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Abstract. Important fundamental and spectral properties of the classes of quasi 
n-normal and k-quasi n-normal operators defined on a separable complex Hilbert 
space constitute the aim of the present paper. We prove that the considered 
operators satisfy Bishop’s property (β) and that are polaroid, subscalar and 
decomposable. It’s also proved that a k-quasi n- normal operator has a non trivial 
invariant subspace and Weyl’s theorem holds for this operator. Other results 
related to the Riesz idempotent of elements of these classes are also established.  
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1. Introduction and Background 

Let H denote a separable complex Hilbert space, and let B(H) be the algebra 
of all bounded linear operators on H. An operator A ∈ B(H) is said to be 
normal if A commutes with its adjoint A٨, and n-normal if A٨An = AnA٨. 
It’s obvious that if A is a n-normal operator, then An is normal. An operator 
A ∈ H is said to be an isometry if A٨A = I, where I is the identity operator 
on H, and a co-isomety if A٨ is an isometry. 

An operator A in B(H) is said to have the Single Valued Extension 
Property (SVEP) at a complex number α, if for each open neighborhood U 
of α, the zero function is the unique analytic solution on U of the equation 

(A — λ)f (λ) = 0 

Moreover, A is said to have SVEP if A has SVEP at each complex scalar [1]. 
For A ∈ B(H), the smallest integer j for which N (Aj) = N (Aj+1) is said 

to be the ascent of A and is denoted p(A). If such integer does not exist, we 
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∫ 

a 0     

2 

0  0 1  0 

shall write p(A) = ∞ [1]. 
Also, if A in B(H), then the Riesz idempotent E with respect to an isolated 
point µ in the spectrum σ(A) of A is defined by 

E = 
 1  

2πi 
(z — A)−1dz 

∂D 

where the integral is taken in the positive sense, Ð is a closed disk concen- 
trated at λ with a small radius r satisfying Ð ∩ σ(A) = {λ} and ∂Ð denotes 
its boundary, [1, 9, 10]. The operator A ∈ B(H) is said to have Bishop’s 
property (β) if for each open subset G of C, and all sequence (fn : G → H, of 
analytic functions such that (A — λ)fn converges uniformly to 0 in norm of 
compact subsets of G, (fn)n converges uniformly to 0, in norm of compact 
subsets of G. See [1, 9, 10] for more details. 

In this paper, we investigate the class of operators verifying AA٨nAn = 
A٨nAn+1 for an operator A ∈ B(H), and a natural integer n, n ≥ 1. Elements 
of this class are said to be quasi-normal operators of order n, [7]. For n = 1, 
the operator A is quasi normal. We show that if A is quasi-normal of order n, 
then A has Bishop’s property β, A is isoloid and it satisfies Weyl’s Theorem. 
We also establish other spectral results related to the compacity and the 
Riesz idempotent. 

Example. Matrices on C2 of the form

  
0 0

 

with a /= 0 are quasi-normal 

of order 2 but not quasi normal. However, the matrix  
1  0  

, (i2 = —1) 
i 0 

is quasi-normal of order n for all integer n, n ≥ 1. 

 

Example. The matrices A =

  
1  0

  

and S =

  
0  0

  

are quasi-normal 

of order 2. Nonetheless, the matrix A + S is not quasi-normal of order 2. 

Finally, N (A), R(A) and |A| = (A∗A) 
1 

denote respectively the null 

space, the range and the modulus of an operator A in B(H). 

 

2. Quasi-normal operators of order n 

Proposition 2.1. [7] The class of quasi-normal operators of order n contains 
the class of n-normal operators. 

 
Proposition 2.2. [7] Let A ∈ B(H) be a quasi-normal operator of order n, 
and let B ∈ B(H) be unitarily equivalent to A. Then, B is a quasi-normal 
operator of order n too. 

The following example shows that if A and B are quasisimilar, then the 
Proposition 2.2 is in general not true. 
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0  0 

0  1     

  

  

0 0 —1 1 

Example. The operator A =

   
1  0

   

is quasi-normal of order 2, and 

X =

  
1  1

  

is invertible and not unitary. The matrix B = XAX−1 = 

1  —1 
is not quasi-normal of order 2 since 

0 0 
  

2  —2
  

= BB٨2B2 /= B٨2B3 =

   
1 —1

  

 
It is also given in [7] that a quasi-normal operator of order 2 needs not 

to be quasi-normal operator of order 3. 

