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Abstract : Effective load balancing is essential in the dynamic and resource-intensive world 

of cloud computing to guarantee optimal resource utilization, decreased latency, and improved 

service reliability. An enhanced BCO algorithm based on quantum mechanism (QBCO) is 

presented in this study to solve load balancing issues in cloud environments. In the suggested 

hybrid strategy, the improved search efficiency of quantum-inspired methods like superposition 

and quantum bit representation is combined with the exploratory and adaptable capabilities of 

BCO. The algorithm uses these quantum principles to avoid local optima, achieve faster 

convergence, and adapt dynamically to changing workloads. In terms of resource usage, 

response time, and energy economy, experimental results show that QBCO works better than 

conventional load balancing techniques.  This creative method meets the increasing needs of 

high-performance and sustainable computing by offering a reliable and scalable solution for 

load distribution optimization in contemporary cloud infrastructures. 

Keywords : QuantumComputing,Load Balancing,Bacterial Colony Optimization,Convergence 

Rate,Swarm Intelligence.   

Introduction  

The distribution of computer services, including as servers, storage, databases, networking, 

software, analytics, and intelligence, via the internet is known as "cloud computing" ("the 

cloud"). It gives customers more flexibility, scalability, and cost-effectiveness by allowing 

them to access and store data and apps on distant servers as opposed to local devices.  Cloud 

computing has grown to be a crucial component of contemporary IT infrastructure, providing 

effective and scalable solutions for a range of uses. Cloud systems' dynamic nature, however, 

frequently results in unequal resource consumption, which can cause performance snags and 

lower service quality. The equitable distribution of workloads among available resources is 

ensured by load balancing, a crucial approach to address this difficulty. The bio-inspired 

optimization technique known as BCO is based on the collective behavior of bacteria, namely 
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their capacity to adapt and maximize survival tactics amid shifting environmental conditions. 

BCO imitates these tendencies in computers to resolve intricate optimization issues, such as 

load balancing.  Quantum-inspired techniques improve conventional optimization algorithms 

by utilizing concepts from quantum computing, such as entanglement and superposition[1]. 

These techniques enable more effective solution space exploration, which could lead to the 

discovery of superior solutions more quickly than with traditional methods.  To enhance BCO's 

efficiency in load balancing tasks, the proposed QBCO incorporates quantum computing 

techniques into BCO.  

 

 

Figure 1 : Framework for Load balancing  

The goal of this hybrid strategy is to improve the optimization process's accuracy, speed, and 

efficiency in cloud environments.  A more optimal load distribution is ensured by the 

algorithm's ability to escape local optima and explore a larger solution space thanks to the 

quantum technique. QBCO offers real-time load balancing and can adjust to the dynamic 
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workload fluctuations in cloud environments.  The BCO algorithm's convergence is accelerated 

by the quantum-inspired method, which shortens the time needed to obtain an ideal or nearly 

ideal solution.  The approach works effectively in large-scale cloud environments where 

resource availability and workload fluctuate regularly.  The contributions of the research as 

follows, 

• The study presents a new algorithm that uses quantum-inspired techniques to improve on 

the conventional BCO.  

• Specifically, the load balancing issue in dynamic cloud systems is addressed by the 

suggested QBCO  algorithm. 

• The QBCO  algorithm outperforms alternative metaheuristic algorithms and conventional 

load-balancing techniques, according to thorough simulation and testing. 

1. Related works 

Establishing the basis and importance of the suggested research is greatly aided by the related 

work section.  An overview of current load balancing techniques in cloud computing, including 

both conventional and metaheuristic methods, is given in the related work section.   S. 

Janakiraman et al. (2023) [2] develop a new load balancing method based on a Hybrid Grey 

Wolf and Improved PSO with Adaptive Intertial Weight-based multi-dimensional Learning 

Strategy (HGWIPSOA) for enhancing precision and rapidness in task scheduling and 

assignment of resources to Virtual Machines (VMs) in cloud environments. The Grey Wolf 

Optimization Algorithm (GWOA) is incorporated into PSO for considering the highest fitness 

particle as alpha wolf search agent, such that the objective of allocating tasks to VMs is attained 

effectively and efficiently. It then integrates chaos, Adaptive Inertial Weight (AIW) and 

Dimensional Learning (DL) into PSO specifically to prevent premature convergence and 

achieve better convergence speed and global search ability depending on the best experience 

determined by particles for effective LB.  P. Pirozmand et al. (2023) [3]  developed a new task 

scheduling method based PSO in order to shorten the execution time of the original PSO 

algorithm for task scheduling in the cloud computing environment, a multi-adaptive learning 

strategy is employed.  In its initial population phase, the proposed Multi Adaptive Learning for 

PSO (MALPSO) defines two sorts of particles: ordinary particles and locally best particles. 

