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Abstract: The content of this chapter are Dα̂-continuous maps, their relations with 

variousgeneralized continuous maps, Dα̂-irresolute maps, strongly Dα̂-continuous maps, 

perfectlyDα̂-continuous maps, totally Dα̂-continuous maps, contra Dα̂-continuous maps and 

several comparisons are made inorder to justify my topic. 

1 Introduction 

Many authors working in the field of general topology have shown more interest in 

studying the concepts of generalizations of continuous maps. A weak from of continuous maps 

called g-continuous maps was introduced by Balachandran, Sundaram and Maki [1]. 

Veerakumar [12] introduced and studied another form of generalized continuous maps called 

pre-semi continuous maps.Irresolute maps are introduced and studied by Crossley and 

Hildebrand [3]. R. A. Mohmoud and Abd EL-Monsef [7] have investigated _-irresolute maps. 

In this section the concepts of Dα̂-irresolute maps, strongly Dα̂-continuous maps and perfectly 

Dα̂-continuous maps in topological spaces and their properties are studied. 

The notion of contra _-continuity has been introduced by Caldas and Jafari [2]. T. M. Nour 

[9] introduced the concept of totally semi continuous maps in topological spaces. This section 

contains the concept of totally Dα̂-continuous map which is stronger than Dα̂-continuous and 

weaker than perfectly Dα̂-continuous and the concepts of contra Dα̂- continuous maps. Further 

the characterizations of these maps are obtained. 

The content of this chapter are Dα̂-continuous maps, their relations with 

variousgeneralized continuous maps, Dα̂-irresolute maps, strongly Dα̂-continuous maps, 

perfectlyDα̂-continuous maps, totally Dα̂-continuous maps, contra Dα̂-continuous maps.  

2. Preliminaries: 

Definition 2.1:Dα̂-closed set [11] if 𝛼cl(A) ⊂U whenever A ⊂U and U is �̂�-open in (X, τ). 

Proposition:2.2 
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1) Every Dα̂-closed set is gspr- closed (resp. gpr-open, gsp-open). 

2) Every closed set is Dα̂- closed 

3) Every 𝜔- closed set is Dα̂- closed 

Definition 2.3. A map f : (X, τ ) → (Y, 𝜎)  is called 

1. an α -continuous [8] if f −1(F) is a α - closed subset of (X, τ ) for each closed 

subset F of (Y, 𝜎). 

2. a g-continuous [6] if f −1 (F) is a g - closed subset of (X, τ )  for each closed subset F of 

(Y, 𝜎). 

3. a gspr-continuous [6] if f −1 (F) is a gspr - closed subset of (X, τ ) for each closed 

subset of (Y, 𝜎). 

4.  a rg - continuous [10] if f −1 (F) is a rg - closed subset of (X, τ )  for every closed 

set F of (Y, 𝜎). 

5. a gpr - continuous [5] if f −1 (F) is a gpr -closed subset of (X, τ ) for each closed subset 

of (Y, 𝜎). 

6. a gsp - continuous [4] if f −1 (F) is a gsp -closed subset of (X, τ ) for each closed 

subset of (Y, 𝜎). 

7.  a ∗gs - continuous [13] if f −1 (F) is a ∗gs - closed subset of (X, τ ) for each closed 

subset (Y, 𝜎). 

8. a D - continuous [14] if f −1 (F) is a D - closed subset of (X, τ ) for every closed 

set F of (Y, 𝜎). 

3. 𝐃�̂�-continuous maps 

In this section, the concept of Dα̂-continuous maps in topological spaces has been intro- 

duced and the composition of two Dα̂-continuous maps need not be Dα̂-continuous is also 

proved. Further some characterizations of Dα̂-continuous maps under certain conditions 

have been studied. 

Definition 3.1. A function f : (X, τ ) → (Y, 𝜎) is said to be Dα̂-continuous if f-1(H) 

is Dα̂-closed in (X, τ ) for every closed set H in Y . 

Example 3.2. Let X = Y = {p, q, r, s}, τ = {φ, {r}, {s}, {p, r}, {r, s}, {p, r, s},X} 

and τ = {φ, {p}, {p, q, r}, Y }. Define the map f : (X, τ) → (Y, 𝜎) by f(p) = q, 

f(q) = r, f(r) = p and f(s) = s is Dα̂-continuous. 

Theorem 3.3. Every continuous is Dα̂-continuous. 

Proof. Let f :X → Y be a continuous function. Let M be closed in (Y, 𝜎). Since 

f is continuous, f−1(M) is closed in (X, τ ). By Proposition 2.2, f−1(M) is Dα̂-closed 
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in (X, τ ). Hence f is Dα̂-continuous.  

Remark 3.4. The converse of the above theorem need not be true as seen from the 

following example. 

Example 3.5. Let X = {p, q, r, s, t} and Y = {p, q, r, s}, τ = {φ, {p, q}, {p, q, s}, 

{p, q, r, s}, {p, q, s, t},X} and  𝜎= {φ, {p}, {p, q, r}, Y }. Define the map f : (X, τ) → 

(Y, 𝜎) by f(p) = p, f(q) = f(r) = q, f(s) = r and f(t) = s. Then f is Dα̂-continuous 

but not continuous, since for every closed set N = {q, r, s}, f−1(N) = {q, r, s, t} is 

Dα̂-closed but not closed. 

Proposition 3.6. Every α-continuous (𝜔-continuous) is Dα̂-continuous. 

Proof. By Proposition 2.2, every α-closed (𝜔-closed) is Dα̂-closed. Hence the proof follows.  

Remark 3.7. The converse of the above theorem need not be true as seen from the 

following example. 

