
Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1664 R M ARAVIND et al 1664-1690

Enhanced Quantum-Driven Bacterial Colony Optimization for Efficient Load

Balancing in Cloud Computing

R M ARAVIND

Ph.D. Research Scholar

Department of Computer Science

Sri Vasavi College, Erode, India

Email id: aravi4909@gmail.com

Dr R. PRAGALADAN

Head & Associate Professor

Department of Computer Science

Sri Vasavi College, Erode, India

Email id: pragaladanr@gmail.com

Abstract : Effective load balancing is essential in the dynamic and resource-intensive world

of cloud computing to guarantee optimal resource utilization, decreased latency, and improved

service reliability. An enhanced BCO algorithm based on quantum mechanism (QBCO) is

presented in this study to solve load balancing issues in cloud environments. In the suggested

hybrid strategy, the improved search efficiency of quantum-inspired methods like superposition

and quantum bit representation is combined with the exploratory and adaptable capabilities of

BCO. The algorithm uses these quantum principles to avoid local optima, achieve faster

convergence, and adapt dynamically to changing workloads. In terms of resource usage,

response time, and energy economy, experimental results show that QBCO works better than

conventional load balancing techniques. This creative method meets the increasing needs of

high-performance and sustainable computing by offering a reliable and scalable solution for

load distribution optimization in contemporary cloud infrastructures.

Keywords : QuantumComputing,Load Balancing,Bacterial Colony Optimization,Convergence

Rate,Swarm Intelligence.

Introduction

The distribution of computer services, including as servers, storage, databases, networking,

software, analytics, and intelligence, via the internet is known as "cloud computing" ("the

cloud"). It gives customers more flexibility, scalability, and cost-effectiveness by allowing

them to access and store data and apps on distant servers as opposed to local devices. Cloud

computing has grown to be a crucial component of contemporary IT infrastructure, providing

effective and scalable solutions for a range of uses. Cloud systems' dynamic nature, however,

frequently results in unequal resource consumption, which can cause performance snags and

lower service quality. The equitable distribution of workloads among available resources is

ensured by load balancing, a crucial approach to address this difficulty. The bio-inspired

optimization technique known as BCO is based on the collective behavior of bacteria, namely

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1665 R M ARAVIND et al 1664-1690

their capacity to adapt and maximize survival tactics amid shifting environmental conditions.

BCO imitates these tendencies in computers to resolve intricate optimization issues, such as

load balancing. Quantum-inspired techniques improve conventional optimization algorithms

by utilizing concepts from quantum computing, such as entanglement and superposition[1].

These techniques enable more effective solution space exploration, which could lead to the

discovery of superior solutions more quickly than with traditional methods. To enhance BCO's

efficiency in load balancing tasks, the proposed QBCO incorporates quantum computing

techniques into BCO.

Figure 1 : Framework for Load balancing

The goal of this hybrid strategy is to improve the optimization process's accuracy, speed, and

efficiency in cloud environments. A more optimal load distribution is ensured by the

algorithm's ability to escape local optima and explore a larger solution space thanks to the

quantum technique. QBCO offers real-time load balancing and can adjust to the dynamic

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1666 R M ARAVIND et al 1664-1690

workload fluctuations in cloud environments. The BCO algorithm's convergence is accelerated

by the quantum-inspired method, which shortens the time needed to obtain an ideal or nearly

ideal solution. The approach works effectively in large-scale cloud environments where

resource availability and workload fluctuate regularly. The contributions of the research as

follows,

• The study presents a new algorithm that uses quantum-inspired techniques to improve on

the conventional BCO.

• Specifically, the load balancing issue in dynamic cloud systems is addressed by the

suggested QBCO algorithm.

• The QBCO algorithm outperforms alternative metaheuristic algorithms and conventional

load-balancing techniques, according to thorough simulation and testing.

1. Related works

Establishing the basis and importance of the suggested research is greatly aided by the related

work section. An overview of current load balancing techniques in cloud computing, including

both conventional and metaheuristic methods, is given in the related work section. S.

Janakiraman et al. (2023) [2] develop a new load balancing method based on a Hybrid Grey

Wolf and Improved PSO with Adaptive Intertial Weight-based multi-dimensional Learning

Strategy (HGWIPSOA) for enhancing precision and rapidness in task scheduling and

assignment of resources to Virtual Machines (VMs) in cloud environments. The Grey Wolf

Optimization Algorithm (GWOA) is incorporated into PSO for considering the highest fitness

particle as alpha wolf search agent, such that the objective of allocating tasks to VMs is attained

effectively and efficiently. It then integrates chaos, Adaptive Inertial Weight (AIW) and

Dimensional Learning (DL) into PSO specifically to prevent premature convergence and

achieve better convergence speed and global search ability depending on the best experience

determined by particles for effective LB. P. Pirozmand et al. (2023) [3] developed a new task

scheduling method based PSO in order to shorten the execution time of the original PSO

algorithm for task scheduling in the cloud computing environment, a multi-adaptive learning

strategy is employed. In its initial population phase, the proposed Multi Adaptive Learning for

PSO (MALPSO) defines two sorts of particles: ordinary particles and locally best particles.

During this phase, the population's variety is reduced and the likelihood of reaching the local

optimum rises.