0  0  1 
Example. The matrix A = 1  0  0 is a 3-quasi-normal operator of 

0  0  0 
order 2 but not quasi-normal of order 2. 

Proposition 2.3. Let A ∈ B(H) be an invertible quasi-normal operator of 
order n. Then, so is its inverse A−1. 

Proof. Under the hypotheses, A is n-normal. Indeed, An is also invertible, 
and 

 
Hence, 

AA٨n = AA٨nAnA−n = A٨nAn+1A−n = A٨nA 
 

 

A−1(A−1)٨nA−n = (AnA٨nA)−1 = (AnAA٨n)−1 = (An+1A٨n)−1 

= (A−1)٨n(A−1)n+1 

 

 

Lemma 2.4. If A ∈ B(H) is a quasi-normal operator of order n, then (A∗nAn)3 = 
A∗3nA3n. 

Proof. By the hypothesis, (A∗nAn)2 = A∗2nA2n. Then, 

(A∗nAn)3 = (A∗nAn)2A∗nAn = A∗2nA2nA∗nAn. 

Hence, 

A∗2nA2nA∗nAn = A∗2nA2n−1A∗nAn+1 =  A∗2nA2n−2A∗nAn+2 

=  A∗2nA2n−3A∗nAn+3 

=  ..... 

=  A∗3nA3n 

 
Definition 2.5. An operator A ∈ B(H) is said to be paranormal if for all unit 

vector x in H Ax  2 ≤  A2x  . 

We’ve then, 
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Proposition 2.6. If A ∈ B(H) is a quasi-normal operator of order n, then An 
is paranormal. 

Proof. According to the hypothesis and Lemma 2.4, (A∗nAn)2 = A∗2nA2n. 
Then, for each unit vector x in H, 

A∗nAnx  
2 = ⟨(A∗nAn)2x, x⟩ = ⟨A∗2nA2nx, x⟩ =  A2nx  

2 

By Cauchy-Schwarz inequality, we get 

Anx  2 = ⟨A∗nAnx, x⟩ ≤  A∗nAnx  x  =  A∗nAnx  =  A2nx  =  (An)2x 

 This shows the paranormality of A.   

 

 
Definition 2.7. [1] For A ∈ H, the smallest integer j for which N (Aj) = 
N (Aj+1) is said to be the ascent of A and is denoted p(A). If such integer 
does not exist, we shall write p(A) = ∞. 

In view of [1, Theorem 3.8], operators that have finite ascent have SVEP 
too. We’ve then 

 
Theorem 2.8. Let A be quasi-normal of order n. Then, N (An) = N (An+1). 

Proof. Let x be in N (An+1). Then, An+1x = 0. Since A is quasi-normal of 
order n, 

 
Hence, 

 
for all z ∈ H. Thus, 

AA٨nAnx = 0 

 
⟨AA٨nAnx, z⟩ = ⟨A٨nAnx, A٨z⟩ = 0 
 

 

A٨nAnx ∈ R(A٨)⊥ ∩ R(A٨n) 

Since R(A٨)⊥ c R(A٨n)⊥, 
 

A٨nAnx ∈ R(A٨n)⊥ ∩ R(A٨n) = {0} 

Finally, Anx = 0. That is x ∈ N (An). This achieves the proof since the 
second inclusion is evident.   

 

 

Corollary 2.9. If A is quasi-normal of order n, then p(A) ≤ n. 

Corollary 2.10. Quasi-normal operators of order n have SVEP at 0. 



Journal of Computational Analysis and Applications                          VOL. 34, NO. 1, 2025 
Journal's ISSN: 1521-1398 (Paper),1572-9206 (Online) 

 
 

                                                                                   327         Vajja Ramesh et al 323-340 
 

  

1 1 1 1 1 1 

3. k-quasi-normal operators of order n 

 
Definition 3.1. An operator A ∈ B(H) is said to be k-quasi-normal of order 
n. If 

A٨k(AA٨nAn — A٨nAn+1)Ak = 0 

1-quasi-normal operators of order n are quasi-normal of order n. 

 
Theorem 3.2. Let A be a k-quasi-normal operator of order n. Assume that 
R(Ak) is dense in H. Then, A is quasi-normal of order n. 

