 

𝜎(𝐴) = 𝒟 

then 𝑖𝑠𝑜𝜎(𝐴) = ∅. If 𝜎(𝐴) ⊂ ∂𝒟, then 𝐴 is polaroid. This achieves the proof by [3] .  

Lemma 2.  Let 𝐴 be a 𝑘-quasi-normal operator of order 𝑛 but a quasi-normal of order 𝑛, then 
𝐴 admits at least a non-trivial closed invariant subspace. 

Proof. Suppose that 𝐴 has no non-trivial closed invariant subspace. Since 𝐴 ≠ 0,𝑁(𝐴) ≠ 𝐻 

and 𝑅(𝐴) ≠ 0 are closed invariant subspace for 𝐴. Thus necessarily, 𝑁(𝐴) = {0} and 𝑅(𝐴) =
𝐻. Thus, 𝐴 is quasi normal operator of order 𝑛, which contradicts the hypothesis.  

Definition 30.  An operator 𝐴 is said to be 𝑛-perinormal if (𝐴∗𝑛)(𝐴𝑛) ≥ (𝐴∗𝐴)𝑛 for a 
positive integer 𝑛 such that 𝑛 ≥ 2. 

Lemma 3.  Let 𝐴 be a quasi-normal operator of order 𝑛. Then 𝐴𝑛 is 2-perinormal operator . 

Proof. Since 𝐴 is quasi-normal operator of order 𝑛, 

(𝐴∗𝑛𝐴𝑛)2 = 𝐴∗2𝑛𝐴2𝑛 

Then, 

(𝐴∗𝑛)2(𝐴𝑛)2 ≥ (𝐴∗𝑛𝐴𝑛)2 

Hence, 𝐴𝑛 is 2-perinormal operator. ◻ 

Lemma 4.   Let 𝐴 be a 𝑛-perinormal operator. Then, 

1. 𝜎𝑗𝑝(𝐴) ∖ {0} = 𝜎𝑝(𝐴) ∖ {0}. 

2. 𝜎𝑗𝑎(𝐴) ∖ {0} = 𝜎𝑎(𝐴) ∖ {0} 

Theorem 31.  Let 𝐴 be a quasi-normal operator of both orders 𝑛 and 𝑛 + 1. Then, 

𝜎𝑗𝑎(𝐴) ∖ {0} = 𝜎𝑎(𝐴) ∖ {0} 

Proof. By the hypothesis on 𝐴, both of 𝐴𝑛 and 𝐴𝑛+1 are 2-perinormal operators. 

Let 𝜆 ∈ 𝜎𝑎(𝐴) ∖ {0}. Then, there exists a sequence of units vectors {𝑥𝑚} such that 
(𝐴 − 𝜆)𝑥𝑚 → 0 

Hence, 
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{
(𝐴𝑛 − 𝜆𝑛)𝑥𝑚 → 0

(𝐴𝑛+1 − 𝜆𝑛+1)𝑥𝑚 → 0
 

Since 𝐴𝑛 and 𝐴𝑛+1 are 2-perinormal, 

{
(𝐴∗𝑛 − 𝜆

𝑛
) 𝑥𝑚 → 0

(𝐴∗𝑛+1 − 𝜆
𝑛+1

) 𝑥𝑚 → 0
 

Finally, 

(𝐴∗ − 𝜆)𝑥𝑚 → 0 

 ◻ 

Definition 32. [1, 9]    An operator 𝐴 ∈ 𝐵(𝐻) is said to have Bishop’s   property  (𝛽) if for 
each open subset  𝐺 of ℂ, and all sequence 𝑓𝑛: 𝐺 → 𝐻, of analytic functions such that 
(𝑇 − 𝜆)𝑓𝑛 converges uniformly to 0 in norm of compact subsets of 𝐺, (𝑓𝑛)𝑛 converges 
uniformly to 0, in norm of compact subsets of 𝐺. 