Example 3.8. Let X = {p, q, r, s, t} and Y = {p, q, r, s}, τ = {φ, {p}, {p, q}, {r, s}, 

{p, r, s}, {p, q, r, s},X} and 𝜎 = {φ, {r}, {s}, {p, r}, {r, s}, {p, r, s}, Y }. Define the 

map f : (X, 𝜏 ) → (Y, 𝜎) by f(p) = p, f(q) = q, f(r) = r, and f(s) = f(t) = s. 

Then f is Dα̂-continuous but not ω-continuous, since for every closed set M = {p, q} 

in (Y, 𝜎), f−1(M) = {p, q} is Dα̂-closed but not 

𝛼-closed (not 𝜔-closed) in (X, τ). 

Proposition 3.9. Every Dα̂-continuous is gspr-continuous 

Proof. By Proposition 2.2, every Dα̂-closed set is gspr-closed. Hence the proof 

follows. 

Remark 3.10. The converse of the above theorem need not be true as seen from 

the following example. 

Example 3.11. Let X = {p, q, r, s, t} and Y = {p, q, r, s, t}, τ = {φ, {p, q}, {p, q, s}, 

{p, q, r, s}, {p, q, s, t},X} and 𝜎 = {φ, {p}, {p, q}, {r, s}, {p, r, s}, {p, q, r, s}, Y }. Then 

the identity function f : (X, τ ) → (Y, 𝜎) is gspr-continuous but not Dα̂-continuous, since 

for every closed set M = {p, q, t} in (Y, 𝜎), f−1(M) = {p, q, t} is gspr-closed but not 

Dα̂-closed in (X, τ ). 

Proposition 3.12. Every Dα̂-continuous is gsp-continuous. 

Proof. By Proposition 2.2, every Dα̂-closed set is gsp-closed. Hence the proof 

follows.  

Remark 3.13. The converse of the above theorem need not be true as seen from 

the following example. 
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Example 3.14. Let X = {p, q, r, s} and Y = {p, q, r}, τ = {φ, {p}, {p, q, r},X} 

and 𝜎 = {φ, {p}, {q}, {p, q}, Y }. Define f : (X, τ ) → (Y, 𝜎) by f(p) = f(s) = p, 

f(q) = q and f(r) = r. Then f is gsp-continuous but not Dα̂-continuous. Since 

for every closed set M = {p, r} in (Y, 𝜎), f−1(M) = {p, r, s} is gsp-closed but not 

Dα̂-closed in (X, τ ). 

Remark 3.15. Dα-continuous is independent of rg-continuous.It is shown by the following 

example. 

Example 3.16. Let X = Y = {u, v,w}, τ = {φ, {u}, {v}, {u, v},X} and 𝜎 = 

{φ, {v,w}, Y}. Then the identity function f : (X, τ) → (Y, 𝜎) is Dα̂-continuous but 

not rg-continuous. Since for every closed set M = {u} in 

(Y, 𝜎), f−1(M) = {u} is Dα̂-closed in (X, τ ) but not rg-closed. 

Example 3.17. Let X = Y = {u, v,w}, τ = {φ, {u}, {v}, {u, v},X} and  𝜎 = 

{φ, {w}, Y }. Then the identity function f : (X, τ ) → (Y, 𝜎) is rg-continuous 

but not Dα̂-continuous. Since for every closed set M = {u, v} in (Y, 𝜎), 

f−1(M) = {u, v} is rg-closed but not Dα̂-closed. 

Remark 3.18. Dα̂-continuous is independent of g-continuous and D-continuous. It 

is shown by the following example. 

Example 3.19. Let X = Y = {p, q, r, s}, τ = {φ, {r}, {s}, {p, r}, {r, s}, {p, r, s},X} 

and 𝜎 = {φ, {p, q, r}, Y }. Then the identity function f : (X, τ ) → (Y, 𝜎) is Dα̂-continuous 

but neither g-continuous nor D-continuous. Since for every closed set M = {s} in 

(Y, 𝜎), f−1(M) = {s} is Dα̂-closed in (X, τ ) but neither g-closed nor D-closed. 

Example 3.20. Let X = Y = {p, q, r, s}, τ = {φ, {r}, {s}, {p, r}, {r, s}, {p, r, s},X} 

and 𝜎 = {φ, {p}, Y }. Then the identity function f : (X, τ ) → (Y, 𝜎) is g-continuous and 

D-continuous but not Dα̂-continuous. Since for every closed set M = {q, r, s} in (Y, 𝜎), 

f−1(M) = {q, r, s} is g-closed and D-closed but not Dα̂-closed. 

Remark 3.21. Dα̂-continuous is independent of *g-continuous, g*-continuous, g*p- 

continuous, α*g-continuous, ρ-continuous and gp-continuous. It is shown by the follow 

ing example. 

Example 3.22. Let X = Y = {p, q, r, s}, τ = {φ, {r}, {s}, {p, r}, {r, s}, {p, r, s},X} 

and 𝜎 = {φ, {p, q, r}, Y }. Then the identity function f : (X, τ ) → (Y, 𝜎) is Dα̂- 

continuous but not *g-continuous (resp.not g*-continuous, not g*p-continuous, not α*g- 

continuous, not ρ-continuous , not gp-continuous). Since for every closed set M = {s} 
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in (Y, 𝜎), f−1(M) = {s} is Dα̂-closed in (X, τ ) but not *g-closed (resp.notg*-closed, 

not g*p-closed, not α*g-closed, not ρ-closed, not gp-closed). 