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1667 R M ARAVIND et al 1664-1690

M. A. N. Saif (2023) [4] proposed an autonomic CSO-ILB load balancer to ensure the elasticity

of the cloud system and balance the user workload among the available containers in a multi-

cloud environment. The concept of multi-loop has been utilized in this approach to enabling

efficient self-management before load balancing. The tasks are scheduled to the containers

using an extended scheduling algorithm called Deadline-Constrained Make-span Minimization

for Multi-Task Scheduling (DCMM-MTS). Based on the task scheduling, the load in each

container is computed and then balanced using the proposed load balancer algorithm CSO-

ILBT. Saba et al. (2023) [5] proposed secured data management with distributed load

balancing protocol using PSO, which aims to decrease the response time for cloud users and

effectively maintain the integrity of network communication. It combines distributed

computing and shift high-cost computations closer to the requesting node to reduce latency and

transmission overhead. Moreover, the proposed work also protects the communicating

machines from malicious devices by evaluating the trust in a controlled manner. P. Neelakantan

et al. (2023) [6] proposed a novel Load balancing methodology between VMs using the Hybrid

Krill herd and Whale-based Deep Belief Neural model (HKHW-DBNM). The aims to improve

the system's performance by balancing the Load between the VMs, optimizing the makespan,

improving resource usage, reducing the degree of imbalance. M. Sumathi et al. (2023) [7]

HHO and ACO are hybridized in the proposed technique. The factors that are analysed in the

proposed system are the average waiting time (AWT), average execution time (AET), average

response time (ART), make-span, throughput analysis, turnaround time and LB time. By the

allocation of workloads to VMs will shows which one gives the best efficiency in LB among

the VM’s. K. Ramya et al. (2023) [8] developed a new hybrid method based on dingo and

whale optimization algorithm (WHA)-based load balancing mechanism (HDWOA-LBM) for

effective load balancing those aids in maximized throughput, reliability, and resource

utilization in the clouds. It utilized the merits of whale optimization for improving the

exploitation phase of DOA to balance the trade-off between local and global search.

R. Kaviarasan et al. (2023) [9] developed new load balancing method based on improved lion

optmizeation method. The developed method approach has better exploration and exploitation

rate when compared with other method and it does not get struck into local optima during the

search process of identifying the underutilized node. K. Malathi et al. (2023) [10] proposed

new method based on lion optimizer to balance the loads by developing the optimal parameter

selection for virtual machines. Two selection probabilities like task scheduling probability and

virtual machine selection probability are developed for refining the selection procedure. Fitness

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1668 R M ARAVIND et al 1664-1690

criteria based on the task and the virtual machine properties are used for the lion optimizer. As

the second contribution, a genetic algorithm is developed by modifying the global search

criteria with relevance to the lion optimizer. M. A. Selvan (2024) [11] presents a comprehensive

approach to load balancing using advanced optimization techniques integrated with multipath

routing protocols. The primary focus is on dynamically allocating network resources to manage

the massive volume of data generated by modern applications. By leveraging algorithms such

as GA and PSO, the proposed method efficiently distributes data across multiple paths,

ensuring balanced network utilization. The combination of these algorithms with multipath

routing significantly reduces congestion and improves overall network performance. S.

Karimunnisa et al .(2023) [12] proposed an improved density based clustering method (IDCM)

for task scheduling approaches. The first is the preprocessing the user tasks for improved

accuracy, classifying the tasks with respect to resource demand and execution time. The second

phase deals with enhanced coot optimization algorithm for task scheduling (ECOA-TS) that

proceeds and proves its novelty by adopting Cauchy mutation overcoming the convergence

backdrop for generating an optimal mapping between clustered user tasks and VMs. G.

Saravanan et al. (2023) [13] developed the improved scheduling efficiency algorithm using

Wild Horse Optimization called IWHO for addressing the problems of lengthy scheduling time,

high-cost consumption, and high virtual machine load in cloud computing task scheduling.

First, a cloud computing task scheduling and distribution model is built, with time, cost, and

virtual machines as the primary factors. Second, a feasible plan for each whale individual

corresponding to cloud computing task scheduling is to fnd the best whale individual, which is

the best feasible plan; to better find the optimal individual, used the inertial weight strategy for

the IWHO to improve the local search ability and effectively prevent the algorithm from

reaching premature convergence. S. S. Sefati et al. (2023) [14] proposes a new routing scheme

with load-balancing capability using the Markov Model (MM) and the Artificial Bee Colony

(ABC) algorithm. LEACH algorithm is used to maintain load balancing between Cluster

Heads (CHs). Then the MM and the ABC called (MMABC) algorithm were used to find the

best candidate nodes of each cluster to be turned into a CH. the proposed method surpasses the

compared methods in terms of energy efficiency, number of alive nodes, and the number of

delivered packets to BS and CH.

P. Suresh et al. (2024) [15] presents an optimized fault tolerant load balancing method using

multi-objective cat swarm optimization (CSo) algorithm called MCSOFLB and the results are

then compared against other powerful optimization algorithms. The experimental results

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1669 R M ARAVIND et al 1664-1690

evidently show that the proposed algorithm ranks first on the whole. The MCSOFLB method

produces an average improvement of 31 % makespan, 6 % resource utilization, 12 % cost, 6 %

success rate and 32 % average throughput over other benchmark algorithms. M. Menaka et al.

(2024) [16] proposed a method to fully utilize virtual machines with a similar weight

distribution, a strategy-oriented mixed support and load balancing structure has been developed

in this work. To minimize make-span time and accomplish initial load balancing, the SPSO-

TCS technique combines Time-Conscious Scheduling with Supportive PSO. Finding the

optimal make span time minimization for each virtual environment is the aim of this stage. Its

main objective is to discover the sequence of activities with the least computation time and to

reduce the time required to finish each operation. Utilizing the hybrid idea leads to a decrease

in makespan and the use of the least amount of energy. P. Geetha et al. (2024) [17] propose a

novel optimal load balancing (LB) method in the cloud. For this a new Intercrossed Chimp and

Bald Eagle Algorithm (IC&BA) algorithm is introduced that combines the algorithms like bald

eagle search (BES) optimization and chimp optimization (CA) algorithm. Thereby, the

proposed load balancing model works under the consideration of (i) Energy Consumption (ii)

execution cost (iii) migration cost (iv) Make span and (v) load balancing parameters

like response time, Turnaround time. R. Gowrishankar et al. (2024) [18] proposes a novel

approach for load balancing using the Firefly Algorithm (FA). The algorithm is applied to

dynamically distribute tasks among nodes in a distributed computing environment. The

contribution lies in adapting the FA specifically for load balancing purposes in distributed

computing systems. The study explores the effectiveness of this approach in improving system

performance and resource utilization. The FA effectively redistributes tasks among nodes,

reducing processing delays and improving overall system efficiency. S. Mohapatra et al. (2024)