Lemma 5.  Let 𝐴 be a quasi-normal operator of orders 𝑛 and 𝑛 + 1. Then, 𝐴 has Bishop’s 
property (𝛽) . 

Proof. An immediate consequence of Theorem 31 and [12,  Lemma 2.1] . ◻ 

As an extension of Lemma 5, we state the following result : 

Theorem 33.  Let 𝐴 be a 𝑘-quasi-normal operator of order 𝑛 and 𝑛 + 1, then 𝐴 has Bishop’s 
property (𝛽) . 

Proof. Let’s consider two cases : 

1. If 𝐴𝑘(𝐻) is dense, then 𝐴 is quasi-normal of order 𝑛 and 𝑛 + 1 and hence, 𝐴 has 
Bishop’s property (𝛽). 

2. If 𝐴𝑘(𝐻) is not dence, we write 𝐴 on 

𝐻 = 𝐴𝑘(𝐻) ⊕ 𝑁(𝐴∗𝑘) 

  as 𝐴 = (
𝐴1 𝐴2

0 𝐴3
)  with 𝐴1 is a quasi-normal operator of orders 𝑛 and 𝑛 + 1, and 𝐴3

𝑘 =

0. Let 𝑔𝑘(𝑢) be analytic on 𝐷 ⊆ 𝐶 with (𝐴 − 𝑢)𝑔𝑘(𝑢) = 0 uniformly on each compact 
𝐾 of 𝐷. Then 

[
𝐴1 − 𝑢 𝐴2

0 𝐴3 − 𝑢
] [

𝑔𝑘1
(𝑢)

𝑔𝑘2
(𝑢)

] = [
(𝐴1 − 𝑢)𝑔𝑘1

(𝑢) + 𝐴2𝑔𝑘2
(𝑢)

(𝐴3 − 𝑢)𝑔𝑘2
(𝑢)

] 

Since 𝐴3 is nilpotent, 𝐴3 satisfies Bishop’s property (𝛽). 
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Thus, 𝑔𝑘2
 uniformly on each compact 𝐾 on 𝐷. Therefore, (𝐴1 − 𝑢)𝑔𝑘1

(𝑢) → 0 as 𝐾1 → 0, 

since 𝐴1 satisfies Bishop’s property. It follows that 𝑔𝑘1
(𝑢) → 0 and then, 𝐴 has Bishop’s 

property (𝛽). ◻ 

Theorem 34.  Let 𝐴 ∈ 𝐵(𝐻) be a quasi-normal operator of order 𝑛 and 𝑛 + 1. If 𝜎(𝐴) = 𝜆, 
then 𝐴 = 𝜆. 

Proof. Let 𝜎(𝐴) = 𝜆. Using the spectral mapping theorem, we get 

{
𝜎(𝐴𝑛) = 𝜎(𝐴)𝑛 = 𝜆𝑛

𝜎(𝐴𝑛+1) = 𝜎(𝐴)𝑛+1 = 𝜆𝑛+1 

Since 𝐴 is quasi-normal of both orders 𝑛 and 𝑛 + 1, and according to Proposition 9, 𝐴𝑛 and 
𝐴𝑛+1 are paranormal operators. Hence 

{
𝐴𝑛 = 𝜆𝑛

𝐴𝑛+1 = 𝜆𝑛+1 

Thus, 

𝐴 = 𝜆 

 

Proposition 35.  If 𝐴 ∈ 𝐵(𝐻) is quasi-normal of order 𝑛 and 𝑛 + 1. If 𝐴2𝑛 and 𝐴2𝑛+2 are 
compacts operators then 𝐴 is also compact. 