Example 3.23. Let X = Y = {p, q, r, s}, τ = {φ, {r}, {s}, {p, r}, {r, s}, {p, r, s},X} 

and 𝜎 = {φ, {p}, Y }. Then the identity function f : (X, τ ) → (Y, 𝜎) is *g-continuous 

(resp. g*-continuous, g*p-continuous, α*g-continuous, ρ-continuous, gp-continuous). 

but not Dα̂-continuous. Since for every closed set M = {q, r, s} in (Y, 𝜎), f−1(M) = 

{q, r, s} is *g-closed (resp. g*-closed, g*p-closed, α*g-closed, ρ-closed, gp-closed) but 

not Dα̂-closed. 

Remark 3.24. Dα̂-continuous is independent of *gs-continuous .It is shown by the 

following example. 

Example 3.25. Let X = Y = {p, q, r, s}, τ = {φ, {p}, {p, q, r},X} and 𝜎 = 

{φ, {q, r}, Y }. Then the identity function f : (X, τ ) → (Y, 𝜎) is *gs-continuous but 

not Dα̂-continuous. Since for every closed set M = {s} in (Y, 𝜎), f−1(M) = {s} is 

*gs-closed in (X, τ ) but not Dα̂-closed. 

Example 3.26. Let X = Y = {p, q, r}, τ = {φ, {p}, {q}, {p, q},X} and 𝜎 = 

{φ, {q, r}, Y }. Then the identity function f : (X, τ ) → (Y, 𝜎) is Dα̂-continuous but 

not *gs-continuous. Since for every closed set M = {p} in (Y, 𝜎), f−1(M) = {p} is 

Dα̂-closed but not *gs-closed. 

Remark 3.27. we have the following relationship between Dα̂-continuous and other 

related generalized continuous. A → B (A = B) represents A implies B but not 

conversely (A and B are independent of each other). 

Theorem 3.28. A function f : (X, τ) → (Y, 𝜎) is Dα̂-continuous if an only if f−1(U) 

is Dα̂-open in (X, τ ) for every open set U in (Y, 𝜎). 

Proof. Let f : (X, τ ) → (Y, 𝜎) be Dα̂-continuous andU be an open set in (Y, 𝜎). Then 

f−1(Uc) is Dα̂-closed in (X, τ). But f−1(Uc) = (f−1(U))c and so f−1(U) is Dα̂-open in 

(X, τ). 

Conversely, suppose f−1(U) is Dα̂-open in (X, τ ) for every open set U in (Y, 𝜎). Let 

U be an open set in (Y, 𝜎). Then Uc is closed in (Y, 𝜎). Since f−1(U) is Dα̂-open in 

(X, τ) and (f−1(U))c = f−1(Uc), f−1(Uc) is Dα̂-closed in (X, τ ).  

Remark 3.29. The composition of two Dα̂-continuous functions need not be Dα̂- 

continuous. It is shown by the following example. 

Example 3.30. Let X = Y = Z = {p, q, r, s}, τ = {φ, {p}, {r}, {p, q}, {p, r}, {p, q, r}, 
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{p, q, s},X}, 𝜎 = {φ, {r}, {s}, {p, r}, {r, s}, {p, r, s}, Y } and η= {φ, {q, s},Z}. 

Define f : (X, τ ) → (Y, 𝜎) by f(p) = r, f(q) = q, f(r) = s and f(s) = p and define 

an identity function g : (Y, 𝜎 ) → (Z, η). Then both f and g are Dα̂-continuous. Let 

F = {p, r} be a closed set in (Z, η). Then (g ◦ f)−1(F) = f−1(g−1(F)) = {p, s} which 

is not Dα̂-closed in (X, τ ). Therefore g ◦ f is not Dα̂-continuous. 

Proposition 3.31. For a subset A of a topological space X, the following conditions 

are equivalent: 

(i) Dα̂o (τ ) is closed under any union, 

(ii) A is Dα̂-closed if and only if Dα̂cl(A) = A, 

(iii) A is Dα̂-open if and only if Dα̂int(A) = A. 

Proof. (i) =⇒(ii) :Let A be a Dα̂-closed set. Then by the definition of Dα̂-closure, we 

get Dα̂cl(A) = A. Conversely, assume that Dα̂cl(A) = A. For each x ∈Ac, x ∉ Dα̂cl(A), there 

exists a Dα̂-open set Gx such that Gx∩ A = φ and hence 

x ∈Gx⊂Ac. Therefore we obtain Ac = ∪xϵ A
cGx. By (i) Ac is Dα̂-open and hence A 

is Dα̂-closed. 

(ii) =⇒(iii) :obviously true 

 (iii) =⇒(i) :Let {Uα/α ∈Λ} be a family of Dα̂open sets of X. Put U = ∪αUα. 

For each x ∈U, there exist α(x) ∈Λ such that x ∈Uα(x) ⊂U. Since Uα(x) is Dα̂-open, 

x ∈Dα̂int(U) and so U = Dα̂int(U). By (iii), U is Dα̂-open. Thus Dα̂o(τ ) is closed under 

any union.  

Proposition 3.32. In a topological space X, assume that Dα̂o(τ) is closed under 

any union. Then Dα̂cl(A) is a Dα̂-closed set for every subset A of X. 

Proof. Since Dα̂cl(A) = Dα̂cl(Dα̂cl(A)) and by proposition 3.31, we get Dα̂cl(A) is a 

Dα̂-closed set. 

Theorem 3.33. Let f :X → Y be a map. Assume that Dα̂o(τ) is closed under any 

union. Then the following are equivalent: 

(i) The map f is Dα̂-continuous; 

(ii) The inverse of each open set is Dα̂-open; 

(iii) For each point x in X and each open set V in Y with f(x) ∈V , there is an 

Dα̂-open set U in X such that x ∈U, f(U) ⊂V ; 

(iv) For each subset A of X, f(Dα̂cl(A)) ⊂cl(f(A)); 

(v) For each subset B of Y , Dα̂cl(f−1(B)) ⊂f−1(cl(B)); 
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(vi) For each subset B of Y ,f−1(int(B)) ⊂Dα̂int(f−1(B)). 