[19] proposed framework integrates Dragonfly (DF) and PSO algorithm. The performance of

the proposed method is compared with PSO and Dragonfly algorithm. The performance is

evaluated in different measures such as best fitness value, response time by varying the user

base and response time. It is observed that the proposed method outperforms the other

approached for load balancing. Z. R. Wang et al. (2024) [20] proposed SNSK-IPSO algorithm,

which develops as a two-phases algorithm: enumerating all distributed solutions between VMs

and tasks, finding the optimal solution through IPSO. It not only minimizes the execution time,

but also improves resource utilization and load balance

2. Task scheduling

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1670 R M ARAVIND et al 1664-1690

In cloud computing, mapping all jobs to accessible VMs and determining the best solution is a

difficult issue. Thus, to distribute all user tasks to the appropriate resource and maintain VM

load balance, a productive task scheduling method is needed. The direct importance of the

tasks, resources, and framework structure is illustrated in this study. Each task must be assigned

to a single VM (VM) to maximize machine usage and minimize makespan in cloud computing.

This is the primary goal of the suggested technique. Suppose a cloud consists of 𝑥 tasks such

as 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑋} and 𝑦 number of heterogeneous VMs such as: 𝑉𝑀 =

{𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑋} , but the condition for execution of such tasks is 𝑥 > 𝑦. Every task has

length 𝑇1 and is communicated as MI (million instruction). The execution speed of 𝑦𝑡ℎ VM is

showing as millions of instructions per second (MIPs) to achieve our goal and calculate the

service rate of VM as follows,

∑ 𝑉𝑀𝑠𝑟 = ∑ 𝑉𝑀𝑚𝑖𝑝𝑠 × ∑ 𝑉𝑀𝑐𝑝𝑢
𝑦
𝑗−1

𝑦
𝑗−1

𝑦
𝑗−1 (1)

The expected execution time (EET) of task 𝑇𝑖, where 𝑖 = 1,2, . . , 𝑥 execute on VM 𝑉𝑀𝑗

where 𝑗 = {1,2, . . , 𝑦} can be represented as follows

𝐸𝐸𝑇𝑖,𝑗 = ∑ 𝑇1
𝑥
𝑖=1 × ∑ 𝑉𝑀𝑠𝑟

𝑦
𝑗=1 (2)

A single VM (VM) can have one or more jobs in it. When the number of tasks in the VM (VM)

increases, the overall file size and task dependency are displayed as follows:

𝑇𝑡𝑜𝑡𝑎𝑙𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒 = 𝑇𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒 × 𝑇𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 (3)

There's a chance that transferring a task between VMs will require some transfer time. The

transmission of individual file sizes and the VM's bandwidth capacity determine the task

transfer speed 𝑇𝑇𝑠(𝑖, 𝑗). The formula for task transfer speed is as follows:

𝑇𝑇𝑠 = ∑ 𝑇𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒/ ∑ 𝑉𝑀𝑏𝑤
𝑦
𝑗=1

𝑥
𝑖=1 (4)

The duration required to move the job file size between VMs is known as the task transfer time.

As a result, the time that task 𝑖 transmits to VM 𝑗 is represented by task transfer time 𝑇𝑇𝑡(𝑖, 𝑗),

and the task 𝑖 communication time on machine time 𝑗 is computed as follows:

𝐶𝑇𝑖,𝑗 = 𝑇𝑡𝑜𝑡𝑎𝑙𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒/𝑇𝑇𝑡 (5)

Lastly, as the following equation illustrates, the total execution time at every 𝑉𝑀𝑗 is the product

of the expected task execution time and task transfer time.

𝐸𝑇𝑖 = 𝐸𝐸𝑇𝑖 + 𝑇𝑇𝑠 + 𝐶𝑇𝑖,𝑗 + 𝐷𝑉𝑖,𝑗 (6)

Where 𝐷𝑉𝑖,𝑗 is the binary decision variable which is defined as follows,

𝐷𝑉𝑥,𝑦 = {
1, 𝑖𝑓 𝑇𝑖 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜𝑉𝑀𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1671 R M ARAVIND et al 1664-1690

When more activities are completed successfully in the data center, makespan time can

decrease. This affects system throughput. The total completion time of each work is specified

by makespan, which may be calculated using the following equation. The maximum of 𝐸𝑇𝑖 is

the makespan (MS).

𝑀𝑆 = max {𝐸𝑇𝑖} (8)

The goal of optimization is to increase resource utilization (𝑅𝑢) as shown in the following

equation. The calculation of resource consumption is derived from dividing the total execution

time of all tasks by the highest makespan execution time. This is how the average utilization is

displayed:

𝑅𝑢 =
𝐸𝑇𝑖

𝑀𝑆
 (9)

𝑅𝑎𝑣𝑔𝑢 =
∑ 𝑅𝑢

𝑦
𝑗=1

𝑦
 (10)

The fitness function of the BCO algorithm is now defined as the following equation, which

provides a particle with an optimal solution and a better location.

𝐹 = 𝑊𝑇 + 𝑀𝑆 + 𝑅𝑢 (11)

𝑊𝑇 stands for waiting time. Now is the time to wait to assign the task to a separate VM.

1.1 VM availability

The following equations illustrate how many resources are used when ′𝑥′ number of tasks are

allocated to ′𝑦′ number of resources.

𝑉𝑀𝑢𝑠𝑒 = ∑ 𝑇𝑖
𝑥
𝑖=1 (12)

1.2 VM selections

A VM's task allocation is contingent upon the task's arrival time. In other words, tasks with the

earliest arrival times are allotted resources first, and shorter tasks will be completed sooner.

The VM that is selected to complete the task depends on its capacity, current workload, and

impending task length—all of which are determined using the following equation. VM capacity

is based on available CPU, memory, bandwidth, and processing speed.