Proof. Since A is k-quasi-normal of order n, 

A٨k(AA٨nAn — A٨nAn+1)Ak = 0 
 

Let x be in H. Since R(Ak) = H, x = lim Akxn for some sequence (xn)n of 
n→∞ 

elements of H. Since A is k-quasi-normal of order n, 

0  = lim ⟨A٨k(AA٨nAn — A٨nAn+1)Akxn, xn⟩ 
n→∞ 

= lim ⟨(AA٨nAn — A٨nAn+1)Akxn, Akxn⟩ 
n→∞ 

Then, 

0 = ⟨(AA٨nAn — A٨nAn+1) lim Akxn, lim Akxn⟩ 
n→∞ n→∞ 

by the continuity of the inner product. Hence, 

⟨AA٨nAn — A٨nAn+1)x, x⟩ = 0 

This shows that A is k-quasi-normal of order n.   

Corollary 3.3. If A is k-quasi-normal operator of order n such that A is not 
quasi-normal of order n, then A is not invertible. 

 
Theorem 3.4. The restriction of a k-quasi-normal operator A ∈ B(H) of 
order n on an invariant closed subspace M c H is also k-quasi-normal of 
order n. 

Proof. A = 
A1 A2 

0 A3 

  

under the orthogonal decomposition H = M ⊕M ⊥. 

Since A is k-quasi n-normal, 

0  =  A٨k(AA٨nAn — A٨nAn+1)Ak 
  

A٨k(A1A٨nAn — A٨nAn+1)Ak R 
S T 

for certain operators R, S, T ∈ B(H). Hence, 

A٨k(A1A٨nAn — A٨nAn+1)Ak = 0 
1 1 1 1 1 1 

The desired result is proved.   

= 
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3 

  

3 

            

R(Ak ) 

Thus, A is quasi-normal of order n. 

1 1 1 1 

 
Theorem 3.5. Let A be a k-quasi-normal operator of order n, for which 

R(Ak) /= H. If A = 
A1 A2 

0 A3 

 
 

  

on H = R(Ak) ⊕ N (A٨k), then 

1. A1 is quasi-normal of order n. 
2. Ak = 0 and σ(A) = σ(A1) ∪ {0}. 

Proof. Let x ∈ H. Since A is k-quasi-nomal of order n, 

0  =  ⟨A٨k(AA٨nAn — A٨nAn+1)Akx, x⟩ 

=  ⟨(AA٨nAn — A٨nAn+1)Akx, Akx⟩ 
 

Then, for all y ∈ R(Ak) 

⟨(AA٨nAn — A٨nAn+1)y, y⟩ = 0 

Hence, 
 

 

(AA٨nAn — A٨nAn+1) 

 

 

= A1A٨nAn — A٨nAn+1 = 0 

 
 

Let now P be the orthogonal projection on R(Ak). For all x = x1 + x2, y = 
y1 + y2 ∈ H, 

Akx2, y2 = Ak(I — P )x, (I — P )y = (I — P )x, A∗k(I — P )y = 0 

Thus, A3 is nilpotent of order k. 

Moreover, σ(A) ∪ σ(A3) = σ(A) ∪ Ω, where Ω is the union of holes in 
σ(A) which happen to be a subset of σ(A) ∩ σ(A3) by [4, Corollary 7], with 
the interior of σ(A) ∩ σ(A3) is empty and A3 is nilpotent. Thus, σ(A) = 
σ(A3) ∪ {0} .   

 

 

4. Spectral study 

Theorem 4.1. Let A ∈ B(H) be a quasi-normal operator of both order 2 and 
3. Then, equation Ax = µx implies A٨x = µx for some x ∈ H and a nonzero 
complex scalar µ. 