During this phase, the population's variety is reduced and the likelihood of reaching the local 

optimum rises.  
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M. A. N. Saif (2023) [4]  proposed an autonomic CSO-ILB load balancer to ensure the elasticity 

of the cloud system and balance the user workload among the available containers in a multi-

cloud environment. The concept of multi-loop has been utilized in this approach to enabling 

efficient self-management before load balancing. The tasks are scheduled to the containers 

using an extended scheduling algorithm called Deadline-Constrained Make-span Minimization 

for Multi-Task Scheduling (DCMM-MTS). Based on the task scheduling, the load in each 

container is computed and then balanced using the proposed load balancer algorithm CSO-

ILBT.   Saba et al. (2023) [5] proposed secured data management with distributed load 

balancing protocol using PSO, which aims to decrease the response time for cloud users and 

effectively maintain the integrity of network communication. It combines distributed 

computing and shift high-cost computations closer to the requesting node to reduce latency and 

transmission overhead. Moreover, the proposed work also protects the communicating 

machines from malicious devices by evaluating the trust in a controlled manner.  P. Neelakantan 

et al. (2023) [6] proposed a novel Load balancing methodology between VMs using the Hybrid 

Krill herd and Whale-based Deep Belief Neural model (HKHW-DBNM). The aims to improve 

the system's performance by balancing the Load between the VMs, optimizing the makespan, 

improving resource usage, reducing the degree of imbalance.  M. Sumathi et al. (2023) [7]  

HHO and ACO are hybridized in the proposed technique. The factors that are analysed in the 

proposed system are the average waiting time (AWT), average execution time (AET), average 

response time (ART), make-span, throughput analysis, turnaround time and LB time. By the 

allocation of workloads to VMs will shows which one gives the best efficiency in LB among 

the VM’s.  K. Ramya et al. (2023) [8]  developed a new hybrid method based on dingo and 

whale optimization algorithm (WHA)-based load balancing mechanism (HDWOA-LBM) for 

effective load balancing those aids in maximized throughput, reliability, and resource 

utilization in the clouds. It utilized the merits of whale optimization for improving the 

exploitation phase of DOA to balance the trade-off between local and global search.  

R. Kaviarasan et al. (2023) [9]  developed new load balancing method based on improved lion 

optmizeation method.  The developed method approach has better exploration and exploitation 

rate when compared with other method and it does not get struck into local optima during the 

search process of identifying the underutilized node.  K. Malathi et al. (2023) [10]  proposed 

new method based on lion optimizer to balance the loads by developing the optimal parameter 

selection for virtual machines. Two selection probabilities like task scheduling probability and 

virtual machine selection probability are developed for refining the selection procedure. Fitness 
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criteria based on the task and the virtual machine properties are used for the lion optimizer. As 

the second contribution, a genetic algorithm is developed by modifying the global search 

criteria with relevance to the lion optimizer. M. A. Selvan (2024) [11] presents a comprehensive 

approach to load balancing using advanced optimization techniques integrated with multipath 

routing protocols. The primary focus is on dynamically allocating network resources to manage 

the massive volume of data generated by modern applications. By leveraging algorithms such 

as GA and PSO, the proposed method efficiently distributes data across multiple paths, 

ensuring balanced network utilization. The combination of these algorithms with multipath 

routing significantly reduces congestion and improves overall network performance.  S. 

Karimunnisa et al .(2023) [12]  proposed an improved density based clustering method (IDCM) 

for task scheduling approaches.  The first is the preprocessing the user tasks for improved 

accuracy, classifying the tasks with respect to resource demand and execution time. The second 

phase deals with enhanced coot optimization algorithm for task scheduling (ECOA-TS) that 

proceeds and proves its novelty by adopting Cauchy mutation overcoming the convergence 

backdrop for generating an optimal mapping between clustered user tasks and VMs.   G. 

Saravanan et al. (2023) [13]  developed the improved scheduling efficiency algorithm using  

Wild Horse Optimization called IWHO for addressing the problems of lengthy scheduling time, 

high-cost consumption, and high virtual machine load in cloud computing task scheduling. 

First, a cloud computing task scheduling and distribution model is built, with time, cost, and 

virtual machines as the primary factors. Second, a feasible plan for each whale individual 

corresponding to cloud computing task scheduling is to fnd the best whale individual, which is 

the best feasible plan; to better find the optimal individual, used the inertial weight strategy for 

the IWHO to improve the local search ability and effectively prevent the algorithm from 

reaching premature convergence.  S. S. Sefati et al. (2023) [14] proposes a new routing scheme 

with load-balancing capability using the Markov Model (MM) and the Artificial Bee Colony 

(ABC) algorithm.  LEACH algorithm is used to maintain load balancing between Cluster 

Heads (CHs). Then the MM and the ABC called (MMABC) algorithm were used to find the 

best candidate nodes of each cluster to be turned into a CH. the proposed method surpasses the 

compared methods in terms of energy efficiency, number of alive nodes, and the number of 

delivered packets to BS and CH. 