𝑅𝑠 =
𝑇𝑖,𝑙∗𝑉𝑀𝐿𝑗

𝑉𝑀𝑠𝑟
 (13)

All-time schedulers aim to assign all tasks to the available VMs, although this relies on the

VM's load at that specific moment. Thus, determined the VM's load and capacity using the

equation 𝑉𝑀𝐿𝑗,

𝑉𝑀𝐿𝑗 =
𝑇𝑖×∑ 𝑇1

𝑥
𝑖=1

𝑉𝑀𝑠𝑟
 (14)

𝑉𝑀𝑐 = 𝑉𝑀𝑠𝑟 + 𝑉𝑀𝑏𝑤 (15)

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1672 R M ARAVIND et al 1664-1690

1.3 VM state

There are three states for each VM: overload, underload, and balanced. A VM is considered

underloaded if it uses less than 25% of its capacity, and overloaded if it uses more than 80% of

its capacity. Equations that follow show that everything else is perfectly balanced. To ensure

that the whole load is balanced, tasks are transferred from the overburdened VM to the

understanding VM. The jobs are moved from a VM that is overloaded to one that is

underloaded. Rather than using the VM migration strategy, our suggested algorithm made use

of the task migration approach.

𝑉𝑀 = {

𝑅𝑢 < |𝑉𝑀𝑐 × 25%|, 𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑
𝑅𝑢 < |𝑉𝑀𝑐 × 80%|, 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑
𝑅𝑢 = 𝑉𝑀𝑐, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑

 (16)

3. BCO

BCO is a population-based method planned by Niu et al. [21] The BCO is used in numerous

real-world applications such as fuzzy clustering [22], data clustering [23-28], feature selection

[29], disease detection[30], and scheduling [31]. To tackle the above problem, a novel bacterial

algorithm called BCO was developed with SI characteristics to expedite the optimization

process. stages of BCO include chemotaxis and communication, elimination and reproduction,

migration, and the remaining four stages. The entire BCO process takes advantage of the

chemotaxis and communication phase. The bacteria use the population statistics to modify

their swimming and tumbling habits. To update the positions of the microorganisms, a unique

chemotaxis and communication method is applied. Throughout their lives, bacteria can be

divided into two types of chemotaxis: swimming and tumbling. A stochastic direction

participates in the actual swimming process when tumbling. The combined effects of the best

Algorithm 1: BCO algorithm

Step 1: Set up the required parameters

Step 2: For all bacterial colonies

Step 3: Chemotaxis and communication

Step 4: Reproduction and elimination

Step 5: Migration

Step 6: If the ultimate state is not reached, step 2 should be taken; if not, the process should

be terminated.

Step 7: The final position is considered as the best position

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1673 R M ARAVIND et al 1664-1690

searching director in Tumbling and the turbulent director have an impact on the updated

locations and search direction of each bacterium. These effects are expressed as follows:

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1) + 𝐶(𝑖) ∗ [𝑓𝑖 . (𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1)) + (1 − 𝑓𝑖) ∗

(𝑃𝑏𝑒𝑠𝑡𝑖
− 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1)) + 𝑡𝑢𝑟𝑏𝑖]

(17)

However, bacteria lack a turbulence director to steer swimming toward an optimal state, which

could be put as follows:

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1) + 𝐶(𝑖) ∗ [𝑓𝑖 . (𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1)) + (1 − 𝑓𝑖) ∗

(𝑃𝑏𝑒𝑠𝑡𝑖
− 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1))]

(18)

𝐶(𝑖) = 𝐶𝑚𝑖𝑛 + (
𝐼𝑡𝑒𝑟𝑚𝑎𝑥−𝐼𝑡𝑒𝑟𝑗

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
)

𝑛
(𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛)

(19)

Where, 𝑡𝑢𝑟𝑏𝑖- turbulent direction variance. 𝑓𝑖 ∈ {0,1}, 𝐶(𝑖) - chemotaxis step size. The

personal and global best value is denoted by 𝑃𝑏𝑒𝑠𝑡and 𝐺𝑏𝑒𝑠𝑡 respectively. 𝑛 is the linearly

reducing way of the chemotaxis step. 𝐼𝑡𝑒𝑟𝑚𝑎𝑥, 𝐼𝑡𝑒𝑟𝑗 - maximum number of iterations and

present iteration respectively. In the phase of elimination and reproduction, the sick bacterium

will be replaced by the high-energy bacterium, which will replicate them to build the newest

people. The high energy shows that the bacterium hunts for resources with remarkable

efficiency. The bacterium can migrate within a certain search space range during the migration

phase when certain conditions are met. During the migration phase, the bacteria typically go

toward the most recent nutrients according to a specific likelihood.

4. Quantum mechanism

Quantum computing is a branch of computing that uses quantum physics to carry out

calculations. Quantum computation makes use of quantum bits (qubits), as opposed to classical

computation, which represents information using binary digits (bits). Superposition is the

possibility that the qubits are in more than one state at once. This feature allows quantum

computers to perform some tasks far more quickly than conventional computers [32]. A

qubit’s state may be represented as a vector in a two-dimensional complex vector space called

a Bloch sphere. A qubit system consists of two states, |0⟩ and |1⟩. As mentioned earlier, a qubit

may exist in a superposition of both |0⟩ and |1⟩ state, which is denoted by |Ψ⟩ as follows,

|Ψ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ (20)

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1674 R M ARAVIND et al 1664-1690

where the probability amplitudes of states 0 and 1 are represented by the complex numbers 𝛼

and 𝛽, respectively. An observation procedure is used to gauge a qubit's state. After the

observation phase is over, a qubit's state can be identified as either 0 or 1. The probabilities that

the qubit exists in states 0 and 1, respectively, are indicated by the modulus |𝛼|2 and |𝛽|2, and

both 𝛼 and 𝛽 should meet the normalization requirement.

|𝛼|2 + |𝛽|2 = 1 (21)

Consequently, a qubit can be expressed as a pair of complex integers using the formula 𝑞 =

[𝛼
𝛽

]. Likewise, a multi-qubit system with a 𝑛 number of qubits can be shown as

𝑄 = [𝑞1, 𝑞2, … . 𝑞𝑛] = [𝛼1
𝛽1

| 𝛼2
𝛽2

| …
…

| 𝛼𝑛
𝛽𝑛

|] (22)

A qubit's state can be updated via quantum gates such the NOT-gate, CNOT-gate, Hadamard-

gate, etc. For a qubit 𝑞𝑖, the quantum angle can be expressed as follows:

𝜃𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝛽𝑖

𝛼𝑖
 (23)

5. Proposed quantum BCO

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1675 R M ARAVIND et al 1664-1690

An improved form of the conventional BCO is the Quantum-Based BCO (QBCO) for load

balancing in cloud computing. By using quantum-inspired methodologies to improve the

optimization process, QBCO's main goal is to increase work allocation and resource utilization

in cloud environments. In order to achieve optimal load balancing, this method seeks to

improve local exploitation, global exploration, and convergence. The way bacteria forage

serves as the model for the conventional BCO algorithm. It uses a population of bacteria

(solutions) that move toward more advantageous areas of the solution space, reproduce, and

mutate in order to improve iteratively. To help the bacterium better explore the search space

and stay out of local optima, QBCO incorporates quantum-inspired concepts. In order to direct

the investigation and exploitation of solutions, the quantum approach presents the idea of

quantum behavior. A new and effective method for load balancing in cloud computing systems

is the QBCO. BCO's advantages are combined with quantum-inspired methods in QBCO to

optimize cloud system performance, balance loads, and enhance resource consumption.

6. Experimental results and analysis

Understanding the performance, scalability, efficiency, and efficacy of various load-balancing

algorithms and techniques depends on the experimental results of cloud computing LB.

Researchers and professionals can assess how well different load-balancing methods operate

in actual or simulated cloud settings thanks to experimental data. They can evaluate the

performance of various algorithms under various workload scenarios by contrasting parameters

Algorithm 2: Load balancing using QBCO

Step 1: Compute the EET, TTS, and CT

Step 2: Compute the CRU, Load, and capacity of the VM

Step 3: Check the load balancing possibility

Step 4: Check the availability of VM

Step 5: Set up the required parameters.

Step 6: For all bacterial colonies

Step 7: Chemotaxis and communication

Step 8: Reproduction and elimination

Step 9: Migration

Step 10: Updating the position using quantum mechanism

Step 11: Continue doing this until all loads are balanced and all tasks are assigned

appropriately.

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1676 R M ARAVIND et al 1664-1690

like reaction time, throughput, resource use, and system stability. An evaluation and

comparison with other current approaches are conducted for the suggested BCO technique. The

performance of QBCO is compared with some well-known methods such as BCO, BFO [33],

CPSO[34], PSO [35], ACO [36], and GA [37]. The CloudSim is used to implement the

suggested BCO. The method was configured with an Intel (R) Core (TM) i5-1235U running

at 1.30 GHz and 8 GB of RAM. Windows 10 was the 64-bit operating system. The simulation's

parameters are displayed below. This work is motivated by the desire to reduce makespan and

increase resource usage in a dynamic environment. Table 1 lists the BCO algorithm's several

features. Table 2 illustrates the non-pre-emptive tasks that are free that we have taken into

consideration for the test and tasks are assigned to a variety of heterogeneous VMs within a

data center.

4.1 Parameter settings

In BCO, the behavior and performance of the algorithm are largely determined by its

parameters. Few parameters decide the performance of BCO and optimal parameter settings

can help to achieve better performance in a given solution. The population size, chemotaxis

and swimming step size, reproductive and elimination step, and its probability values are

parameters that are considered in this work as per Tabe 1. To optimize BCO performance and

strike a balance between exploration and exploitation, it is imperative to choose the right

parameters.

4.2 Performance metrics

In cloud computing, performance metrics are essential to load balancing. By effectively

distributing workloads among several servers, load balancing seeks to maximize resource

utilization, reduce response times, and prevent any one server from becoming overloaded. A

Table 1 : Parameter settings for BCO

Parameter Value

Population 100

Chemotaxis step 100

Swimming step size 4

Reproduction step 4

Elimination step 2

Elimination and dispersal

probability
0.25

𝐶𝑚𝑎𝑥 and 𝐶𝑚𝑖𝑛 0.12 and 0.5

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1677 R M ARAVIND et al 1664-1690

quantitative foundation for assessing and enhancing load balancing tactics is provided by

metrics.

• Makespan (MT): Makespan measures the time span from the submission of the first task

to the completion of the last task. An optimal load balancing strategy minimizes the

makespan, ensuring that tasks are completed as quickly as possible. It provides insights

into the overall efficiency and performance of the system, guiding the development and

refinement of load balancing strategies to meet performance goals.

• Execution time (ET): Execution time is the amount of time needed for a particular job or

process to finish running on a computer resource. This statistic is essential for assessing

and improving load balancing tactics in cloud computing. In cloud computing, execution

time metrics are crucial for efficient load balancing. They direct the allocation of tasks,

optimize the use of resources, and boost system performance in general. Cloud systems can

provide faster, more dependable, and more economical services by reducing execution

times.

• Resource utilization (RU): Making sure that the computing resources in a cloud

environment are utilized as efficiently as possible to complete activities and workloads is

known as resource utilization in load balancing. By dividing up the workloads, efficient

load balancing maximizes the utilization of available resources, cutting down on idle time,

enhancing performance, and lowering expenses. It is another quantitative statistic that is

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1678 R M ARAVIND et al 1664-1690

dependent on the parameters. The objective is to enhance the effectiveness of employing

the cloud environment's resources.

4.3 Results analysis

The results analysis offers empirical support for the claim that improved load balancing in

cloud environments is achieved by the QBCO algorithm. Because it confirms the suggested

QBCO algorithm, shows that it is better than current approaches, and offers a thorough

understanding of its performance, the results analysis is essential to the study. This part lays

the groundwork for next developments in cloud computing load balancing in addition to

validating the research contributions. Virtual machines (VMs) are crucial parts of load-

balancing systems in cloud computing settings. LB distributes incoming network traffic among

several servers in order to boost throughput, reduce response times, optimize resource usage,

and prevent overloading any one server. Because metaheuristic techniques offer efficient

algorithms for optimizing resource allocation, decreasing response times, and improving

overall system performance, they are crucial for LB in cloud computing systems. In the

metaheuristic study of LB in cloud computing, the performance of the implemented algorithms

is evaluated in terms of several parameters, including as resource consumption, reaction time,

throughput, scalability, and fault tolerance. Examine how well each method distributes the load

and allocates resources in different workload circumstances. Examine how effectively the LB

algorithm divides up CPU, memory, and bandwidth among virtual machines in order to meet

the demands of incoming requests. Determine how much resource the system is using too little

Table 2 : Properties Settings

Task

Range of task 10 - 50

Length 1000 - 6000

Size of the file 500

VM

VM ranges 3 - 5

Speed 225 - 300

Memory 256 - 512

CPU 1 - 5

Bandwidth 1000

VMM XEN

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1679 R M ARAVIND et al 1664-1690

or too much, and assess how well the algorithm performs in terms of resource optimization.

