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Abstract

Variable coefficients and Wick-type stochastic (241)-dimensional coupled KdV equa-
tions are investigated. By using the F-expansion method , Hermite transform and
white noise theory, the white noise functional solutions for Wick-type stochastic (2+1)-
dimensional coupled KdV equations are obtained. The exact travelling wave solutions
are expressed in terms of Jacobi elliptic (JEF), trigonometric and hyperbolic functions.
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1 Introduction

In this paper, we shall explore exact solutions for the following variable coefficients (2+1)-
dimensional coupled KdV equations.

U + (bl (t)uvz + ¢2 (t)UUz + ¢3(t)urzz - 07

(1.1)

Uy +vy =0,

where (t,z) € Ry xR and ¢1(t), ¢2(t) and ¢3(t) are bounded measurable or integrable
functions on R, . Random wave is an important subject of stochastic partial differential
equations (PDEs). Many authors have studied this subject. Wadati first introduced and
studied the stochastic KdV equations and gave the diffusion of soliton of the KdV equation
under Gaussian noise in [30, 32| and others [3, 4, 5, 25] also researched stochastic KdV-type
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equations. Xie first introduced Wick-type stochastic KdV equations on white noise space
and showed the auto- Backlund transformation and the exact white noise functional solutions
in [37]. Furthermore, Xie [38, 39, 40, 41], Ghany et al. [11, 12, 13, 15, 16, 17, 18, 19, 20]
researched some Wick-type stochastic wave equations using white noise analysis.

In this paper we use F-expansion method for finding new periodic wave solutions of
nonlinear evolution equations in mathematical physics, and we obtain some new periodic
wave solutions for (241)-dimensional coupled KdV equations. This method is more powerful
and will be used in further works to establish more entirely new solutions for other kinds
of nonlinear partial differential equations arising in mathematical physics. The effort in
finding exact solutions to nonlinear equations is important for the understanding of most
nonlinear physical phenomena. For instance, the nonlinear wave phenomena observed in fluid
dynamics, plasma, and optical fibers[24]. Many effective methods have been presented, such
as tanh-function method [34, 42, 8], variational iteration method [6, 7], exp-function method
[22, 23, 36, 43, 44] , homotopy perturbation method [10, 29, 35], homotopy analysis method
[1], tanh-coth method [33, 34, 31], Jacobi elliptic function expansion method [27, 28, 9, 26]
and F-expansion method [45, 46, 47, 48]. The main objective of this paper is using the
F-expansion method to construct white noise functional solutions for wick-type stochastic
(2+1)-dimensional coupled KdV equations via hermite transform, wick-type product and
white noise analysis. If equation (1.1) is considered in a random environment, we can get
stochastic (2+1)-dimensional coupled KdV equations. In order to give the exact solutions of
stochastic (2+1)-dimensional coupled KdV equations, we only consider this problem in white
noise environment. We shall study the following Wick-type stochastic (2+1)-dimensional
coupled KdV equations.

{ U+ @ (1) oUoV, +®y(t) o VolU, + Ps(t) 0 Upgs = 0,

U, +V, =0, (1.2)

13 7

where “o¢” is the Wick product on the Kondratiev distribution space (S)-; which was
defined in [21] and ®(t), P2(¢t) and P5(t) are (S)_; -valued functions.

2 Description of the F-expansion Method

In order to at the same time obtain more periodic wave solutions expressed by various Jacobi
elliptic functions to nonlinear wave equations, we introduce an F-expansion method which
can be thought of as a succinctly over-all generalization of Jacobi elliptic function expansion.
We briefly show what is F-expansion method and how to use it to obtain various periodic
wave solutions to nonlinear wave equations. Suppose a nonlinear wave equation for w(t,x)
is given by

91<U, utauzauyvuzzaumzza---) - 07 (21>
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where u = u(t,x) is an unknown function, #; is a polynomial in u and its various partial
derivatives in which the highest order derivatives and nonlinear terms are involved. In the
following we give the main steps of a deformation F-expansion method.