P. Suresh et al. (2024) [15] presents an optimized fault tolerant load balancing method using 

multi-objective cat swarm optimization (CSo) algorithm called MCSOFLB and the results are 

then compared against other powerful optimization algorithms. The experimental results 
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evidently show that the proposed algorithm ranks first on the whole. The MCSOFLB method 

produces an average improvement of 31 % makespan, 6 % resource utilization, 12 % cost, 6 % 

success rate and 32 % average throughput over other benchmark algorithms.  M. Menaka et al. 

(2024) [16] proposed a method to fully utilize virtual machines with a similar weight 

distribution, a strategy-oriented mixed support and load balancing structure has been developed 

in this work. To minimize make-span time and accomplish initial load balancing, the SPSO-

TCS technique combines Time-Conscious Scheduling with Supportive PSO.  Finding the 

optimal make span time minimization for each virtual environment is the aim of this stage. Its 

main objective is to discover the sequence of activities with the least computation time and to 

reduce the time required to finish each operation. Utilizing the hybrid idea leads to a decrease 

in makespan and the use of the least amount of energy.  P. Geetha  et al. (2024) [17]  propose a 

novel optimal load balancing (LB) method in the cloud. For this a new Intercrossed Chimp and 

Bald Eagle Algorithm (IC&BA) algorithm is introduced that combines the algorithms like bald 

eagle search (BES) optimization and chimp optimization (CA) algorithm. Thereby, the 

proposed load balancing model works under the consideration of (i) Energy Consumption (ii) 

execution cost (iii) migration cost (iv) Make span and (v) load balancing parameters 

like response time, Turnaround time.  R. Gowrishankar et al. (2024)  [18] proposes a novel 

approach for load balancing using the Firefly Algorithm (FA).  The algorithm is applied to 

dynamically distribute tasks among nodes in a distributed computing environment. The 

contribution lies in adapting the FA specifically for load balancing purposes in distributed 

computing systems. The study explores the effectiveness of this approach in improving system 

performance and resource utilization. The FA effectively redistributes tasks among nodes, 

reducing processing delays and improving overall system efficiency.  S. Mohapatra et al. (2024) 

[19] proposed framework integrates Dragonfly (DF) and PSO algorithm. The performance of 

the proposed method is compared with PSO and Dragonfly algorithm. The performance is 

evaluated in different measures such as best fitness value, response time by varying the user 

base and response time.  It is observed that the proposed method outperforms the other 

approached for load balancing.  Z. R. Wang et al. (2024) [20]  proposed SNSK-IPSO algorithm, 

which develops as a two-phases algorithm: enumerating all distributed solutions between VMs 

and tasks, finding the optimal solution through IPSO. It not only minimizes the execution time, 

but also improves resource utilization and load balance  

2. Task scheduling 
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In cloud computing, mapping all jobs to accessible VMs and determining the best solution is a 

difficult issue. Thus, to distribute all user tasks to the appropriate resource and maintain VM 

load balance, a productive task scheduling method is needed.  The direct importance of the 

tasks, resources, and framework structure is illustrated in this study. Each task must be assigned 

to a single VM (VM) to maximize machine usage and minimize makespan in cloud computing. 

This is the primary goal of the suggested technique. Suppose a cloud consists of 𝑥 tasks such 

as 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑋} and 𝑦 number of heterogeneous VMs such as: 𝑉𝑀 =

{𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑋} , but the condition for execution of such tasks is 𝑥 > 𝑦.  Every task has 

length 𝑇1 and is communicated as MI (million instruction). The execution speed of 𝑦𝑡ℎ VM is 

showing as millions of instructions per second (MIPs) to achieve our goal and calculate the 

service rate of VM as follows,  

∑ 𝑉𝑀𝑠𝑟 = ∑ 𝑉𝑀𝑚𝑖𝑝𝑠 × ∑ 𝑉𝑀𝑐𝑝𝑢
𝑦
𝑗−1

𝑦
𝑗−1

𝑦
𝑗−1                                        (1) 

The expected execution time (EET) of task 𝑇𝑖, where 𝑖 = 1,2, . . , 𝑥 execute on VM 𝑉𝑀𝑗 

where 𝑗 = {1,2, . . , 𝑦} can be represented as follows  

𝐸𝐸𝑇𝑖,𝑗 = ∑ 𝑇1
𝑥
𝑖=1 × ∑ 𝑉𝑀𝑠𝑟

𝑦
𝑗=1                                               (2)  