The current section examines the capabilities of QBCO approaches, which are one of the novel

LB techniques that were the subject of the current paper.

Tables 3 and 4 and figures 2 and 3 are shows the performance of load balancing algorithms

based on Makespan value obtained for 3 and 5 VMs, respectively. Tables 5 and 6 and figures

4 and 5 are shows the performance of load balancing algorithms based on Resource utilization

obtained for 3 and 5 VMs, respectively. Tables 7 and 8 and figures 6 and 7 are shows the

performance of load balancing algorithms based on Execution time obtained for 3 and 5 VMs,

respectively. Tables 9 and 10 and figures 8 and 9 are shows the performance of load balancing

algorithms based on Memory utilization obtained for 3 and 5 VMs, respectively. The

effectiveness and efficiency of the method are determined by a number of crucial indicators

when assessing QBCO performance for load balancing in cloud computing. Among these are

makespan, execution time, memory usage, and resource usage.

Table 3 : Makespan value obtained for 3 VMs

Tasks QBCO BCO BFO CPSO PSO ACO GA

10 292 323 347 368 391 412 428

20 368 397 425 458 487 508 524

30 482 529 558 571 610 641 665

40 697 715 733 759 788 805 824

50 835 869 881 897 910 934 955

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1680 R M ARAVIND et al 1664-1690

Figure 2: Makespan value obtained for 3 VMs

Table 4 : Makespan value obtained for 5 VMs

Tasks QBCO BCO BFO CPSO PSO ACO GA

10 145 174 210 239 248 267 285

20 310 338 364 397 420 443 463

30 487 505 531 558 579 607 620

40 628 657 688 704 725 749 762

50 788 805 824 854 865 887 898

0

100

200

300

400

500

600

700

800

900

1000

10 20 30 40 50

M
ak

es
p
an

no of Tasks

Makespan value obtained for 3 VMs

IBCO

BCO

BFO

CPSO

PSO

ACO

GA

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1681 R M ARAVIND et al 1664-1690

Figure 3 : Makespan value obtained for 3 VMs

Table 5 : Resource utilization obtained for 3 VMs

Tasks QBCO BCO BFO CPSO PSO ACO GA

10 0.70 0.62 0.42 0.38 0.32 0.29 0.27

20 0.75 0.64 0.58 0.51 0.45 0.39 0.31

30 0.83 0.73 0.68 0.61 0.55 0.49 0.43

40 0.85 0.83 0.71 0.61 0.53 0.44 0.37

50 0.88 0.86 0.78 0.69 0.58 0.49 0.41

0

100

200

300

400

500

600

700

800

900

1000

10 20 30 40 50

M
ak

es
p
an

No of Tasks

Makespan value obtained for 5 VMs

IBCO

BCO

BFO

CPSO

PSO

ACO

GA

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1682 R M ARAVIND et al 1664-1690

Figure 4 : Resource utilization value obtained for 3 VMs

Table 6 : Resource utilization obtained for 5 VMs

Tasks QBCO BCO BFO CPSO PSO ACO GA

10 0.60 0.48 0.43 0.37 0.30 0.25 0.20

20 0.89 0.70 0.63 0.58 0.41 0.35 0.24

30 1.06 0.98 0.86 0.76 0.66 0.52 0.48

40 1.11 1.09 0.95 0.88 0.71 0.64 0.59

50 1.32 1.29 1.11 1.01 0.92 0.85 0.71

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 30 40 50

R
es

o
u
rc

e
u
ti

li
za

ti
o
n

no of Tasks

Resource utilization value obtained for 3 VMs

IBCO

BCO

BFO

CPSO

PSO

ACO

GA

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1683 R M ARAVIND et al 1664-1690

Figure 5 : Resource utilization obtained for 5 VMs

Table 7 : Execution time obtained for 3 VMs

Tasks QBCO BCO BFO CPSO PSO ACO GA

10 115.65 131.46 148.16 159.11 164.11 175.22 190.41

20 159.29 168.95 179.33 188.93 197.29 208.22 215.95

30 168.26 179.40 184.67 192.10 214.25 226.63 238.59

40 181.42 197.40 211.33 239.85 258.67 273.42 298.72

50 224.24 237.11 256.71 272.30 288.32 302.30 312.72

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 30 40 50

R
es

o
u
rc

e
u
ti

li
za

ti
o
n

no of Tasks

Resource utilization value obtained for 5 VMs

IBCO

BCO

BFO

CPSO

PSO

ACO

GA

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1684 R M ARAVIND et al 1664-1690

Figure 6 : Execution time obtained for 3 VMs

Table 8 : Execution time obtained for 5 VMs

Tasks QBCO BCO BFO CPSO PSO ACO GA

10 131.46 147.56 159.18 171.54 180.46 191.88 204.54

20 169.54 175.63 209.67 225.20 247.62 269.28 289.42

30 321.72 348.26 372.56 416.34 437.48 463.72 475.26

40 357.12 394.84 420.61 431.86 452.75 478.66 498.20

50 370.52 398.43 425.06 457.34 488.41 514.63 537.14

0

100

200

300

400

500

600

10 20 30 40 50

E
x

ec
u
ti

o
n
 t

im
e

no of Tasks

Execution time obtained for 3 VMs

IBCO

BCO

BFO

CPSO

PSO

ACO

GA

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1685 R M ARAVIND et al 1664-1690

Figure 7 : Execution time obtained for 5 VMs

Table 9 : Memory utilization obtained for 3 VMs in percentage (%)