Step 1. Look for traveling wave solution of Eq.(2.1) by taking

u(t,z,y) =u(§) ,&(t,z,y) = ke +ly+ M/o w(r)dr + ¢, (2.2)

Hence, under the transformation (2.2). Eq.(2.1) can be transformed into the following ordi-
nary differential equation (ODE) as following

Oy (u, pwu, kv, I/, K" k3™ ..) = 0, (2.3)

Step 2. Suppose that u(£) can be expressed by a finite power series of F'(£) of the form

N

ut,z,y) = u(€) = > _ aF(¢), (2.4)

i=1
where ag,aq,...,ay are constants to be determined later, while F’(£) in(2.4) satisfy

[F'(€))* = PF(§) + QF*(¢) + R, (2.5)
and hence holds for F(§)

F'F" = 2PF3F' + QFF',
F" = 2PF3 + QF,

F//l — 6PF2F/ + QF,, (26)

where P,(), and R are constants.

Step 3. The positive integer N can be determined by considering the homogeneous balance
between the highest derivative term and the nonlinear terms appearing in (2.3). Therefore,
we can get the value of N in (2.4).

Step 4. Substituting (2.4) into (2.3) with the condition (2.5), we obtain polynomial in
F{(OIF' () , (i=041,42,...,5 =0,1) . Setting each coefficient of this polynomial to be
zero yields a set of algebraic equations for ag,aq,...,ay, 4 and w.

Step 5. Solving the algebraic equations with the aid of Maple we have ag,ay, ...,ay, u and
w can be expressed by (P, @, R) . Substituting these results into F-expansion (2.4), then a
general form of traveling wave solution of Eq. (2.1) can be obtained.

Step 6. Since the general solutions of (2.4) have been well known for us Choose properly
(P,Q and R.) in ODE (2.5) such that the corresponding solution F'(£) of it is one of
Jacobi elliptic functions. (See Appendices A, B and C'.)[45, 46, 47|
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3 New Exact Wave Solutions of Eq. (1.2)

Taking the Hermite transform, white noise theory, and F-expansion method to explore new
exact wave solutions for Eq.(1.2). Applying Hermite transform to Eq.(1.2), we get the
deterministic equation.

(7,5(75, z,y,2) + &I(t, z)[?(t, x,, 2)1793(25, x,y,2) + a;(t, 2)17(25, x,y, z)ﬁx(t, z,Y,2)
+q>3(taz)Uxxz(tax7yaz) = 07 (31)

ﬁm(t7 :Z:, y?’z) _'_ %(t7x7y, Z) = O?

where z = (z1,2,...) € (CV) is a vector parameter. To look for the travelling wave so-
lution of Eq.(3.1), we make the transformations ®,(t,z) := ¢1(t,z), Paolt, z) := ¢alt, 2),

I

Bot,2) = du(t,2) , U(t,2,y,2) == ult, 2, 2) = u(é(t,2,y,2)) and V(t,a,9,2) = v(t,2,y,2)

v(é(t,z,y, 2)) with

t
E(t,x,y,2) =kx+ly + /L/ w(r, z)dr + ¢,
0

where k,u and c are arbitrary constants which satisfy ku # 0 |, w(7,z) is a nonzero func-
tion of the indicated variables to be determined later. Hence, Eq.(3.1) can be transformed
into the following (ODE).

ptd + kv’ + kgpou + Kpgu” = 0, (3.2)
ku' + v =0, ‘

where the prime denote to the differential with respect to & . In view of F-expansion method,
the solution of Eq. (3.1), can be expressed in the form.

u(t,z,y, 2) = u(€) = TN a4, F(€),
{ v(t,z,y, 2) = v(€) = TM b, F(€), (3.3)

where a; and b; are constants to be determined later. considering homogeneous balance
between the highest order nonlinear terms and the highest order partial derivative of u in
(3.2), then we can obtain N = M =2 so (3.3) can be rewritten as following

u(t, z,y,z) = ap + a1 F(§) + as F* (&), (3.4)
(t,x,y, 2) = by + by F(€) + by F2(€), '

where ag,a1,a9,b9,b; and by are constants to be determined later. Substituting (3.4)
with the conditions (2.5),(2.6) into (3.2) and collecting all terms with the same power of
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FYOIF'(&) , i=0+1,42,....,5=0,1) . as following

[Hway + kagby gy + kaybogs + ka1 d3Q]F

+[2uwa2 + 2ka0b2¢1 + ka1b1¢1 + 2k:a2b0q§2 + ka1b1¢2 + 8k3a2¢3Q]FF/

+k[2a1b2¢1 + asbiy + 2a2b1pa + a1byds + 6k2a1¢3P]F2F' (3.5)
+2kas[bay + baghs + 12k%¢3 P]F?F' =0,

(kay +1b))F 4 2[kay + by FF' = 0.