A single VM (VM) can have one or more jobs in it.  When the number of tasks in the VM (VM) 

increases, the overall file size and task dependency are displayed as follows:  

𝑇𝑡𝑜𝑡𝑎𝑙𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒 = 𝑇𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒 × 𝑇𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦                            (3)  

There's a chance that transferring a task between VMs will require some transfer time. The 

transmission of individual file sizes and the VM's bandwidth capacity determine the task 

transfer speed  𝑇𝑇𝑠(𝑖, 𝑗).  The formula for task transfer speed is as follows: 

𝑇𝑇𝑠 = ∑ 𝑇𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒/ ∑ 𝑉𝑀𝑏𝑤
𝑦
𝑗=1

𝑥
𝑖=1                                         (4) 

The duration required to move the job file size between VMs is known as the task transfer time. 

As a result, the time that task 𝑖 transmits to VM 𝑗 is represented by task transfer time 𝑇𝑇𝑡(𝑖, 𝑗), 

and the task 𝑖 communication time on machine time 𝑗 is computed as follows: 

𝐶𝑇𝑖,𝑗 = 𝑇𝑡𝑜𝑡𝑎𝑙𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒/𝑇𝑇𝑡                                                (5) 

Lastly, as the following equation illustrates, the total execution time at every 𝑉𝑀𝑗 is the product 

of the expected task execution time and task transfer time. 

𝐸𝑇𝑖 = 𝐸𝐸𝑇𝑖 + 𝑇𝑇𝑠 + 𝐶𝑇𝑖,𝑗 + 𝐷𝑉𝑖,𝑗                                          (6) 

Where 𝐷𝑉𝑖,𝑗 is the binary decision variable which is defined as follows,  

𝐷𝑉𝑥,𝑦 = {
1,   𝑖𝑓 𝑇𝑖 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜𝑉𝑀𝑗  

0                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                  (7)  



Journal of Computational Analysis and Applications                                                                              VOL. 33, NO.8, 2024 

 
 

                                                                                            1671                       R M ARAVIND et al 1664-1690 
 

When more activities are completed successfully in the data center, makespan time can 

decrease. This affects system throughput. The total completion time of each work is specified 

by makespan, which may be calculated using the following equation. The maximum of 𝐸𝑇𝑖 is 

the makespan (MS). 

𝑀𝑆 = max {𝐸𝑇𝑖}                                                (8) 

The goal of optimization is to increase resource utilization (𝑅𝑢)  as shown in the following 

equation. The calculation of resource consumption is derived from dividing the total execution 

time of all tasks by the highest makespan execution time. This is how the average utilization is 

displayed: 

𝑅𝑢 =
𝐸𝑇𝑖

𝑀𝑆
                                                           (9) 

𝑅𝑎𝑣𝑔𝑢 =
∑ 𝑅𝑢

𝑦
𝑗=1

𝑦
                                                   (10) 

The fitness function of the BCO algorithm is now defined as the following equation, which 

provides a particle with an optimal solution and a better location.  

𝐹 = 𝑊𝑇 + 𝑀𝑆 + 𝑅𝑢                                         (11) 

𝑊𝑇 stands for waiting time.  Now is the time to wait to assign the task to a separate VM. 

1.1 VM availability 

The following equations illustrate how many resources are used when ′𝑥′  number of tasks are 

allocated to ′𝑦′ number of resources. 

𝑉𝑀𝑢𝑠𝑒 = ∑ 𝑇𝑖
𝑥
𝑖=1                                                         (12) 

1.2 VM selections 

A VM's task allocation is contingent upon the task's arrival time. In other words, tasks with the 

earliest arrival times are allotted resources first, and shorter tasks will be completed sooner. 

The VM that is selected to complete the task depends on its capacity, current workload, and 

impending task length—all of which are determined using the following equation. VM capacity 

is based on available CPU, memory, bandwidth, and processing speed.  

𝑅𝑠 =
𝑇𝑖,𝑙∗𝑉𝑀𝐿𝑗

𝑉𝑀𝑠𝑟
                                                   (13) 

All-time schedulers aim to assign all tasks to the available VMs, although this relies on the 

VM's load at that specific moment. Thus, determined the VM's load and capacity using the 

equation 𝑉𝑀𝐿𝑗, 

𝑉𝑀𝐿𝑗 =
𝑇𝑖×∑ 𝑇1

𝑥
𝑖=1

𝑉𝑀𝑠𝑟
                                                        (14)  

𝑉𝑀𝑐 = 𝑉𝑀𝑠𝑟 + 𝑉𝑀𝑏𝑤                                            (15)  
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1.3 VM state 

There are three states for each VM: overload, underload, and balanced. A VM is considered 

underloaded if it uses less than 25% of its capacity, and overloaded if it uses more than 80% of 

its capacity. Equations that follow show that everything else is perfectly balanced. To ensure 

that the whole load is balanced, tasks are transferred from the overburdened VM to the 

understanding VM. The jobs are moved from a VM that is overloaded to one that is 

underloaded. Rather than using the VM migration strategy, our suggested algorithm made use 

of the task migration approach. 