Proof. assume that 𝐴 ∈ 𝐵(𝐻) is a quasi-normal operator of both orders 𝑛 and 𝑛 + 1. By 
paranormality of 𝐴𝑛 and 𝐴𝑛+1 we get 

{
∥ 𝐴𝑛𝑥 ∥2≤∥ 𝐴2𝑛𝑥 ∥
∥ 𝐴𝑛+1𝑥 ∥2≤∥ 𝐴2𝑛+2𝑥 ∥

 

for all unit vector 𝑥. Let {𝑥𝑚} in 𝐻 be weakly convergent sequence with limit 0 in 𝐻. From 
the compatness of 𝐴2𝑛 we get that 

{
∥ 𝐴𝑛𝑥𝑚 ∥2→ 0

∥ 𝐴𝑛+1𝑥𝑚 ∥2→ 0
 

Thus, 𝐴𝑛 and 𝐴𝑛+1 are compacts operators. Put 𝑦𝑚 = 𝐴𝑛𝑥𝑚. Then, from the compatness of 
𝐴𝑛+1, we get 

∥ 𝐴𝑛+1𝑥𝑚 ∥2=∥ 𝐴(𝐴𝑛)𝑥𝑚 ∥2=∥ 𝐴𝑦𝑚 ∥2→ 0 

Therefore, 𝐴 is compact operator. 

Definition 36.  Let 𝐴 ∈ 𝐵(𝐻). The local resolvent set of 𝐴 at a vector Let 𝑥 ∈ 𝐻 denoted by 
𝜌𝐴(𝑥), is defind to consist of complex element 𝑧0 such that there exists an analytic function 
𝑓(𝑧) defined in a neighborhood of 𝑧0, with values in 𝐻, for which 

(𝐴 − 𝑧)𝑓(𝑧) = 𝑥 
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Theorem 37.  Let 𝐴 = (
𝐴1 𝐴2

0 𝐴3
)  be a 𝑘-quasi-normal operator of order 𝑛 with respect to the 

decomposition 𝐻 = 𝑅(𝐴𝑘) ⊕ 𝑁(𝐴⋆𝑘). Then, for all  𝑥 = 𝑥1 + 𝑥2 ∈ 𝐻: 

• 𝜎𝐴3
(𝑥2) ⊂ 𝜎𝐴(𝑥1 + 𝑥2) 

• 𝜎𝐴1
(𝑥) = 𝜎𝐴1

(𝑥1 + 0) 

Proof. 𝑎. Let 𝑧0 ∈ 𝜌𝐴(𝑥1 + 𝑥2). Then, there exists a neighborhood 𝑈 of 𝑧0 and an analytic 
function 𝑓(𝑧) defined on 𝑈, with values in 𝐻, for which 

(𝐴 − 𝑧)𝑓(𝑧) = 𝑥, 𝑧 ∈ 𝑈 

Let 𝑓 = 𝑓1 + 𝑓2 where 𝑓1, 𝑓2 are in the spaces 𝑂 (𝑈, ran(𝐴𝑘)) and 𝑂(𝑈, ker(𝐴⋆𝑘)) 

respectively, consisting of analytic functions on 𝑈 with values in 𝐻, with respect to the 
uniform topology [1]. Equality (2) can then be written 
 

(
𝐴1 − 𝑧 𝐴2

0 𝐴3 − 𝑧
) (

𝑓1(𝑧)

𝑓2(𝑧)
) = (

𝑥1

𝑥2
) 

Then 

(𝐴3 − 𝑧)𝑓2(𝑧) = 𝑥2, 𝑧 ∈ 𝑈 

Hence, 𝑧0 ∈ 𝜌𝑎3
(𝑥2). Thus, (a) holds by passing to the complement. b. If 𝑧1 ∈ 𝜌𝐴(𝑥1 + 0), 

then, there exists a neighborhood 𝑉1 of 𝑧1 and an analytic function 𝑔 defined on 𝑉1 with 
values in ℋ verifying 