Proof. Since A is quasi-normal operator of order 2, 

AA∗2A2 = A∗2A3 

Then, 

 
and so for each x ∈ H 

 
Since µ /= 0, 

 

A2A∗2A3 = AA∗2A4 

 

⟨A2A∗2A3x, x⟩ = ⟨AA∗2A4x, x⟩ 

 

A∗2x  = |µ2| x  (4.1) 

Thus, for all vector x in H, 

(A2 — µ2)∗x  2 =  A∗2x  2 + |µ|2  x  
2 — 2|µ|2  x  

2 = 0 
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by (4.1). That is, 

A∗2x = µ2x (4.2) 

Analogously, since A is also quasi-normal of order 
3, 

AA∗3A3 = A∗3A4 

Then, 

A3A∗3A3 = A2A∗3A4 = AAA∗3A3A = 

AA∗3A4A  =  AA∗3A3A2 
=
  
A
∗
3

A
4

A
2 

=
  
A
∗

3

A
6 

So for each x ∈ H, 

⟨A3A∗3A3x, x⟩ = ⟨A∗3A6x, 

x⟩ 

Since µ /= 0, 

A∗3x  = |µ3| x  (4.3) 

Thus, for all vector x in H, 

(A3 — µ3)∗x  
2 =  

A∗3x  
2 + |µ|3  x  

2 — 2|µ|3  x  

2 = 0 by (4.3). That is, 

A∗3x = µ3x (4.4) 

Finally, for each x ∈ H, 
 

|µ3|2  x  
2 =  A∗3x  

2 = ⟨A∗A∗2x, A∗A∗2x⟩ = 

µ2µ2⟨A2x, A∗x⟩ = |µ2|2  A∗x  
2 

Thus, 

A∗x  = |µ| x  

(A — µ)∗x  2 =  A∗x  
2 + |µ|2  x  

2 — 

2|µ|2  x  
2 = 0 

by (4.2) and (4.4). Then, 

A∗x = µx.   

 
Corollary 4.2. Let A ∈ 
B(H) be k-quasi-
normal operator of 
order n. Then, N (A — 
µ) = N (A — µ)m, for all 
non-zero complex 
scalar µ and all 
integer m ≥ 1. 

Corollary 4.3. If A ∈ 
B(H) is k-quasi-normal 
operator of order n, 

then A 
has SVEP. 

Proof. A 
straightforward 
consequence of 
Theorem 2.8 and the 
previous Corol- lary.   

Definition 4.4. An 
operator A ∈ B(H) is 
said to be isoloid, if 
every isolated point of 
its spectrum is an 
eigenvalue of A. 

We’ve then, 

Theorem 4.5. If A ∈ B(H) is a k-
quasi-normal operator of both 
orders n and 
n + 1, then A is isoloid. 

Proof. According to Theorem 

3.5, A = 
A1 A2 

0 A3 
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1 

1 

  

3 

  

2 

2 

2 

1 

= ∗ 
2 3 

2 

0 0 
= E(AA )E = E|A | E ≤  E(A A ) 2 E 

 

  

. under the decompo- 

sition H = R(Ak) ⊕ N (A٨k). Let λ ∈ σ(A) be an isolated point of A. Since 
σ(A) = σ(A1) ∪{0} by Theorem 3.5, λ is an isolated point in σ(A1) or λ = 0. 
a. If λ is an isolated point in σ(A1), then λ is in the ponctual spectrum σp(A1) 
of A1. 
b. Assume that λ = 0 and λ ∈/ σ(A1). Then, for all x ∈ N (A3), 

A(—A−1A2x ⊕ x) = 0 

That is, u = (—A−1A2x ⊕ x) ∈ N (A3).   

 
Theorem 4.6. Let A ∈ B(H) be a k-quasi-normal operator of order n, and 
let M ⊆ H be a closed invariant subspace for A. If the restriction A |M of A 
on M is one-to-one and normal, then M reduces A, that is, M is invariant 

for A∗ too. 
 

Proof. Suppose that P is an orthogonal projection of H onto R(Ak). Since 
A is k-quasi-normal of order n, 

P (A∗2A2 — AA∗)P ≥ 0 

By the hypothesis, A|M is an injective and normal operator. Then, E ≤ P 

for the orthogonal projection E of H onto M, and R(Ak|M ) = M because 
A|R(Ak ) and hence 

E(A∗2A2 — AA∗)E ≥ 0. 

Let 

 
on M ⊕ M ⊥. Then, 

A = 
A |M A2 

0 A3 

∗ 
  

A |M A∗ |M + A2A∗ A2A∗ 

A3A2 A3A∗ 

and 

A٨2A2 = A∗2 |M A2 |M S 
T R 

for some bounded linear operators S, T and R. Thus, 
  

A |M A∗ |M + A2A∗ 0
 

∗ ∗ 2 

 

∗2  2 1 

 

≤  (E(A∗2A2E)) 
1 

  
A∗2 |M A2 |M 0

  1 

 
This implies that 

= 
0 0 

 

A|M A∗|M + A2A∗ ≤ A|M A∗|M . 