𝑉𝑀 = {

𝑅𝑢 < |𝑉𝑀𝑐 × 25%|,    𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑
𝑅𝑢 < |𝑉𝑀𝑐 × 80%|,   𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑
𝑅𝑢 = 𝑉𝑀𝑐,                    𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑

                                (16) 

3. BCO  

BCO is a population-based method planned by Niu et al. [21] The BCO is used in numerous 

real-world applications such as fuzzy clustering [22], data clustering [23-28], feature selection 

[29], disease detection[30], and scheduling [31].  To tackle the above problem, a novel bacterial 

algorithm called BCO was developed with SI characteristics to expedite the optimization 

process.  stages of BCO include chemotaxis and communication, elimination and reproduction, 

migration, and the remaining four stages.  The entire BCO process takes advantage of the 

chemotaxis and communication phase.  The bacteria use the population statistics to modify 

their swimming and tumbling habits.  To update the positions of the microorganisms, a unique 

chemotaxis and communication method is applied.  Throughout their lives, bacteria can be 

divided into two types of chemotaxis: swimming and tumbling.  A stochastic direction 

participates in the actual swimming process when tumbling.  The combined effects of the best 

Algorithm 1: BCO algorithm   

Step 1: Set up the required parameters 

Step 2: For all bacterial colonies 

Step 3: Chemotaxis and communication 

Step 4: Reproduction and elimination    

Step 5: Migration  

Step 6: If the ultimate state is not reached, step 2 should be taken; if not, the process should 

be terminated. 

Step 7: The final position is considered as the best position 
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searching director in Tumbling and the turbulent director have an impact on the updated 

locations and search direction of each bacterium. These effects are expressed as follows: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1) + 𝐶(𝑖) ∗ [𝑓𝑖 . (𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1)) + (1 − 𝑓𝑖) ∗

(𝑃𝑏𝑒𝑠𝑡𝑖
− 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1)) + 𝑡𝑢𝑟𝑏𝑖]

                             

(17) 

However, bacteria lack a turbulence director to steer swimming toward an optimal state, which 

could be put as follows:   

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1) + 𝐶(𝑖) ∗ [𝑓𝑖 . (𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1)) + (1 − 𝑓𝑖) ∗

(𝑃𝑏𝑒𝑠𝑡𝑖
− 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1))]

                              

(18) 

𝐶(𝑖) = 𝐶𝑚𝑖𝑛 + (
𝐼𝑡𝑒𝑟𝑚𝑎𝑥−𝐼𝑡𝑒𝑟𝑗

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
)

𝑛
(𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛)

                                     

(19) 

Where, 𝑡𝑢𝑟𝑏𝑖- turbulent direction variance. 𝑓𝑖 ∈ {0,1}, 𝐶(𝑖) - chemotaxis step size.  The 

personal and global best value is denoted by 𝑃𝑏𝑒𝑠𝑡and 𝐺𝑏𝑒𝑠𝑡 respectively.  𝑛 is the linearly 

reducing way of the chemotaxis step.  𝐼𝑡𝑒𝑟𝑚𝑎𝑥, 𝐼𝑡𝑒𝑟𝑗 - maximum number of iterations and 

present iteration respectively.   In the phase of elimination and reproduction, the sick bacterium 

will be replaced by the high-energy bacterium, which will replicate them to build the newest 

people.  The high energy shows that the bacterium hunts for resources with remarkable 

efficiency.  The bacterium can migrate within a certain search space range during the migration 

phase when certain conditions are met.  During the migration phase, the bacteria typically go 

toward the most recent nutrients according to a specific likelihood.   