Proof. (i) ⇐⇒(ii) :By Theorem 3.28. 

(i) ⇐⇒(iii) :Suppose (iii) holds and let V be an open set in Y and x ∈f−1(V ). 

Then f(x) ∈V and thus there exist an Dα̂-open set Ux such that x ∈Ux and f(Ux) ⊂V . 

Now x ∈Ux⊂f−1(V ) and f−1(V ) = ∪xϵf−1
(V )Ux. By assumption f−1(V ) is Dα̂-open 

in X and therefore f is Dα̂-continuous. 

Conversely, suppose that (i) holds. Let V be an open set in Y with f(x) ∈V . Then 

x ∈f−1(V )∈ Dα̂o(τ), since f is Dα̂-continuous. Let U = f−1(V ). Then x ∈U and 

f(U) ⊂V . 

(iv) ⇐⇒(i) :Suppose (i) holds and A be a subset of X. Since A ⊂f−1(f(A)), 

we have A ⊂f−1(cl(f(A)). Since cl(f(A)) is a closed set in Y , by assumption 

f−1(cl(f(A))) is a Dα̂-closed set containing A. Consequently, Dα̂cl(A) ⊂f−1(cl(f(A))). 

Thus f(Dα̂cl(A)) ⊂f(f−1(cl(f(A)))) ⊂cl(f(A)). 

Conversely, suppose that (iv) holds for any subset A of X. Let F be a closed subset 

of Y . Then by assumption, f(Dα̂cl(f−1(F))) ⊂cl(f(f−1(F))) ⊂cl(F) = F. Thus 

Dα̂cl(f−1(F)) ⊂f−1(F). But Dα̂cl(f−1(F)) ⊃f−1(F). Therefore, f−1(F) is Dα̂-closed. 

(iv) ⇐⇒(v) :Suppose (iv) holds and B be any subset of Y then replacing A by f−1(B) in (iv) 

we get f(Dα̂cl(f−1(B))) ⊂cl(f(f−1(B))) ⊂cl(B). Thus 

Dα̂cl(f−1(B)) ⊂f−1(cl(B)). 

Conversely, suppose that (v) holds. Let B = f(A) where A is a subset of X. Then 

we have Dα̂cl(A) ⊂Dα̂cl(f−1(B)) ⊂f−1(cl(f(A))) and so f(Dα̂cl(A)) ⊂cl(f(A)). 

(v) ⇐⇒(vi) :Let B be any subset of Y . Then by (v) we have Dα̂cl(f−1(Bc)) ⊂ 

(f−1cl(Bc)) and hence (Dα̂intf−1(B))c⊂(f−1int(B))c. Therefore, we obtain f−1(int(B)) ⊂ 

Dα̂int(f−1(B)). 

(vi) ⇐⇒(i) :Suppose (vi) holds. Let F be any closed subset of Y . We have 

f−1(Fc) = f−1(int(Fc)) ⊂Dα̂int(f−1(Fc)) = (Dα̂cl(f−1(F)))c and hence Dα̂cl(f−1(F)) ⊂ f−1(F). By 

proposition 3.2.34 f−1(F) is Dα̂-closed. Hence, f is Dα̂-continuous.  

4. 𝐃�̂�-irresolute maps, strongly 𝐃�̂�-continuous maps and perfectly 𝐃�̂�-continuous maps 

Definition 4.1. A map f :X → Y is called Dα̂-irresolute if f−1(F) is Dα̂-closed in 

X for every Dα̂closed set F of Y . 

Example 4.2. Let X = {a, b, c} = Y , τ = {φ, {a, b},X} and 𝜎= {φ, {a}, Y }. 

Here Dα̂c(τ ) = {φ, {a}, {b}, {c}, {b, c}, {a, c},X} and Dα̂c(𝜎) = {φ, {b}, {c}, {b, c},X}. 
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Define a map f :X → Y by f(a) = b, f(b) = a, f(c) = c. Clearly f is Dα̂-irresolute, 

since every Dα̂-closed subset of Y is Dα̂-closed in X. 

Proposition 4.3. If f :X → Y is Dα̂-irresolute, then f is Dα̂-continuous but not 

conversely. 

Proof. Since every closed set is Dα̂-closed. Hence f is Dα̂-continuous.  

Example 4.4. Let X = Y = {a, b, c}, τ = {φ, {a},X} and 𝜎 = {φ, {a, b}, Y }. 

Here Dα̂c(τ ) = {φ, {b}, {c}, {b, c},X} and Dα̂c(𝜎) = P(X) − {a, b}. Define a map 

f :X → Y by f(a) = b, f(b) = c and f(c) = a. Clearly f is Dα̂-continuous but not 

Dα̂-irresolute, since {b} is Dα̂-closed in Y but f−1({b}) = {a} is not Dα̂-closed in X. 

Proposition 4.5. Let f :X → Y and g : Y → Z be any two maps. Then 

(a) g ◦ f is Dα̂-irresolute if both f and g are Dα̂-irresolute. 

(b) g ◦ f is Dα̂-continuous if g is Dα̂-continuous and f is Dα̂-irresolute. 

Proof. (a) :Let f : X → Y and g : Y → Z be any two maps. Let F be a Dα̂closed 

set in Z. Since g is Dα̂-irresolute, g−1(F) is Dα̂-closed in Y . Since f is Dα̂-irresolute, 

f−1(g−1(F)) = (g ◦ f)−1(F) is Dα̂-closed in X. Thus g ◦ f is Dα̂-irresolute. 