Since A|M is normal and A1A∗ is positive, it follows that A2 = 0. Hence M 
reduces A.   

AA 

  

, 
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∫ 

 

Remark 4.7. The previous result is in general false if the restriction A |M 

is not injective. In fact, if A is a nilpotent operator of order k, such that 

Ak−1 /= 0, then A R(Ak−1) = 0 is a normal operator. Assume that R(Ak−1) 

reduces A. Then, A٨Ak−1H c R(Ak−1). Thus, 
 

A∗k−1Ak−1H c R(Ak−1) 

and 

N (A∗k−1) c N (A∗k−1Ak−1) = N (Ak−1) 

Since A∗k = A∗k−1A∗ = 0, Ak−1A∗ = 0. Hence, Ak−1A∗k−1 = 0. Therefore, 

Ak−1 = 0. This contradicts the hypotheses on A. 

 
Definition 4.8. For an operator A in B(H), the Riesz idempotent E with 
respect to an isolated point µ in the spectrum σ(A) of A is defined by 

E = 
 1  

2πi 
(z — A)−1dz 

∂D 

Here, the integral is taken in the positive sense, Ð is a closed disk concentrated 
at λ with a small radius r satisfying Ð ∩ σ(A) = {λ} and ∂Ð denotes its 
boundary. 

It’s known that E2 = E, EA = AE and σ(A |EH ) = {λ}. Reader is 
refered to [1, 8] for more information. 

Theorem 4.9. Let A ∈ B(H) be a k-quasi-normal operator of order n, and 
let µ ∈ C be a nonzero isolated point of σ(A). The Riesz idempotent E with 
respect to µ satisfies 

EH = N (A — µ) = N (A — µ)٨ 

Furthermore, E is self-adjoint. 

Proof. By Theorem 4.5, µ is an eigenvalue of A, and EH = N (A — µ). 
According to Theorem 4.1, it sufficies to show that N (A — µ)٨ c N (A — µ). 
The subspace N (A — µ) reduces A by Theorem 4.1, and the restriction of A 
on its reducing subspace is also k-quasi-normal of order n by Theorem 3.4. 
It follows that 

A = µ ⊕ B on H = N (A — µ) ⊕ (N (A — µ))⊥ 

where B is k-quasi-normal of order n, and N (B — µ) = {0}. We’ve 

µ ∈ σ(A) = {µ} ∪ σ(B) 

and λ is isolated. Then, either µ /∈ σ(B), or µ is an isolated point of σ(B), 
which contradicts the fact that N (B — µ) = {0}. Since B is invertible on 

(N (A — µ))⊥, 

N (A — µ) = N (A — µ)٨ 

Furthermore, since EH = N (A — µ) = N (A — µ)٨, 
 

((z — A)٨)−1E = (z — µ)−1E 
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∫ ∫ 

∫ 

 

Thus,  

E٨ = — 
 1  

2πi 
∂D 

 

((z — A)٨)−1E dz =  — 
 1  

2πi 
∂D 

 
 

(z — µ)−1E dz 

1 
= 

2πi 
∂D 

=  E 

(z — µ)−1 dz E 

E is then self-adjoint.   

 

 
Definition 4.10. An operator A ∈ B(H) is said to be polaroid, if each isolated 
point of its spectrum is a pole of the resolvent of A. 

Theorem 4.11. Let A ∈ B(H) be a k-quasi-normal operator of order n. Then, 
Weyl’s theorem holds for A. 

Proof. According to the hypotheses and by Corollary 2.9, A has SVEP at 
zero. Suppose that A admits a representation as in Theorem 3.5. Either 
σ(A) ⊆ ∂Ð or σ(A) = Ð, where Ð is the open unit disc, and ∂Ð denotes its 
boundary. 

 

If σ(A) ⊆ ∂Ð, then A has SVEP everywhere: else σ(A) = Ð. The 
operator A has SVEP on σ(A) \ w(A), then < 0 dim(A — λ) < ∞. We have 

λ ∈ σp(A) ⊆ ∂Ð ∪ {0} 

An operator such that its point spectrum has empty interior has SVEP [1, 
Remark 2.4(d)]. Hence A has SVEP. Also, if 

 

σ(A) = Ð 

then isoσ(A) = ∅. If σ(A) c ∂Ð, then A is polaroid. This achieves the proof 
by [3].   