4. Quantum mechanism  

Quantum computing is a branch of computing that uses quantum physics to carry out 

calculations. Quantum computation makes use of quantum bits (qubits), as opposed to classical 

computation, which represents information using binary digits (bits). Superposition is the 

possibility that the qubits are in more than one state at once. This feature allows quantum 

computers to perform some tasks far more quickly than conventional computers [32].    A 

qubit’s state may be represented as a vector in a two-dimensional complex vector space called 

a Bloch sphere. A qubit system consists of two states, |0⟩ and |1⟩. As mentioned earlier, a qubit 

may exist in a superposition of both |0⟩ and |1⟩ state, which is denoted by |Ψ⟩ as follows, 

|Ψ⟩  = 𝛼 |0⟩ + 𝛽 |1⟩                                           (20)  
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where the probability amplitudes of states 0 and 1 are represented by the complex numbers 𝛼  

and 𝛽, respectively. An observation procedure is used to gauge a qubit's state. After the 

observation phase is over, a qubit's state can be identified as either 0 or 1. The probabilities that 

the qubit exists in states 0 and 1, respectively, are indicated by the modulus |𝛼|2 and |𝛽|2, and 

both   𝛼  and 𝛽 should meet the normalization requirement.    

|𝛼|2 + |𝛽|2 = 1                                                (21)  

Consequently, a qubit can be expressed as a pair of complex integers using the formula 𝑞 =

[𝛼
𝛽

].  Likewise, a multi-qubit system with a 𝑛 number of qubits can be shown as 

𝑄 = [𝑞1, 𝑞2, … . 𝑞𝑛] = [𝛼1
𝛽1

| 𝛼2
𝛽2

| …
…

| 𝛼𝑛
𝛽𝑛

|]                                (22) 

A qubit's state can be updated via quantum gates such the NOT-gate, CNOT-gate, Hadamard-

gate, etc. For a qubit 𝑞𝑖, the quantum angle can be expressed as follows:  

𝜃𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝛽𝑖

𝛼𝑖
                                                       (23) 

5. Proposed quantum BCO 
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An improved form of the conventional BCO is the Quantum-Based BCO (QBCO) for load 

balancing in cloud computing. By using quantum-inspired methodologies to improve the 

optimization process, QBCO's main goal is to increase work allocation and resource utilization 

in cloud environments. In order to achieve optimal load balancing, this method seeks to 

improve local exploitation, global exploration, and convergence. The way bacteria forage 

serves as the model for the conventional BCO algorithm. It uses a population of bacteria 

(solutions) that move toward more advantageous areas of the solution space, reproduce, and 

mutate in order to improve iteratively.  To help the bacterium better explore the search space 

and stay out of local optima, QBCO incorporates quantum-inspired concepts. In order to direct 

the investigation and exploitation of solutions, the quantum approach presents the idea of 

quantum behavior.  A new and effective method for load balancing in cloud computing systems 

is the QBCO. BCO's advantages are combined with quantum-inspired methods in QBCO to 

optimize cloud system performance, balance loads, and enhance resource consumption. 

6. Experimental results and analysis  

Understanding the performance, scalability, efficiency, and efficacy of various load-balancing 

algorithms and techniques depends on the experimental results of cloud computing LB.  

Researchers and professionals can assess how well different load-balancing methods operate 

in actual or simulated cloud settings thanks to experimental data. They can evaluate the 

performance of various algorithms under various workload scenarios by contrasting parameters 

 

Algorithm 2: Load balancing using QBCO 

Step 1: Compute the EET, TTS, and CT  

Step 2: Compute the CRU, Load, and capacity of the VM 

Step 3: Check the load balancing possibility 

Step 4: Check the availability of VM 

Step 5: Set up the required parameters. 

Step 6: For all bacterial colonies 

Step 7: Chemotaxis and communication 

Step 8: Reproduction and elimination    

Step 9: Migration  

Step 10: Updating the position using quantum mechanism  

Step 11: Continue doing this until all loads are balanced and all tasks are assigned 

appropriately. 
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like reaction time, throughput, resource use, and system stability.  An evaluation and 

comparison with other current approaches are conducted for the suggested BCO technique. The 

performance of QBCO is compared with some well-known methods such as BCO, BFO [33], 

CPSO[34], PSO [35], ACO [36], and GA [37].  The CloudSim is used to implement the 

suggested BCO.  The method was configured with an Intel (R) Core (TM) i5-1235U running 

at 1.30 GHz and 8 GB of RAM. Windows 10 was the 64-bit operating system. The simulation's 

parameters are displayed below.  This work is motivated by the desire to reduce makespan and 

increase resource usage in a dynamic environment.  Table 1 lists the BCO algorithm's several 

features. Table 2 illustrates the non-pre-emptive tasks that are free that we have taken into 

consideration for the test and tasks are assigned to a variety of heterogeneous VMs within a 

data center.  

4.1 Parameter settings  

In BCO, the behavior and performance of the algorithm are largely determined by its 

parameters.  Few parameters decide the performance of BCO and optimal parameter settings 

can help to achieve better performance in a given solution.  The population size, chemotaxis 

and swimming step size, reproductive and elimination step, and its probability values are 

parameters that are considered in this work as per Tabe 1.   To optimize BCO performance and 

strike a balance between exploration and exploitation, it is imperative to choose the right 

parameters. 