Setting each coefficients of F'(&)[F(£)) to be zero, we get a system of algebraic equations
which can be expressed by.

[ pway + kagb1¢r + kaibogs + kPar3Q = 0,
2,[1;&)&2 + Qkaob2¢1 + ka1b1¢1 -+ ZkCLQbod)z + kalblgbg + 8/€3a2gb3Q = 0,

k[2a1b21 + asbipr + 2a2b1¢9 + arbide + 6k*ar¢3P] = 0,

(3.6)
Qkag [b2¢1 + b2¢2 + 12k2¢3p] = O,
kal + lbl = O,
L Z[k‘ag + lbg] =0.
with solving by Maple to get the following coefficients
as = by =0, ag ,by = arbitrary constant,
ay = Hhés(t2)P
by = _tap (3.7)
L= ¢2(t,2)
W= k2ao¢1(t,2) —lk[bogo (t,2)+k2¢3(t,2) Q)]
Im :
Substituting by coefficient (3.7) into (3.4) yields general form solutions of Eq. (1.2).
6lkos(t, z) P
u(t,x,y,z) =ayg + ————— F(&), 3.8
(h2,9.2) = ag + o B2 () 39
6k?¢s(t, z) P
ot w,2) = by — BB gy (39

qbg (t, Z)
with

dr.

£t m,y, 2) = kz + ly + /t k2aog: (T, 2) — lk[bogb;(T’ 2) + K2y (r, 2) Q)]
0
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From Appendix A, we give the special cases as following.

Case I:
If we take P =1,Q = # and R = mTz , we have F(&) — ns(§) £ds(€),
ur(t, ,y,2) = ag + %ﬁ’;) _ns (&1 (t, z,y, 2)) £ ds (& (¢t z, v, z))_ , (3.10)
) _ i
Ul(t7xaya Z) = bO - %ﬁt;;) _TLS (é-l(tax7y7z)) +ds (fl(tvaja?%z))_ ) (311)

with

/t { W2agy (7, 2) — Uk [2bota(T, 2) + K2s(7, 2)(m? — 2)] } ir

fl(t,:x,y,z)zkx+ly+ 921

In the limit case when m — o, we have ns(§)+£ds(§) — 2csc(€) , thus (3.10),(3.11) become.

ug(t,x,y, Z) :a0+%tfl:)z) CsC (fz(t,l’,y,Z)), (312)
2
valt, 2y, 2) = by — %ﬁ’;) csc (Ea(t, 2,7, 2)), (3.13)

with

&ty z,y,2) = ke + ly + /t{ K agd (7, 2) - lk[bo(??(ﬂ z) — K*¢3(, 2)] } dr
0

In the limit case when m — 1 we have ns(§) £ ds(§ — coth(§) £ (£) , thus (3.10).(3.11)
become.

it ) = ot Gt feoth a2 = @tan)|, (1)
2
Ug(t,l’,’y, Z) = bO - %t(t;;) {[COth f3(t’l’>y7z) + (63(tax7y7 Z)):| ) (315>

with

&alt,w,y,2) = ko + 1y + / t{ 2K and (7,7) = lk[%zof 2(7,2) = K'éa(7,2) } dr.
0
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Case 1I:
If we take P=1,Q = —(1+m?) and R=m? | then F(§) — ns(§) ,

6lkos(t, 2)

U4(t,.’13,y,2> :CL0+ ¢2(t72) ns (54(75,37,3/,2)), (316)
2
valt, 2,9, 2) = bo — %t“)’ ns (€4(t, 2,9, 2), (3.17)

with

/t { 2h2agdy (7, 2) — Ik [2bota(T, 2) + K2s(7, 2)(m? — 2)] } ir

54(t,x,y,z) :kx+ly+ I

In the limit case when m — o we have ns(§) £ ds(§) — csc(€) , thus (3.10),(3.11) become.

 Glkes(t,2)

u5(t,x,y,z) =ao + qbg(t,z) csC (52(15,:5,3/,2)), (318>
. 6k2¢3(t, Z)

vs(t, z,y,2) = by — ") csc (&(t, x,y, 2)). (3.19)

In the limit case when m — 1 we have ns(§) — coth(§) , thus (3.10).(3.11) become.