Lemma 4.12. Let A be a k-quasi-normal operator of order n but a quasi- 
normal of order n, then A admits at least a non-trivial closed invariant sub- 
space. 

Proof. Suppose that A has no non-trivial closed invariant subspace. Since 
A /= 0,N (A) /= H and R(A) /= 0 are closed invariant subspace for A. Thus 

necessarily, N (A) = {0} and R(A) = H. Thus, A is quasi normal operator of 
order n, which contradicts the hypothesis.   

Definition 4.13. An operator A is said to be n-perinormal if (A∗n)(An) ≥ 

(A∗A)n for a positive integer n such that n ≥ 2. 

Lemma 4.14. Let A be a quasi-normal operator of order n. Then An is 2- 
perinormal operator . 
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m 

Proof. Since A is quasi-normal operator of order n, 

(A∗nAn)2 = A∗2nA2n 

Then, 

(A∗n)2(An)2 ≥ (A∗nAn)2 

Hence, An is 2-perinormal operator.   

Lemma 4.15. [11] Let A be a n-perinormal operator. Then, 

1. σjp(A)\ {0} = σp(A)\ {0}. 
2. σja(A)\ {0} = σa(A)\ {0} 

Theorem 4.16. Let A be a quasi-normal operator of both orders n and n + 1. 
Then, 

 
σja(A)\ {0} = σa(A)\ {0} 

Proof. By the hypothesis on A, both of An and An+1 are 2-perinormal op- 
erators. 

Let λ ∈ σa(A)\ {0}. Then, there exists a sequence of units vectors {xm} 
such that (A — λ)xm → 0 

Hence, 

(An — λn)xm → 0 

(An+1 — λn+1)xm → 0 

Since An and An+1 are 2-perinormal, 

(
(A∗n — λ

n
)xm → 0 

 
Finally, 

(A∗n+1 — λ
n+1

)x → 0 

 

(A∗ — λ)xm → 0 

 
Definition 4.17. [1, 9] An operator A ∈ B(H) is said to have Bishop’s (β) 
property if for each open subset G of C, and all sequence (fn : G → H, of 
analytic functions such that (T — λ)fn converges uniformly to 0 in norm of 
compact subsets of G, (fn)n converges uniformly to 0, in norm of compact 
subsets of G. 

Lemma 4.18. Let A be a quasi-normal operator of orders n and n + 1. Then, 
A has Bishop’s property (β). 

Proof. An immediate consequence of Theorem 4.16 and [12, Lemma 2.1].  

As an extension of Lemma 4.18, we state the following result : 

Theorem 4.19. Let A be a k-quasi-normal operator of order n and n + 1, then 
A has Bishop’s property (β). 

Proof. Let’s consider two cases : 

( 
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3 

0 A3 — u gk2 (u) (A3 — u)gk2 (u) 

1. If Ak(H) is dense, then A is quasi-normal of order n and n + 1 and 
hence, A has Bishop’s property (β). 

2. If Ak(H) is not dence, we write A on 

H = Ak(H) ⊕ N (A∗k) 

as A = 
A1 A2 

0 A3

  

with A1 is a quasi-normal operator of orders n and 
n+1, and Ak = 0. Let gk(u) be analytic on D ⊆ C with (A—u)gk(u) = 0 
uniformly on each compact K of D. Then 

  
A1 — u A2

  
gk1 (u)

 

=

 
(A1 — u)gk1 (u) + A2gk2 (u)

  

Since A3 is nilpotent, A3 satisfies Bishop’s property (β). 
Thus, gk2 uniformly on each compact K on D. Therefore, (A1—u)gk1 (u) → 

0 as K1 → 0, since A1 satisfies Bishop’s property. It follows that gk1 (u) → 0 
and then, A has Bishop’s property (β).   

Theorem 4.20. Let A ∈ B(H) be a quasi-normal operator of order n and 
n + 1. If σ(A) = λ, then A = λ. 