4.2 Performance metrics  

In cloud computing, performance metrics are essential to load balancing. By effectively 

distributing workloads among several servers, load balancing seeks to maximize resource 

utilization, reduce response times, and prevent any one server from becoming overloaded. A 

Table 1 : Parameter settings for BCO 

Parameter Value  

Population  100  

Chemotaxis step  100  

Swimming step size 4  

Reproduction step 4  

Elimination step   2  

Elimination and dispersal 

probability  
0.25 

 

𝐶𝑚𝑎𝑥 and 𝐶𝑚𝑖𝑛 0.12 and 0.5  
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quantitative foundation for assessing and enhancing load balancing tactics is provided by 

metrics. 

• Makespan (MT): Makespan measures the time span from the submission of the first task 

to the completion of the last task. An optimal load balancing strategy minimizes the 

makespan, ensuring that tasks are completed as quickly as possible.  It provides insights 

into the overall efficiency and performance of the system, guiding the development and 

refinement of load balancing strategies to meet performance goals. 

• Execution time (ET): Execution time is the amount of time needed for a particular job or 

process to finish running on a computer resource. This statistic is essential for assessing 

and improving load balancing tactics in cloud computing. In cloud computing, execution 

time metrics are crucial for efficient load balancing. They direct the allocation of tasks, 

optimize the use of resources, and boost system performance in general. Cloud systems can 

provide faster, more dependable, and more economical services by reducing execution 

times. 

• Resource utilization (RU): Making sure that the computing resources in a cloud 

environment are utilized as efficiently as possible to complete activities and workloads is 

known as resource utilization in load balancing. By dividing up the workloads, efficient 

load balancing maximizes the utilization of available resources, cutting down on idle time, 

enhancing performance, and lowering expenses. It is another quantitative statistic that is 
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dependent on the parameters. The objective is to enhance the effectiveness of employing 

the cloud environment's resources. 

4.3 Results analysis  

The results analysis offers empirical support for the claim that improved load balancing in 

cloud environments is achieved by the QBCO algorithm.  Because it confirms the suggested 

QBCO algorithm, shows that it is better than current approaches, and offers a thorough 

understanding of its performance, the results analysis is essential to the study. This part lays 

the groundwork for next developments in cloud computing load balancing in addition to 

validating the research contributions.  Virtual machines (VMs) are crucial parts of load-

balancing systems in cloud computing settings. LB distributes incoming network traffic among 

several servers in order to boost throughput, reduce response times, optimize resource usage, 

and prevent overloading any one server. Because metaheuristic techniques offer efficient 

algorithms for optimizing resource allocation, decreasing response times, and improving 

overall system performance, they are crucial for LB in cloud computing systems. In the 

metaheuristic study of LB in cloud computing, the performance of the implemented algorithms 

is evaluated in terms of several parameters, including as resource consumption, reaction time, 

throughput, scalability, and fault tolerance. Examine how well each method distributes the load 

and allocates resources in different workload circumstances. Examine how effectively the LB 

algorithm divides up CPU, memory, and bandwidth among virtual machines in order to meet 

the demands of incoming requests.  Determine how much resource the system is using too little 

Table 2 : Properties Settings 

Task 

Range of task  10 - 50 

Length  1000 - 6000 

Size of the file  500 

VM 

VM ranges  3 - 5 

Speed  225 - 300 

Memory 256 - 512 

CPU 1 - 5 

Bandwidth 1000 

VMM XEN 
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or too much, and assess how well the algorithm performs in terms of resource optimization.  

The current section examines the capabilities of QBCO approaches, which are one of the novel 

LB techniques that were the subject of the current paper.   

Tables 3 and 4 and figures 2 and 3 are shows the performance of load balancing algorithms 

based on Makespan value obtained for 3 and 5 VMs, respectively.  Tables 5 and 6 and figures 

4 and 5 are shows the performance of load balancing algorithms based on Resource utilization 

obtained for 3 and 5 VMs, respectively.  Tables 7 and 8 and figures 6 and 7 are shows the 

performance of load balancing algorithms based on Execution time obtained for 3 and 5 VMs, 

respectively.  Tables 9 and 10 and figures 8 and 9 are shows the performance of load balancing 

algorithms based on Memory utilization obtained for 3 and 5 VMs, respectively.  The 

effectiveness and efficiency of the method are determined by a number of crucial indicators 

when assessing QBCO performance for load balancing in cloud computing. Among these are 

makespan, execution time, memory usage, and resource usage.  