Tasks QBCO BCO BFO CPSO PSO ACO GA

10 48 53 53 55 57 62 66

20 50 51 55 58 62 65 70

30 54 57 59 63 69 72 76

40 59 61 66 70 76 83 84

50 62 65 68 76 80 85 89

0

100

200

300

400

500

600

10 20 30 40 50

E
x

ec
u
ti

o
n
 t

im
e

no of Tasks

Execution time obtained for 5 VMs

IBCO

BCO

BFO

CPSO

PSO

ACO

GA

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1686 R M ARAVIND et al 1664-1690

Figure 8 : Memory utilization obtained for 3 VMs in percentage (%)

Table 10 : Memory utilization obtained for 5 VMs in percentage (%)

Tasks QBCO BCO BFO CPSO PSO ACO GA

10 51 52 55 60 66 71 78

20 55 58 64 71 76 80 83

30 60 64 67 76 81 88 92

40 64 70 78 83 88 92 95

50 71 77 79 82 86 92 97

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50

m
em

o
ry

 u
ti

li
za

ti
o
n

no of Tasks

memory utilization obtained for 3 VMs

IBCO

BCO

BFO

CPSO

PSO

ACO

GA

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1687 R M ARAVIND et al 1664-1690

Figure 9 : Memory utilization obtained for 5 VMs in percentage (%)

7. Conclusions

This study addressed the crucial problem of load balancing in cloud computing systems by

presenting an QBCO algorithm based on quantum techniques. The suggested approach

successfully blends the exploration efficiency of quantum computing principles with the

advantages of BCO. Superior load distribution across cloud resources was shown using the

QBCO algorithm. As a result, duties were distributed more fairly, avoiding underuse and

resource overload. QBCO is appropriate for real-time dynamic applications since it has

demonstrated scalability across several cloud environments and adaptability to varying

workloads. QBCO proceeded better than other metaheuristics and conventional algorithms,

according to a comparative investigation. Better global search capabilities and faster

convergence were made possible by its quantum-inspired improvements.

References

[1] J. Balicki, "Many-objective quantum-inspired particle swarm optimization algorithm for
placement of virtual machines in smart computing cloud," Entropy, vol. 24, no. 1, p. 58, 2021.

[2] S. Janakiraman and M. D. Priya, "Hybrid grey wolf and improved particle swarm optimization
with adaptive intertial weight-based multi-dimensional learning strategy for load balancing in
cloud environments," Sustainable Computing: Informatics and Systems, vol. 38, p. 100875,
2023.

[3] P. Pirozmand, H. Jalalinejad, A. A. R. Hosseinabadi, S. Mirkamali, and Y. Li, "An improved
particle swarm optimization algorithm for task scheduling in cloud computing," Journal of
Ambient Intelligence and Humanized Computing, vol. 14, no. 4, pp. 4313-4327, 2023.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50

m
em

o
ry

 u
ti

li
za

ti
o
n

no of Tasks

memory utilization obtained for 5 VMs

IBCO

BCO

BFO

CPSO

PSO

ACO

GA

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1688 R M ARAVIND et al 1664-1690

[4] M. A. N. Saif, S. Niranjan, B. A. H. Murshed, F. A. Ghanem, and A. A. Q. Ahmed, "CSO-ILB:
chicken swarm optimized inter-cloud load balancer for elastic containerized multi-cloud
environment," The Journal of Supercomputing, vol. 79, no. 1, pp. 1111-1155, 2023.

[5] T. Saba, A. Rehman, K. Haseeb, T. Alam, and G. Jeon, "Cloud-edge load balancing distributed
protocol for IoE services using swarm intelligence," Cluster Computing, vol. 26, no. 5, pp.
2921-2931, 2023.

[6] P. Neelakantan and N. S. Yadav, "An optimized load balancing strategy for an enhancement of
cloud computing environment," Wireless Personal Communications, vol. 131, no. 3, pp.
1745-1765, 2023.

[7] M. Sumathi, N. Vijayaraj, S. P. Raja, and M. Rajkamal, "HHO-ACO hybridized load balancing
technique in cloud computing," International Journal of Information Technology, vol. 15, no.
3, pp. 1357-1365, 2023.

[8] K. Ramya and S. Ayothi, "Hybrid dingo and whale optimization algorithm-based optimal load
balancing for cloud computing environment," Transactions on Emerging Telecommunications
Technologies, vol. 34, no. 5, p. e4760, 2023.

[9] R. Kaviarasan, G. Balamurugan, and R. Kalaiyarasan, "Effective load balancing approach in
cloud computing using Inspired Lion Optimization Algorithm," e-Prime-Advances in Electrical
Engineering, Electronics and Energy, vol. 6, p. 100326, 2023.

[10] K. Malathi and K. Priyadarsini, "Hybrid lion–GA optimization algorithm-based task scheduling
approach in cloud computing," Applied Nanoscience, vol. 13, no. 3, pp. 2601-2610, 2023.

[11] M. A. Selvan, "Multipath Routing Optimization for Enhanced Load Balancing in Data-Heavy
Networks," 2024.

[12] S. Karimunnisa and Y. Pachipala, "Task Classification and Scheduling Using Enhanced Coot
Optimization in Cloud Computing," International Journal of Intelligent Engineering &
Systems, vol. 16, no. 5, 2023.

[13] G. Saravanan, S. Neelakandan, P. Ezhumalai, and S. Maurya, "Improved wild horse
optimization with levy flight algorithm for effective task scheduling in cloud computing,"
Journal of Cloud Computing, vol. 12, no. 1, p. 24, 2023.

[14] S. S. Sefati, M. Abdi, and A. Ghaffari, "QoS-based routing protocol and load balancing in
wireless sensor networks using the markov model and the artificial bee colony algorithm,"
Peer-to-Peer Networking and Applications, vol. 16, no. 3, pp. 1499-1512, 2023.

[15] P. Suresh et al., "Optimized Task Scheduling Approach with Fault Tolerant Load Balancing
using Multi-Objective Cat Swarm Optimization for Multi-Cloud Environment," Applied Soft
Computing, p. 112129, 2024.