 Glkes(t,2)

uﬁ(t,x,y,z) =ao + 2¢2(t,2) coth (55(t,$,y,2)), (320)
. 6k2¢3(t, Z)

Uﬁ(t7xay7z) _bO - W coth ({5(t,l',y,27)), (321)

with

€5t 3,9, 2) = ki + Iy + /t {k2a0¢1(7', 2) — lk[bopa(T, 2) — 2k @3 (T, z)]} "
0

l
Case I1I:
If we take P=1,Q =(2—m?) and R=1—m?, then F(§) — cs(§),
6lkgs(t, 2)
ur(t,x,y,2) = a9 + ——————= ¢s t,z,y,2)), 3.22
7( Y, 2) 0 a(t,2) (& ( y,2)) ( )
7
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6k2¢3(t, 2)

oot 2) cs (&o(t, x,y, 2)), (3.23)

U7(t,$, Y, Z) = bO -
with

56(@37’2/7 Z) = kx =+ ly +

/Ot { Kagdy (7, 2) — lk[2b0¢2(7'l, 2) + K2 gs(, 2) (2 — m?)] } ir

In the limit case when m — o we have c¢s(§) — cot(&) , thus (3.10),(3.11) become.

6lks(t, 2)

ug(t, z,y,2) = ap + ol 2) cot (&(t, z,vy, 2)), (3.24)
2
vs(t, x,y,2) = by — %ﬁ’;) cot (&(t, z,y, 2)), (3.25)
&t x,y, 2) = ko + ly + /t{ kapgy (7, 2) — lk[bocblz(ﬂ z) + 2k ¢3(, 2)] } dr.
0
In the limit case when m — 1 we have ¢s(§) — (§), thus (3.10).(3.11) become.
ug(t, z,y,2) = ag + %ﬁ;) (&(t, z,y, 2)), (3.26)
6k
wnta,.2) =t = O (60,0, 327

with

ety 2) = ko + Iy + /Ot{ k*agps (1, 2) — lk[boclbz(T, 2) + k2ps(r, z)]} o

Obviously, there are another solutions for Eq.(1.2). These solutions come from setting dif-
ferent values for the coefficients P,Q) and R . (see Appendix A, B and C.)[46, 47]. The
above mentioned cases are just to clarify how far our technique is applicable.

4 White Noise Functional Solutions of Eq.(1.2)

In this section, we employ the results of the Section 3 by using Hermite transform to
obtain exact white noise functional solutions for Wick-type stochastic (2+1)-dimensional
coupled KdV equations (1.2). The properties of exponential and trigonometric functions
yield that there exists a bounded open set G C R, x R?, p < oo, A >0 such that the so-
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lution u(t, z,y,z) of Eq. (3.1) and all its partial derivatives which are involved in Eq. (3.1)
are uniformly bounded for (¢,z,y,2) € G x K,(\), continuous with respect to (¢,z,y) € G
for all z € K,(\) and analytic with respect to z € K,(\), for all (t,z,y) € G. From

Theorem 4.1.1 in [21], there exists U(t,z,y, z) € (S)-1 such that u(t,z,y,z) = U(t, z,y)(2)
for all (¢,z,y,2) € Gx K,(\) and U(t,z,y) solves Eq.(1.2) in (S)_;. Hence, by applying
the inverse Hermite transform to the results of Section 3, we get exact white noise functional

solutions of Eq. (1.2) as follows.

e White noise functional solutions of JEF type:

o|ns® (Eu(t, z,y)) £ ds® (Za(t, 2,9))

ons® (Ex(t, v, y)),
ocs® (23(t,x,y)),

< CSQ (53(t7 xZ, y))a

Ui(t,@,y) = ao + %;E’S)

bz, ) =t = %?t(;) © ”3 (Zi(t,z,y)) £ ds® (Ei(t, :E,y)):
Us(t, 2,y) = ao + %ﬁgﬂ ons® (2a(t, x,v)),
Va(t,z,y) = bo — %ﬁgﬂ
Us(t,z,y) = ap + %é()t)
Va(t,z,y) = bo — %ﬁgﬂ

with

21

Ei(t,z,y) = ka + 1y + / t{ 2k%ag®1 (1) — Lk[2bo®o(7) + K*¢3(7)(m” — 2)]
0

Eo(t,z,y) = kx + ly + ;

625

/ t{ 2k>ag®. (1) — Uk[2by@o(7) + K> @4(7) (m* — 2)]

(4.1)
(4.2)
(4.3)
(4.4)

(4.5)

} dr,
} dr,
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Es(t,z,y) = kx 4+ ly + i

e White noise functional solutions of trigonometric type:

31k®D;(t)

t — kbl A 4
U4( 7I7y> a0+ q)z(t)

o CSCO <E4(t7 z, y))7

32 ®s (1)

sz(tw’ﬂay) = by — T(?f)

< CSCO (54(t7 z, y))7

61k D5 (t)

t — oY
U5( ,I’,y) ap + @2(t)

o csc® (24(t, z,y)),

6k2®s(t)

‘/E’)(taxay) :bO_ (1)2(t)

< CSCO (54(t7 z, y))7

61k D5 (t)

t — v EoNY
Uﬁ( 7m7y) ap + (1)2(t)

< COtO (55(t7 z, y))a

6k>D3(t)

Vﬁ(t,ff'?;y) = by — T(t)

< COtO <E5(t7 z, y))7

with

t (1.2 B Y
Eu(t,z,y) = kx +ly + / {k‘ ag®1(7) lk[bolq)z(T) k2®3(7)] } ir,
0

t 2 _ 9
Zs(t, z,y) = kz + ly + / {k ao®1 (1) — lk[bo®(7) + 2k <I>3(T)]} -
0

l

e White noise functional solutions of hyperbolic type:

31k Ds (¢ o o
Ur(t, z,y) = ap + —3()0 coth®(Zg(t, z,y)) £° (Z6(t, z,v)) |,
2P, (t)
3k2D4(t) o o
Va(t,z,y) = bo — mo {COth (Eo(t,z,y)) = (uﬁ(ﬂ%!ﬂ)];
10
626

/t { Fay®y(7) — lh[2by®a(7) + K2 P3() (2 = m?)] } ar.

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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Us(t, ,y) = ao + %@%ﬂ o coth® (Z5(t, 2, ), (4.15)
Va(t,z,y) = by — % coth® (24 (t, z, 7)), (4.16)
Us(t, z,y) = ao + %ﬁg” o ° (Zs(t, 2, ), (4.17)
Va(t,z,y) = by — %ﬁg” o ° (Zs(t, 2, ), (4.18)

with

t 2 . 1.2
Bo(t,w,y) = ko + 1y + / {Zk B01{7) lkpzb;%(ﬂ i q)?’(T)]} dr,
0

t (1.2 _ — 92
Er(t,x,y) = ka +ly + / {k a0%:1(7) lk[bo;%(ﬂ 2k (D?’(T)]} dr,
0

t 2 . 9
Seltiny) = ke iy + [ {’f auty(r) = Ilbndalr) + K°0s(r) } .
0

We observe that, for different forms of ®,,®, and @3, we can get different exact white
noise functional solutions of Eq. (1.2) from Eqgs. (4.1)-(4.18).

5 Example

It is well known that Wick version of function is usually difficult to evaluate. So, in this
section, we give non-Wick version of solutions of Eq. (1.2). Let W; = B; be the Gaussian
white noise, where B; is the Brownian motion. We have the Hermite transform W;(z) =
S 2 fo mi(s)ds 21]. Since exp®(B:) = exp(B, — %) we have cot?(By) = cot(B, — £y,
csc®(By) = cse(By — &), coth®(B;) = coth(B, — &) and °(B;) = (B; — %). Suppose
that. q>1<t) = wl(pg(t),q)g(t) = ¢2(I)3(t> and @3(t) = P(t) + ¢3Wt where ¢1,’¢2 and wg
are arbitrary constants and I'(t) is integrable or bounded measurable function on R, .
Therefore, for @, (t)Py(t)P3(t) # 0. thus exact white noise functional solutions of Eq. (1.2)

11
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are as follows.

2

Usolt, ) = ao + ?jj—’“ ese (1, 7,1)), (5.1)

]{72
‘/10(t7ma y) = bO - E CsC (Ql(ta l’,y)), (52)
Ull(ta $7y) =ap + (Z_k csc Ql(t7x7y>7 (53>

2

6k
Vi (t, z,y) = by — To cse (Q(t, x,y)), (5.4)
Usa(t,,y) = ag + f/f—’“ cot (u(t, 7,)), (5.5)

6k
‘/12<t7x7y> = bO - % cot (92(t7x7y))7 (56>

with
2 _ 1.2 t 2
Qu(t,z,y) = ko + Iy + (2000 ll}:[bowz ’ ]){/ T(r)dr + ts[B; — %]}
0
2 . 2 t 2
(ta,y) = ko -+ 1y + (SO Fryir s, - D1,
0
and
31k
UlS(t7 Z, y) = Qo + 2_% |:COth (QS(ta Z, y)) + (QB(tv x, y)):| ) (57)
2