(b) :Let F be a closed set in Z. Since g is Dα̂-continuous, g−1(F) is Dα̂-closed in 

Y . Since f is Dα̂-irresolute, f−1(g−1(F)) = (g ◦ f)−1(F) is Dα̂-closed in X. Thus g ◦ f 

is Dα̂-continuous.  

Proposition 4.6. Let X be a topological space,Y be a 𝑇𝐷�̂�
-space and f :X → Y 

be a map. Then the following are equivalent: 

(i) f is Dα̂-irresolute, 

(ii) f is Dα̂-continuous. 

Proof. (i) =⇒(ii) :Since every closed set is Dα̂-closed. Hence f is Dα̂-continuous. 

(ii) =⇒(i) :Let F be a Dα̂-closed set in Y . Since Y is a 𝑇𝐷�̂�
 

-space, F is a closed 

set in Y and by hypothesis, f−1(F) is Dα̂-closed in X. Thereforef is Dα̂-irresolute. 

Definition 4.7. A map f :X → Y is said to be strongly Dα̂-continuous if the inverse 

image of every Dα̂-open set of Y is open in X. 

Proposition 4.8. If a map f :X → Y is strongly Dα̂-continuous, then f is continuous 

but not conversely. 

Proof. Since every open set is Dα̂-open. Then f is continuous. 

Example 4.9. Let X = Y = {a, b, c}, τ = {φ, {a}, {a, b}, {a, c},X} and 𝜎 = 
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{φ, {a}, Y }. Define a map f :X → Y by f(a) = a, f(b) = c, f(c) = b. Clearly f is 

continuous but not strongly Dα̂-continuous. Since {b} is Dα̂-open in Y but f−1({b}) = {c} 

is not open in X. 

Proposition4.10. Let X be a topological space,Y be a 𝑇𝐷�̂�
 

-space and f :X → Y be a map. Then the following are equivalent: 

(i) f is strongly Dα̂-continuous, 

(ii) f is continuous. 

Proof. (i) =⇒(ii) :Since every open set is Dα̂-open. Then f is continuous. 

(ii) =⇒(i) :Let V be any Dα̂-open set in Y . Since Y is a 𝑇𝐷�̂�
-space, V is open in Y . By (ii) 

f−1(V ) is open in X. Therefore, f is strongly Dα̂-continuous.  

Proposition 4.11. Every strongly Dα̂-continuous map is SMPC, but not conversely. 

Proof. Since every pre open set is Dα̂-open. Hence every strongly Dα̂-continuous map 

is SMPC. 

Example 4.12. Let X = Y = {a, b, c}, τ = {φ, {a}, {c}, {a, c}, {b, c},X} and 

𝜎 = {φ, {a}, {b}, {a, b},X}. Let f :X → Y be defined by f(a) = a, f(b) = c and 

f(c) = b. Clearly f is SMPC but not strongly Dα̂-continuous, since {b} isDα̂-closed in 

(Y, 𝜎) and f−1({b}) = {c} is not closed in (X, τ ). 

Proposition 4.13. If a map f :X → Y is strongly continuous, then f is strongly 

Dα̂-continuous but not conversely. 

Proof. Every Dα̂-open set is a subset itself. Hence f is strongly Dα̂-continuous. 

Example 4.14. Let X = Y = {a, b, c}, τ = {φ, {a}, {a, b}, {a, c},X} and 𝜎 = 

{φ, {b}, {a, b}, {b, c}, Y }. Let f :X → Y be a map defined by f(a) = b, f(b) = a 

and f(c) = c. Clearly f is strongly Dα̂-continuous but not strongly continuous. Since 

f−1({a, c}) = {b, c} is closed but not open in X. 

Definition 4.15. A map f :X → Y is called perfectly Dα̂-continuous if the inverse 

image of every Dα̂-open set in Y is both open and closed in X. 

Proposition 4.16. If a map f :X → Y is perfectly Dα̂-continuous then f is perfectly 

continuous (resp. Continuous) but not conversely. 

Proof. Let V be an open set in Y . Then V is Dα̂-open in Y . Since f is perfectly 

Dα̂-continuous, f−1(V ) is both open and closed in X. Thus f is perfectly continuous 

and also continuous.  

Example 4.17. Let X = Y = {a, b, c}, τ = {φ, {a}, {b, c},X} and 𝜎 = {φ, {a}, Y }. 
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Clearly the identity map f :X → Y is perfectly continuous and continuous but not perfectly 

Dα̂-continuous, since the set {c} is Dα̂-open in Y but f−1({c}) = {c} is neither 

closed nor open in X. 

Proposition 4.18. If f :X → Y is perfectly Dα̂-continuous then it is strongly 

Dα̂-continuous but not conversely. 

Proof. Let V be Dα̂-open in Y . Since f is perfectly Dα̂-continuous, f−1(V ) is both 

open and closed in X. Thus f is strongly Dα̂-continuous. 

Example 4.19. Let (X, τ) and (Y, 𝜎) be defined as in Example 3.14 then f is 

strongly Dα̂-continuous but not perfectly Dα̂-continuous, since the set {a, b} is Dα̂-open in 

Y and f−1({a, b}) = {a, b} is open but not closed in X. 

Proposition 4.20. Every strongly Dα̂-continuous map is Dα̂-continuous but not conversely. 

Proof. Let V be an open set in Y . Since f is strongly Dα̂-continuous and every open 

set is Dα̂-open, f−1(V ) is an open set in X. Therefore f−1(V ) is Dα̂-open in X and so 

f is Dα̂-continuous.  

Example 4.21. Let (X, τ) and (Y, 𝜎) be defined as in Example 3.2. Define a map 

f :X → Y by f(a) = b, f(b) = c and f(c) = a. Clearly f is Dα̂-continuous but not 

strongly Dα̂-continuous, since {a, b} is Dα̂-open in Y but f−1({a, b}) = {a, c} is not open 

in X. 