[16] M. Menaka and K. S. Kumar, "Supportive particle swarm optimization with time-conscious
scheduling (SPSO-TCS) algorithm in cloud computing for optimized load balancing,"
International Journal of Cognitive Computing in Engineering, vol. 5, pp. 192-198, 2024.

[17] P. Geetha, S. Vivekanandan, R. Yogitha, and M. Jeyalakshmi, "Optimal load balancing in cloud:
Introduction to hybrid optimization algorithm," Expert Systems with Applications, vol. 237, p.
121450, 2024.

[18] R. Gowrishankar, B. Senthilkumar, E. Jananandhini, and D. Ramasamy, "SWARM
INTELLIGENCE APPROACH FOR LOAD BALANCING IN DISTRIBUTED COMPUTING SYSTEMS
USING FIREFLY ALGORITHM," ICTACT Journal on Soft Computing, vol. 14, no. 4, 2024.

[19] S. Mohapatra, S. Mohanty, H. K. Nayak, M. K. Mallick, J. V. N. Ramesh, and K. V. Dudekula,
"DPSO: A Hybrid Approach for Load Balancing using Dragonfly and PSO Algorithm in Cloud
Computing Environment," EAI Endorsed Transactions on Internet of Things, vol. 10, 2024.

[20] Z. R. Wang, X. X. Hu, P. Wei, and B. Yuan, "An improved particle swarm optimization
algorithm for scheduling tasks in cloud environment," Expert Systems, vol. 41, no. 7, p.
e13529, 2024.

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1689 R M ARAVIND et al 1664-1690

[21] B. Niu and H. Wang, "Bacterial colony optimization: principles and foundations," in Emerging
Intelligent Computing Technology and Applications: 8th International Conference, ICIC 2012,
Huangshan, China, July 25-29, 2012. Proceedings 8, 2012: Springer, pp. 501-506.

[22] K. Vijayakumari and V. Baby Deepa, "Fuzzy C-means hybrid with fuzzy bacterial colony
optimization," in Advances in electrical and computer technologies: select proceedings of
ICAECT 2020, 2021: Springer, pp. 75-87.

[23] V. Prakash, V. Vinothina, K. Kalaiselvi, and K. Velusamy, "An improved bacterial colony
optimization using opposition-based learning for data clustering," Cluster Computing, vol. 25,
no. 6, pp. 4009-4025, 2022.

[24] J. Revathi, V. Eswaramurthy, and P. Padmavathi, "Bacterial colony optimization for data
clustering," in 2019 IEEE International Conference on Electrical, Computer and
Communication Technologies (ICECCT), 2019: IEEE, pp. 1-4.

[25] J. Revathi, V. Eswaramurthy, and P. Padmavathi, "Hybrid data clustering approaches using
bacterial colony optimization and k-means," in IOP Conference Series: Materials Science and
Engineering, 2021, vol. 1070, no. 1: IOP Publishing, p. 012064.

[26] K. Tamilarisi, M. Gogulkumar, and K. Velusamy, "Data clustering using bacterial colony
optimization with particle swarm optimization," in 2021 Fourth International Conference on
Electrical, Computer and Communication Technologies (ICECCT), 2021: IEEE, pp. 1-5.

[27] S. S. Babu and K. Jayasudha, "A Simplex Method-Based Bacterial Colony Optimization for
Data Clustering," in Innovative Data Communication Technologies and Application:
Proceedings of ICIDCA 2021: Springer, 2022, pp. 987-995.

[28] S. S. Babu and K. Jayasudha, "A simplex method-based bacterial colony optimization
algorithm for data clustering analysis," International Journal of Pattern Recognition and
Artificial Intelligence, vol. 36, no. 12, p. 2259027, 2022.

[29] H. Wang, L. Tan, and B. Niu, "Feature selection for classification of microarray gene
expression cancers using Bacterial Colony Optimization with multi-dimensional population,"
Swarm and Evolutionary Computation, vol. 48, pp. 172-181, 2019.

[30] S. İlkin, T. H. Gençtürk, F. K. Gülağız, H. Özcan, M. A. Altuncu, and S. Şahin, "hybSVM:
Bacterial colony optimization algorithm based SVM for malignant melanoma detection,"
Engineering Science and Technology, an International Journal, vol. 24, no. 5, pp. 1059-1071,
2021.

[31] B. Niu, T. Xie, Y. Bi, and J. Liu, "Bacterial colony optimization for integrated yard truck
scheduling and storage allocation problem," in Intelligent Computing in Bioinformatics: 10th
International Conference, ICIC 2014, Taiyuan, China, August 3-6, 2014. Proceedings 10, 2014:
Springer, pp. 431-437.

[32] M. Bey, P. Kuila, B. B. Naik, and S. Ghosh, "Quantum-inspired particle swarm optimization for
efficient IoT service placement in edge computing systems," Expert Systems with
Applications, vol. 236, p. 121270, 2024.

[33] S. T. Milan, L. Rajabion, A. Darwesh, M. Hosseinzadeh, and N. J. Navimipour, "Priority-based
task scheduling method over cloudlet using a swarm intelligence algorithm," Cluster
Computing, vol. 23, no. 2, pp. 663-671, 2020.

[34] T. Prem Jacob and K. Pradeep, "A multi-objective optimal task scheduling in cloud
environment using cuckoo particle swarm optimization," Wireless Personal Communications,
vol. 109, no. 1, pp. 315-331, 2019.

[35] M. Kumar and S. C. Sharma, "PSO-COGENT: Cost and energy efficient scheduling in cloud
environment with deadline constraint," Sustainable Computing: Informatics and Systems, vol.
19, pp. 147-164, 2018.

[36] R. Gao and J. Wu, "Dynamic load balancing strategy for cloud computing with ant colony
optimization," Future Internet, vol. 7, no. 4, pp. 465-483, 2015.

Journal of Computational Analysis and Applications VOL. 33, NO.8, 2024

 1690 R M ARAVIND et al 1664-1690

[37] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam, "A genetic algorithm (ga) based
load balancing strategy for cloud computing," Procedia Technology, vol. 10, pp. 340-347,
2013.