Vis(t.,1) = b0 — 5o [coth (lt,2.y)) + (93<t,x,y>>], (5:)

61k
Una(t, z,y) = ao + 20 coth (u(t, z,v)), (5.9)

12
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2
‘/14(t7xay) = bO - S_ZZ COth (94(t7 x7y))7 (51())
Ul5(t71:ay) :a0+f£_f (Qg,(t,.fll',y)), (511>
6k
Vis(t,z,y) = bo — b (Qs(t,,y)), (5.12)
with
2 . 1.2 t 2
Ot a,9) = kot (ORI [rar i yolp - 1
0

Qult,zy) = bz + Iy + (k2ao¢1 - lk:l[bo% - 2k2]){/ T(7)dr + is[Bs — ﬁ]}7
0

2 . 2 t 2
Os(t,2,) = ki +1y + (-2 ll;[b0¢2+k]>{/ F<T>d7+¢3[Bt—t—]}'
0

6 Conclusion

We have discussed the solutions of (SPDEs) driven by Gaussian white noise. There is a
unitary mapping between the Gaussian white noise space and the Poisson white noise space.
This connection was given by Benth and Gjerde [2]. By the aid of this connection, we can
derive some stochastic exact soliton solutionsfor our problem. In this paper, using Hermite
transformation, white noise theory and F-expansion method, we study the white noise func-
tional solutions of the Wick-type stochastic (2+1)-dimensional coupled KdV equations. This
paper shows that the F-expansion method is sufficient to solve many stochastic nonlinear
equations in mathematical physics. The method which we have proposed in this paper is
standard, direct and computerized method, which allows us to do complicated and tedious
algebraic calculation. It is shown that the algorithm can be also applied to other nonlin-
ear (PDEs) in mathematical physics such as modified Hirota-Satsuma coupled KdV, KdV-
Burgers, modified KdV Burgers, Sawada-Kotera, Zhiber-Shabat equations and Benjamin-
Bona-Mahony equations. Since the equation (1.2) has other solutions if select other values
of P,QQ and R (see Appendices A, B, C), and there are many other of exact solutions for
wick-type stochastic (2+41)-dimensional coupled KdV equations.
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Appendix A. The ODE and Jacobi Elliptic Functions
Relation between values of ( P, @, R) and corresponding F'({) in ODE.

(F')*(§) = PF*(&) + QF*(§) + R,

P Q R F(é)
- 1 m2 1 sng, cdf = 5%
— o — 1 12 cné
] 2 —m? m? — 1 dng
1 1 —m2 m2 nsﬁzs%lg7dcf:2_rrll§
T—m? | 2m®—1 —m? nef = ong
m2_1 2_m2 -1 ndé‘:dLH{
1—m? 2 — m? 1 se§ = (83_%2
—m*(1—m?) | 2m* -1 1 6 = g
1 2 —m? 1—m? ot = Sne
1 2m? —1 | —m?(1 — m?) ds¢ = (SlensE
m? m2—2 1 ST —
v 5 1 1+dne’ vi—m2+dne
2 B 2 ' o o B
. . 8 sné + icné, iv1—m2sné+cne’ 1+dne
1 1—2m?2 1 (L oo
T Zm 1 nsé + csé, VI-mZshérdne’ TECIE
m27]_ m2+1 m271 ﬁ
: . 1 TEmSNE
A . —, . cn
T o m2+1 1 n ncé =+ isc 1isflg
— 5} —(1— 232
- w1 % mené + dné
1 m241 M _SIE__
! 5 1 cne+dne
7 2
%1 m2 2 mT ns{ + de
Appendix B.

the jacobi elliptic functions degenerate into trigonometric functions when m — 0.

sn&é — sin&, cné — cos &, dné — 1, sc€ — tan &, sdé — sin&, cdé — cos&,
ns& — csc&,nc — secE,ndé — 1,¢cs€ — cot &, dsé — csc&, dcé — secé.
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Appendix C.
the jacobi elliptic functions degenerate into hyperbolic functions when m — 1.

sné — tan&, ené — &€, dné — &, sc€ — sinh &, sd§ — sinh &, cdé — 1,
nsé — coth &, ncé — cosh &, ndé — cosh, csé — &, dsé — &, dc€ — 1.
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