Table 3 : Makespan value obtained for 3 VMs 

Tasks QBCO BCO BFO CPSO PSO ACO GA 

10 292 323 347 368 391 412 428 

20 368 397 425 458 487 508 524 

30 482 529 558 571 610 641 665 

40 697 715 733 759 788 805 824 

50 835 869 881 897 910 934 955 
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Figure 2: Makespan value obtained for 3 VMs 

 

Table 4 : Makespan value obtained for 5 VMs 

Tasks QBCO BCO BFO CPSO PSO ACO GA 

10 145 174 210 239 248 267 285 

20 310 338 364 397 420 443 463 

30 487 505 531 558 579 607 620 

40 628 657 688 704 725 749 762 

50 788 805 824 854 865 887 898 
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Figure 3 : Makespan value obtained for 3 VMs 

 

Table 5 : Resource utilization obtained for 3 VMs 

Tasks QBCO BCO BFO CPSO PSO ACO GA 

10 0.70 0.62 0.42 0.38 0.32 0.29 0.27 

20 0.75 0.64 0.58 0.51 0.45 0.39 0.31 

30 0.83 0.73 0.68 0.61 0.55 0.49 0.43 

40 0.85 0.83 0.71 0.61 0.53 0.44 0.37 

50 0.88 0.86 0.78 0.69 0.58 0.49 0.41 
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Figure 4 : Resource utilization value obtained for 3 VMs 

 

 

Table 6 : Resource utilization obtained for 5 VMs 

Tasks QBCO BCO BFO CPSO PSO ACO GA 

10 0.60 0.48 0.43 0.37 0.30 0.25 0.20 

20 0.89 0.70 0.63 0.58 0.41 0.35 0.24 

30 1.06 0.98 0.86 0.76 0.66 0.52 0.48 

40 1.11 1.09 0.95 0.88 0.71 0.64 0.59 

50 1.32 1.29 1.11 1.01 0.92 0.85 0.71 
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Figure 5 : Resource utilization obtained for 5 VMs 

 

Table 7 :  Execution time obtained for 3 VMs 

Tasks QBCO BCO BFO CPSO PSO ACO GA 

10 115.65 131.46 148.16 159.11 164.11 175.22 190.41 

20 159.29 168.95 179.33 188.93 197.29 208.22 215.95 

30 168.26 179.40 184.67 192.10 214.25 226.63 238.59 

40 181.42 197.40 211.33 239.85 258.67 273.42 298.72 

50 224.24 237.11 256.71 272.30 288.32 302.30 312.72 
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Figure 6 :  Execution time obtained for 3 VMs 

 

Table 8 : Execution time obtained for 5 VMs 

Tasks QBCO BCO BFO CPSO PSO ACO GA 

10 131.46 147.56 159.18 171.54 180.46 191.88 204.54 

20 169.54 175.63 209.67 225.20 247.62 269.28 289.42 

30 321.72 348.26 372.56 416.34 437.48 463.72 475.26 

40 357.12 394.84 420.61 431.86 452.75 478.66 498.20 

50 370.52 398.43 425.06 457.34 488.41 514.63 537.14 
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Figure 7 : Execution time obtained for 5 VMs 

 

Table 9 : Memory utilization obtained for 3 VMs in percentage (%)  

Tasks QBCO BCO BFO CPSO PSO ACO GA 

10 48 53 53 55 57 62 66 

20 50 51 55 58 62 65 70 

30 54 57 59 63 69 72 76 

40 59 61 66 70 76 83 84 

50 62 65 68 76 80 85 89 
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Figure 8 : Memory utilization obtained for 3 VMs in percentage (%) 

 

Table 10 : Memory utilization obtained for 5 VMs in percentage (%) 

Tasks QBCO BCO BFO CPSO PSO ACO GA 

10 51 52 55 60 66 71 78 

20 55 58 64 71 76 80 83 

30 60 64 67 76 81 88 92 

40 64 70 78 83 88 92 95 

50 71 77 79 82 86 92 97 
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Figure 9 : Memory utilization obtained for 5 VMs in percentage (%) 

7. Conclusions 

This study addressed the crucial problem of load balancing in cloud computing systems by 

presenting an QBCO algorithm based on quantum techniques. The suggested approach 

successfully blends the exploration efficiency of quantum computing principles with the 

advantages of BCO.  Superior load distribution across cloud resources was shown using the 

QBCO algorithm. As a result, duties were distributed more fairly, avoiding underuse and 

resource overload. QBCO is appropriate for real-time dynamic applications since it has 

demonstrated scalability across several cloud environments and adaptability to varying 

workloads.  QBCO proceeded better than other metaheuristics and conventional algorithms, 

according to a comparative investigation.  Better global search capabilities and faster 

convergence were made possible by its quantum-inspired improvements. 
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