From the above discussion we have the following implications: 

Proposition 4.22. Let X be a discrete topological space,Y be any topological 

space and f :X → Y be a map. Then the following are equivalence: 

1. f is perfectly Dα̂-continuous, 

2. f is strongly Dα̂-continuous. 

Proof. (i) =⇒(ii) :Let V be Dα̂-open in Y . Since f is perfectly Dα̂-continuous, 

f−1(V ) is both open and closed in X. Thus f is strongly Dα̂-continuous. 

(ii) =⇒(i) :Let U1 be any Dα̂-open set in Y . By hypothesis f−1(U) is open 

in X. Since X is a discrete space, f−1(U) is also closed in X and so f is perfectly 

Dα̂-continuous. 

Proposition 4.23. If f :X → Y and g : Y → Z are perfectly Dα̂-continuous, then 

their composition g ◦ f :X → Z is also perfectly Dα̂-continuous. 

Proof. Let f :X → Y and g : Y → Z be two maps. Let V be a Dα̂-open set in 

Z. Since g is perfectly Dα̂-continuous. g−1(V ) is both open and closed in Y . As f is 
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perfectly Dα̂-continuous, f−1(g−1(V )) = (g ◦ f)−1(V ) is both open and closed in X. 

Thus g ◦ f is perfectly Dα̂-continuous. 

Proposition 4.24. If f :X → Y and g : Y → Z be any two maps. Then their 

composition g ◦ f :X → Z is 

i) Dα̂-irresolute if g is perfectly Dα̂-continuous and f is Dα̂-continuous. 

ii) strongly Dα̂-continuous if g is perfectly Dα̂-continuous and f is continuous. 

iii) perfectly Dα̂-continuous if g is strongly continuous and f is perfectly Dα̂-continuous. 

Proof. i) Let f :X → Y and g : Y → Z be two maps. Let V be a Dα̂-open set in 

Z. Since g is perfectly Dα̂-continuous. g−1(V ) is both open and closed in Y . As f is 

Dα̂-continuous, f−1(g−1(V )) = (g ◦ f)−1(V ) is Dα̂-open in X. Thus g ◦ f is Dα̂-irresolute. 

ii) Let f :X → Y and g : Y → Z be two maps. Let V be a Dα̂-open set in Z. Since 

g is perfectly Dα̂-continuous. g−1(V ) is both open and closed in Y . As f is continuous, 

f−1(g−1(V )) = (g ◦ f)−1(V ) is open in X. Thus g ◦ f is strongly Dα̂-continuous. 

iii) Let f :X → Y and g : Y → Z be two maps. Let V be a Dα̂-open set in Z. 

Since g is strongly continuous. g−1(V ) is both open and closed in Y . As f is perfectly 

Dα̂-continuous, f−1(g−1(V )) = (g ◦ f)−1(V ) is both open and closed in X. Thus g ◦ f 

is perfectly Dα̂-continuous. 

5.Totally 𝐃�̂�-continuous and Contra 𝐃�̂�-continuous maps 

Definition 5.1 A map f :X → Y is said to be totally Dα̂-continuous, if the inverse 

image of every open subset of Y is a Dα̂-clopen subset of X. 

Example 5.2. Let X = {a, b, c}, Y = {p, q}, τ = {φ, {a}, {b}, {a, b},X} and 𝜎 ={φ, {p},Y}. 

Define a map f : (X, τ ) → (Y, 𝜎) such that f(a) = p, f(b) = f(c) = q. 

Clearly f is totally Dα̂-continuous. 

Proposition 5.3. Every perfectly Dα̂-continuous map is totally Dα̂-continuous, but 

not conversely. 

Proof. Let f :X → Y be a perfectly Dα̂-continuous map. Let U be an open set in 

Y . Then U is Dα̂-open in Y . Since f is perfectly Dα̂-continuous, f−1(U) is clopen in X 

implies f−1(U) is Dα̂-clopen in X. Hence every perfectly Dα̂-continuous map is totally 

Dα̂-continuous. 

Example 5.4. Let X = Y = {a, b, c}, τ = {φ, {a}, {b}, {a, b},X} and 𝜎 ={φ, {a}, {b, c}, Y}. 

Clearly the identity map f : (X, τ ) → (Y, 𝜎) is totally Dα̂-continuous 

but not perfectly Dα̂-continuous, since the set {a} is Dα̂-open in Y but f−1({a}) = {a} 
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is open but not closed in (X, τ ). 

Remark 5.5. The following two examples show that totally Dα̂-continuous and 

strongly Dα̂-continuous are independent. 

Example 5.6. Let (X, τ ) and (Y, 𝜎) be defined as in Example 5.4. Clearly the 

identity map f : (X, τ ) → (Y, 𝜎) is totally Dα̂-continuous but not strongly Dα̂-continuous, 

since the set {b, c} is Dα̂-open in (Y, 𝜎) but f −1({b, c}) = {b, c} is not open in (X, τ ). 

Example 5.7. Let X = Y = {a, b, c}, τ = {φ, {a}, {a, b}{a, c},X} and 𝜎 ={φ, {a}, {a, b}, Y}  

Define a map f :X → Y by f (a) = a, f (b) = c and f (c) = b. 

Clearly f is strongly Dα̂-continuous but not totally Dα̂-continuous, since {a, b} is open in 

(Y, 𝜎) and f−1({a, b}) = {a, c} is Dα̂-open but not Dα̂-closed in (X, τ ). 

Proposition 5.8. Every totally Dα̂-continuous map is Dα̂-continuous. 

Proof. Clearly follows from Definition 5.1 totally Dα̂-continuous map is Dα̂-continuous. 