Proof. Let σ(A) = λ. Using the spectral mapping theorem, we get 

σ(An) = σ(A)n = λn 

σ(An+1) = σ(A)n+1 = λn+1 

Since A is quasi-normal of both orders n and n + 1, and according to Propo- 
sition 2.6, An and An+1 are paranormal operators. Hence 

An = λn 

An+1 = λn+1 

Thus, 

A = λ 

 
Proposition 4.21. If A ∈ B(H) is quasi-normal of order n and n + 1. If A2n 
and A2n+2 are compacts operators then A is also compact. 

Proof. assume that A ∈ B(H) is a quasi-normal operator of both orders n 
and n + 1. By paranormality of An and An+1 we get 

Anx  2 ≤   A2nx  
 An+1x  2 ≤  A2n+2x 

 

for all unit vector x. Let {xm} in H be weakly convergent sequence with limit 
0 in H. From the compatness of A2n we get that 

Anxm  2 → 0 

( 

( 

( 

( 
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An+1xm 
 2 → 0 

Thus, An and An+1 are compacts operators. Put ym = Anxm. Then, 
from the compatness of An+1, we get 

An+1xm  2 =  A(An)xm  2 =  Aym  2 → 0 

Therefore, A is compact operator.   

Definition 4.22. Let A ∈ B(H). The local resolvent set of A at a vector Let 
x ∈ H denoted by ρA(x), is defind to consist of complex element z0 such that 
there exists an analytic function f (z) defined in a neighborhood of z0, with 
values in H, for which 

(A — z)f (z) = x 

Theorem 4.23. Let A = 
A1 A2 

0 A3 

  

be a k-quasi-normal operator of order 
 

n with respect to the decomposition H = R(Ak) ⊕ N (A٨k). Then, for all 
= x1 + x2 ∈ H : 

a. σA3 (x2) c σA (x1 + x2) 

b. σA1 (x) = σA1 (x1 + 0) 

Proof. a. Let z0 ∈ ρA (x1 + x2). Then, there exists a neighborhood U of z0 
and an analytic function f (z) defined on U , with values in H, for which 

(A — z)f (z) = x, z ∈ U 
 

Let f = f1 + f2 where f1, f2 are in the spaces O  U, ran (Ak)  and 

O U, ker A٨k respectively, consisting of analytic functions on U with val- 
ues in H, with respect to the uniform topology [1]. Equality (2) can then be 
written 

   
A1 — z A2 

  
f1(z)

  

=

  
x1

  

 
Then 

0 A3 — z f2(z) x2 
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(A3 — z) f2(z) = x2, z ∈ U 

Hence, z0 ∈ ρa3 (x2). Thus, (a) holds by passing to the complement. b. If 
z1 ∈ ρA (x1 + 0), then, there exists a neighborhood V1 of z1 and an analytic 
function g defined on V1 with values in H verifying 

(A — z)f (z) = x1 + 0, z ∈ V1 
 

Let g = g1 + g2, where g1 ∈ O  V1, ran (Ak) , g2 ∈ O V1, ker A٨k 

are as in (a). From equation (3) we obtain and 

(A1 — z) g1(z) + A2g2(z) = x1 

(A3 — z) g2(z) = 0, z ∈ V1 

Since A3 is nilpotent by Theorem 3.5, A3 has SVEP. Thus, g2(z) = 

0. Consequently, (A1 — z) g1(z) = x1. Therefore, z1 ∈ ρA1 (x1), and then 

ρA (x1 + 0) c ρA1 (x1). Thus, σA1 (x) = σA1 (x1 + 0). 

 
Now, if z2 ∈ ρA1 (x1), then, there exists a neighborhood V2 of z2 and 

an analytic function h from V2 onto H, such that (A1 — z) h(z) = x1, for all 
∈ V2. Thus, 

(A — z)(h(z) + 0) = (A1 — z) h(z) = x1 = x1 + 0 

Hence, z2 ∈ ρA (x1 + 0).   