(𝐴 − 𝑧)𝑓(𝑧) = 𝑥1 + 0, 𝑧 ∈ 𝑉1 

Let 𝑔 = 𝑔1 + 𝑔2, where 𝑔1 ∈ 𝑂 (𝑉1, ran(𝐴𝑘)) , 𝑔2 ∈ 𝑂(𝑉1, ker(𝐴⋆𝑘)) are as in (𝑎). From 

equation (3) we obtain and 

(𝐴1 − 𝑧)𝑔1(𝑧) + 𝐴2𝑔2(𝑧) = 𝑥1

(𝐴3 − 𝑧)𝑔2(𝑧) = 0, 𝑧 ∈ 𝑉1
 

Since 𝐴3 is nilpotent by Theorem 18, 𝐴3 has SVEP. Thus, 𝑔2(𝑧) = 0. Consequently, 
(𝐴1 − 𝑧)𝑔1(𝑧) = 𝑥1. Therefore, 𝑧1 ∈ 𝜌𝐴1

(𝑥1), and then 𝜌𝐴(𝑥1 + 0) ⊂ 𝜌𝐴1
(𝑥1). Thus, 𝜎𝐴1

(𝑥) =

𝜎𝐴1
(𝑥1 + 0). 

Now, if 𝑧2 ∈ 𝜌𝐴1
(𝑥1), then, there exists a neighborhood 𝑉2 of 𝑧2 and an analytic function ℎ 

from 𝑉2 onto 𝐻, such that (𝐴1 − 𝑧)ℎ(𝑧) = 𝑥1, for all ∈ 𝑉2. Thus, 

(𝐴 − 𝑧)(ℎ(𝑧) + 0) = (𝐴1 − 𝑧)ℎ(𝑧) = 𝑥1 = 𝑥1 + 0 

Hence, 𝑧2 ∈ 𝜌𝐴(𝑥1 + 0). ◻ 
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Proposition 38.  Let 𝐴 be a regular quasi-normal operator of order 𝑛. Then, the approximate 

point spectrum 𝜎𝑎(𝐴) of 𝐴 lies in the set {𝜆 ∈ ℂ:
1

‖𝐴−𝑛‖2‖𝐴2𝑛−1‖
≤ |𝜆| ≤ ‖𝐴‖} 

Proof.  Let 𝑥 ∈ 𝐻 with ∥ 𝑥 ∥= 1. We have 

∥ 𝑥 ∥2= ∥𝐴−𝑛𝐴𝑛𝑥∥2 ≤ ∥𝐴−𝑛∥2∥𝐴𝑛𝑥∥2 

Since 𝐴𝑛 is paranormal, ∥𝐴𝑛𝑥∥2 ≤ ∥∥𝐴2𝑛𝑥∥∥. Then, 

1 =∥ 𝑥 ∥2≤ ∥𝐴−𝑛∥∥∥𝐴2𝑛𝑥∥∥ ≤ ∥𝐴−𝑛∥2∥∥𝐴2𝑛−1𝑥∥∥ ∥ 𝐴𝑥 ∥ 

Hence, 

∥ 𝐴𝑥 ∥≥
1

∥𝐴−𝑛∥2∥𝐴2𝑛−1∥
 

If 𝜆 ∈ 𝜎𝑎(𝐴), then there exists a unit sequence (𝑥𝑚)𝑚 in 𝐻 satisfying ∥∥(𝐴 − 𝜆)𝑥𝑚∥∥ → 0. Then, 

∥∥𝐴𝑥𝑚 − 𝜆𝑥𝑚∥∥ ≥ ∥∥𝐴𝑥𝑚∥∥ − |𝜆|∥∥𝑥𝑚∥∥ ≥
1

∥𝐴−𝑛∥2∥𝐴2𝑛−1∥
 

Letting 𝑚 → ∞, we obtain 

|𝜆| ≥
1

∥𝐴−𝑛∥2∥𝐴2𝑛−1∥
 

Thus, 

𝜎𝑎(𝐴) ⊆ {𝜆 ∈ ℂ:
1

∥𝐴−𝑛∥2∥𝐴2𝑛−1∥
≤ |𝜆| ≤∥ 𝐴 ∥} 
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