Remark 5.9. The converse of Proposition 5.8 is not true by the Example 5.7. 

Here the map f is Dα̂-continuous but not totally Dα̂-continuous. 

Remark 5.10. It is clear that the totally Dα̂-continuous map is stronger than Dα̂- 

continuous map and weaker than perfectly Dα̂- continuous map. 

Theorem 5.11. If f :X → Y is a totally Dα̂- continuous map from a Dα̂- connected 

space X onto any space Y, then Y is an indiscrete space. 

Proof. Suppose that Y is not indiscrete. Let A be a proper nonempty open subset of 

Y . Then f−1(A) is a nonempty proper Dα̂-clopen subset of X, which is a contradiction 

to the fact that X is Dα̂-connected. 

Definition 5.12. A topological space X is called Dα̂−T2 if for each pair of distinct 

points x and y in X, there exist disjoint Dα̂-open sets U and V in X containing x 

and y respectively. 

Theorem 5.13. Let f :X → Y be a totally Dα̂-continuous injection. If Y is T0 then 

X is Dα̂− T2. 

Proof. Let x and y be any pair of distinct points of X. Then f(x) ≠ f(y). Since Y 

is T0, there exists an open set U containing say f(x) but not f(y). Then x ∈f −1(U) 

and y ∉  f −1(U). Since f is totally 𝐷�̂�-continuous, f −1(U) is a 𝐷�̂�-clopen subset of X. 

Also, x ∈f −1(U) and y ∈(f −1(U)) c. Hence, X is 𝐷�̂�− T2. 

Theorem 5.14. A topological space X is Dα̂-connected if and only if every totally 

Dα̂-continuous map from a space X into any T0-space Y is constant. 
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Proof. We prove the only “if” part. Suppose that X is not Dα̂-connected. By hypothesis, every 

Dα̂-continuous map from X into Y is constant. Since X is not Dα̂-connected, there exists a 

proper nonempty Dα̂-clopen subset A of X. Let Y = {x, y} and 𝜎 = {Y, φ, {x}, {y}} be a 

topology for Y . Let f :X → Y be a map such that f(A) = {x} and f(Ac) = {y}. Then f is non 

constant and totally Dα̂-continuous such that Y is T0, which is a contradiction. Hence X must 

be Dα̂-connected. 

Theorem 5.15. Let f :X → Y be a totally Dα̂-continuous map and Y is a T1-space. If A is a Dα̂-

connected subset of X, then f(A) is a single point. 

Proof. Obvious. 

Definition 5.16. Let X be a topological space. Then the set of all points y in X such that x and 

y cannot be separated by a Dα̂-separation of X is said to be the quasi-Dα̂-component of X. 

Theorem 5.17. Let f :X → Y be a totally Dα̂-continuous map from a topological 

space X into T1-space Y . Then f is constant on each quasi-Dα̂-component of X. 

Proof. Let x and y be two points of X that lie in the same quasi-Dα̂-component of 

X. Assume that f(x) = 𝛼 ≠ 𝛽 = f(y). Since Y is T1, {α} is closed in Y and so 

{α}c is an open set. Since f is totally Dα̂-continuous, f−1({α}) and f−1({α}c) are 

disjoint Dα̂-clopen subsets of X. Further x ∈f−1({α}) and y ∈f−1({α}c), which is 

a contradiction in view of the fact that y belongs to the quasi-Dα̂-component of x and 

hence y must belongs to every quasi-Dα̂-clopen set containing X. Hence the result. 

Now we introduction the concept of contra Dα̂-continuous map. 

Definition 5.18. A map f :X → Y is called contra Dα̂-continuous if f−1(V ) is 

Dα̂-closed in X for each open set V of Y . 

Theorem 5.19. Assume that Dα̂o(τ ) is closed under arbitrary union. Then for a map 

f :X → Y , the following are equivalent: 

i) f is contra Dα̂-continuous; 

ii) for every closed subset F of Y ,f−1(F) ∈Dα̂o(τ ); 

iii) for each x ∈X and each closed set F of Y containing f(x), there exists U ∈Dα̂o(τ ) 

and x ∈U such that f(U) ⊂F; 

iv) f(Dα̂cl(A)) ⊂kerf(A), for every subset A of X; 

v) Dα̂cl(f −1(B)) ⊂f −1(ker(B)), for every subset B of Y . 

Proof. (i) =⇒(ii) :Obvious. 

(ii) =⇒(iii) :Let x be any point of X and F any closed set of Y containing f(x). 
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By (ii), f −1(F) ∈Dα̂o(τ ) and x ∈f −1(F). Put U = f −1(F). Then U ∈Dα̂o(τ ) and 

f(U) ⊂F. 

(iii) =⇒(ii) :Let F be any closed set of Y and x ∈f −1(F). Then f(x) ∈F and 

there exists Ux∈Dα̂o(τ ) and x ∈Ux such that f(Ux) ⊂F. Therefore, by hypothesis 

f −1(F) = ∪{Ux / x ∈f −1(F)} ∈ Dα̂o(τ ). 

(ii) =⇒(iv) :Let A be any subset of X. Suppose that y ∉ker(f(A)). Then there exists a closed set 

F of Y containing y such that f(A) ∩ F = φ. 

Thus we have A ∩ f −1(F) =φ  and Dα̂cl(A) ∩ f −1(F) = φ. Therefore, we obtain 

f(𝐷�̂�cl(A)) ∩ F = φ and y ∉f (𝐷�̂�cl(A)). This implies that f (𝐷�̂�cl(A)) ⊂ker f(A). 