 
Proposition 4.24. Let A be a regular quasi-normal operator of order n. Then, 
the approximate point spectrum σa(A) of A lies in the set 

{λ ∈ C : 
1 

≤ |λ| ≤  A  } 
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n n 2 2n 

2 −n 2n −n  2 2n−1 

2 −n  n 2 −n 2 n 2 

 
Proof.  Let x ∈ H with x  = 1. We have 

x   = ¨A A x¨ ≤ ¨A ¨ A x  

Since A is paranormal, A x ≤ ¨A  x¨ . Then, 

1 =  x ≤ ¨A ¨ ̈ A  x¨ ≤ ¨A ¨ ¨A x¨ Ax 

Hence, 

Ax  ≥ 

 
If λ ∈ σa(A), then there exists a unit sequence (xm)m in H satisfying 
(A — λ)xm  → 0. Then, 

Axm — λxm  ≥  Axm  — |λ| xm  ≥ 

 
Letting m → ∞, we obtain 

|λ| ≥ 

 
Thus, 

σ (A) ⊆ 

(

λ ∈ C : 
 1  

≤ |λ| ≤  A 

 ) 

a 
 A−n  2 

 A2n−1 
 

 

 
Competing interests. The authors declare that they have no competing 

interests. 
Availability of data and materials 
Data sharing not applicable to this paper as no data sets were generated or 
analyzed during the current study. 
Author’s contribution. All authors discussed the results and contribute to 
the final Manuscript. 

References 

[1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, 
Kluwer Academic Publishers, 2004. 

[2] S.K. Berberian, Introduction to Hilbert Spaces, New York : Chelsea Publishing 
Company, 1976. 

[3] R.E. Harte and W.Y. Lee, Another note on Weyl’s theorem , Trans. Amer. 
Math. Soc., 349 (1997), 2115–2124. 

[4] J.K. Han, H.Y. Lee and W.Y Lee, Invertible completions of 2×2 upper triangular 
operator matrices , Proc. Amer. Math. Soc., 128 (1999), 119–123. 

[5] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including 
class of log-hyponormal and several related classes , Sci. Math., 1 (1998), 389– 

1 
 

1 
 

1 
 



Journal of Computational Analysis and Applications                          VOL. 34, NO. 1, 2025 
Journal's ISSN: 1521-1398 (Paper),1572-9206 (Online) 

 

                                                                                            340         Vajja Ramesh et al 323-340 

 

403. 

[6] W. Rudin, Functional Analysis, McGraw-Hill, 1973, New York. 

[7] L. K. Shaakir and S. S. Marai, Quasi-nomal operators of order n, Tikrit J. Pure 
Sci., 20 (2015), 167–169. 

[8] S. Mecheri, Bishop’s property (β) and Riesz Idempotent for k-quasi-paranormal 
operators, Banach. J. Math. Anal., 6 (2012), 147–154. 

[9] S. Mecheri, Bishop’s property (β), hypercyclicity and hyperinvariant subspaces, 
Oper. Matr., 8 (2014), 555-562. 

[10] S. Mecheri, Analytic extension of n-normal operators, Oper. Matr., 15 (2021), 
615–626. 

[11] H. Zoo and F. Zoo, A note on perinormal operators , Acta. Math. Scientia, 
34B (2014), 194–198. 

[12] A. Uchiyama and K. Tanahashi, Bishop’s property (β) for paranormal opera- 
tors, Oper. Matr. 3 (2009), 517–524. 

 
Ayyoub Fellag Ariouat1, Aissa Nasli Bakir2 and Abdelkader Benali3 
1Department of Mathematics 
Laboratory of Mathematics and Applications LMA 
Faculty of Exact Sciences and Informatics 
Hassiba Benbouali University of Chlef, B.P. 78C, 02180, Ouled Fares. 
Chlef, Algeria. 
e-mail: a.fellagariouat@univ-chlef.dz 
2Department of Mathematics 
Laboratory of Mathematics and Applications LMA 
Faculty of Exact Sciences and Informatics 
Hassiba Benbouali University of Chlef, B.P. 78C, 02180, Ouled Fares. 
Chlef, Algeria. 
National Higher School of Cybersecurity NSCS, Sidi Abdellah. 
Algiers, Algeria. 
e-mail: a.nasli@univ-chlef.dz 
3Department of Mathematics 
Laboratory of Mathematics and Applications LMA 
Faculty of Exact Sciences and Informatics 
Hassiba Benbouali University of Chlef, B.P. 78C, 02180, Ouled Fares. 
Chlef, Algeria. 
e-mail: benali4848@gmail.com 

mailto:a.fellagariouat@univ-chlef.dz
mailto:a.nasli@univ-chlef.dz
mailto:benali4848@gmail.com