(iv) =⇒(v) :Let B be any subset of Y . By (iv) and Lemma 1.3.20, we have 

f(𝐷�̂�cl f −1(B)) ⊂kerf(f −1(B)) ⊂ker(B) and 𝐷�̂�cl(f −1(B)) ⊂f −1(ker(B)). 

(v) =⇒(i) :Let V be any open set of Y . Then we have 

𝐷�̂�cl(f −1(V )) ⊂f −1(ker(V )) = f −1(V ). Thus 𝐷�̂�cl(f −1(V )) = f −1(V ). This shows 

that f −1(V ) is 𝐷�̂�-closed in X . 

Theorem 5.20. If a map f :X → Y is contra 𝐷�̂�-continuous and Y is regular then 

f is 𝐷�̂�-continuous. 

Proof. Let x be any arbitrary point of X and V be an open set of Y containing 

f(x). Since Y is regular, there exists an open set W in Y containing f(x) such that 

cl(W) ⊂V . Since f is contra 𝐷�̂�-continuous, by Theorem 5.19 there exists a 𝐷�̂�-open 

set U containing x such that f(U) ⊂cl(W) ⊂V . Hence f is 𝐷�̂�-continuous. 

Theorem 5.21. If a map f :X → Y is contra continuous then it is contra 𝐷�̂�-continuous. 

Proof. The proof follows from the fact that every closed set is 𝐷�̂�-closed. 

Remark 5.22. The converse of the above theorem need not be true as seen from 

the following example. 

Example 5.23. Let (X, τ ) and (Y, 𝜎) be defined as in Example 5.4. Then the 

identity map f : (X, τ ) → (Y, 𝜎) is contra 𝐷�̂�-continuous but not contra continuous, 

since the set {a} is open in Y but f −1({a}) = {a} is not closed in (X, τ ).   

Proposition 5.24. Let X be a 𝑇𝐷�̂�
-space. If a map f :X → Y is contra 𝐷�̂�-continuous, then f is 

contra continuous. 

Proof. The proof follows  

Remark 5.25. The following two examples show that contra Dα̂-continuous and 

continuous are independent. 
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Example 5.26. Let (X, τ ) and (Y, 𝜎) be defined as in Example 5.4. Define a map 

f :X → Y by f(a) = a, f(b) = c and f(c) = b. Clearly f is contra 𝐷�̂�-continuous but 

not continuous, since the set {b, c} is open in Y but f −1({b, c}) = {b, c} is not open in 

(X, τ ). 

Example 5.27. Let X = Y = {a, b, c}, τ = {φ, {a}, {b}, {a, b},X} and  𝜎  ={φ, {a, b}, Y }. 

Define a map f :X → Y by f(a) = b, f(b) = a and f(c) = c. Clearly 

f is continuous but not contra 𝐷�̂�-continuous, since the set {a, b} is open in Y but 

f −1({a, b}) = {a, b} is not 𝐷�̂�-closed in (X, τ ). 

Theorem 5.28. If f :X → Y is a contra 𝐷�̂�-continuous map and g : Y → Z is a 

continuous map, then g ◦ f :X → Z is contra 𝐷�̂�-continuous. 

Proof. Clearly follows from Definitions. 

Remark 5.29. The product of two contra 𝐷�̂�-continuous maps is not a contra 𝐷�̂�- 

continuous map, it is shown by the following example. 

Example 5.30. Let X = Y = Z = {p, q, r}, τ = {φ, {p}, {q}, {p, q},X}, 𝜎 = 

{φ, {p}, {q, r}, Y }and 𝜂 = {φ, {p, q},Z}. Let f : (X, τ ) → (Y, 𝜎) and g : (Y, 𝜎 ) →(Z, η) be two 

identity maps. Then f and g are contra 𝐷�̂�-continuous. Let A = {p, q}be an open in Z. Then (g 

◦ f) −1(A) = f −1(g −1(A)) = {p, q} which is not 𝐷�̂�-closed in (X, τ ). Therefore g ◦ f : (X, τ ) → 

(Z, η) is not a contra 𝐷�̂�-continuous. 

Theorem 5.31. Assume that 𝐷�̂�o(τ) is closed under any union. If X is a topological 

space and for each pair of distinct points x1 and x2 in X there exists a map f that maps 

X into a uryshon space Y such that f(x1) ≠ f(x2) and f is contra Dα̂-continuous at x1 

and x2. Then X is Dα̂− T2. 

Proof. Let x1 and x2 be any two distinct points in X. Then by hypothesis, there 

is a uryshon space Y and a map f :X → Y which satisfies the conditions of the 

theorem. Let yi= f(xi) for i= 1, 2. Then y1 ≠ y2. Since Y is uryshon, there exists open 

neighbourhoods 𝑈𝑦1
 and 𝑈𝑦2

 of y1 and y2 respectively in Y such that 

cl(𝑈𝑦1
) ∩ cl(𝑈𝑦2

) = φ. Since f is contra Dα̂-continuous at xi, there exist Dα̂-open 

neighbourhoods 𝑊𝑥𝑖
  of xi in X such that f(𝑊𝑥𝑖

) ⊂cl(𝑈𝑦𝑖
) for i= 1, 2. Hence we get 

that 𝑊𝑥1
 ∩𝑊2 = φ, because cl(𝑈𝑦1

) ∩ cl(𝑈𝑦2
) = φ. Thus X is Dα̂− T2. 

Corollary 5.32. Assume that Dα̂o(τ ) is closed under any union. If f is a contra 

Dα̂-continuous injection of a topological space X into a uryshon space Y . Then X is 

Dα̂− T2. 
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Proof. For each pair of distinct points x1 and x2 in X, f is a contra Dα̂-continuous 

of X into a uryshon space Y such that f(x1) ≠f(x2) because f is injective. Hence by 

the above Theorem, X is Dα̂− T2. 
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