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Abstract 

We present a novel categorical framework for the classification of semi-simple algebraic groups over algebraically 

closed fields of characteristic zero. By inte- grating Tannakian duality with modern cohomological methods, we 

provide new insights into the connections between semi-simple algebraic groups, their repre- sentation categories, and 

associated geometric structures. Our approach empha- sizes the role of fiber functors, gerbes, and cohomological 

invariants in capturing the essential features of these groups, leading to a more unified and conceptual understanding of 

their classification. 
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1 Introduction 

The classification of semi-simple algebraic groups is a cornerstone of modern alge- braic geometry and 

representation theory. Traditional approaches rely heavily on the theory of root systems and Dynkin 

diagrams [1], which, while effective, can sometimes obscure deeper categorical and geometric relationships. 

In this paper, we propose a new method that harnesses the power of category the- ory, specifically 

Tannakian duality [2], to classify semi-simple algebraic groups. Our approach is enriched by incorporating 

gerbes and cohomological invariants, providing a more holistic view that connects algebraic groups with 

geometric and topological structures. 
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1.1 Motivation and Overview 

The study of algebraic groups via their representations has long been a fruitful avenue of research. By 

considering the category of representations as a Tannakian category, we can reconstruct the group itself 

from categorical data. This perspective opens up possibilities for applying advanced categorical tools to 

problems in group classification. 

Our main contributions are: 

• Developing a categorical framework that uses fiber functors and Tannakian du- ality to classify semi-simple 

algebraic groups. 

• Introducing gerbes and their associated cohomological invariants to capture sub- tle structural differences 

between groups. 

• Demonstrating how this approach unifies various aspects of algebraic groups, Lie algebras, and 

representation theory. 

 

1.2 Organization of the Paper 

The paper is organized as follows: 

• Section 2 reviews essential background on algebraic groups, Lie algebras, and Tannakian categories. 

• Section 3 introduces our categorical framework and explains how to reconstruct groups from their 

representation categories. 

• Section 4 discusses gerbes and cohomological invariants, highlighting their role in distinguishing between 

different semi-simple groups. 

• Section 5 presents our main classification results, including examples and appli- cations. 

• Section 6 explores connections to moduli spaces, the geometric Langlands pro- gram, and potential 

implications for mathematical physics. 

• Section 7 concludes the paper and outlines directions for future research. 

 

2 Preliminaries and Background 

2.1 Algebraic Groups and Lie Algebras 

An algebraic group G over a field k is a group that is also an algebraic variety over k, such that the group 

operations (multiplication and inversion) are morphisms of varieties. The study of algebraic groups 

combines algebraic, geometric, and group- theoretic methods. 

Definition 2.1. A Lie algebra g over k is a finite-dimensional k-vector space equipped with a bilinear map 

(the Lie bracket) [·, ·] : g × g → g satisfying: 
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(i) Anti-symmetry: [X,Y ] = −[Y, X ] for all X,Y ∈ g. 

(ii) Jacobi identity: [X, [Y, Z]] +[Y, [Z, X ]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈ g. 

The Lie algebra g = Lie(G) of an algebraic group G captures the infinitesimal structure of G and 

plays a crucial role in understanding its representations. 

Example 2.2. Let G = SLn(k), the special linear group of degree n over k. Its Lie algebra is 

sln(k) = {X ∈ Matn(k) | Tr(X ) = 0}, 

the set of n × n traceless matrices over k. 

 

2.2 Semi-Simple Algebraic Groups 

Definition 2.3. An algebraic group G is semi-simple if it is connected and has no nontrivial connected 

solvable normal subgroups. 

Semi-simple groups are central to the classification problem due to their rich struc- ture and the rigidity 

of their representations. 

Proposition 2.4. Let G be a semi-simple algebraic group over an algebraically closed field k. Then: 

(a) G is reductive; it has no nontrivial connected normal unipotent subgroups. 

(b) The center Z(G) of G is finite. 

(c) The Lie algebra g is a semi-simple Lie algebra. 

Proof. (a) Since G has no nontrivial connected solvable normal subgroups, its unipo- tent radical is trivial, 

making it reductive. 

(b) Any connected normal abelian subgroup of G lies in the center. Since G is semi- simple, it 

has no such subgroups except for the trivial one, so Z(G) must be finite. 

(c) The semi-simplicity of g follows from the correspondence between Lie algebras 

and algebraic groups, where solvable normal subgroups correspond to solvable ideals in the Lie algebra. 

2.3 Representation Categories 

The category Rep(G) of finite-dimensional representations of an algebraic group G over k is a key object of 

study. It is an abelian, rigid, symmetric monoidal category, making it a natural setting for applying 
Tannakian duality. 

 

3 Tannakian Categories and Group Reconstruction 

3.1 Definition and Properties 

Definition 3.1. A Tannakian category C over a field k is an abelian, k-linear, rigid, symmetric monoidal 

category equipped with a fiber functor ω : C → Vectk, which is a faithful, exact, k-linear, tensor functor. 
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Remark 3.2. The fiber functor ω plays a crucial role in connecting the abstract cate- gorical structure to 

concrete vector spaces over k. 

 

3.2 Tannakian Duality 

Theorem 3.3 (Tannakian Duality). Let C be a neutral Tannakian category over k with fiber functor ω. Then 

there exists an affine group scheme G over k such that 

C ∼= Repk(G), 

and G = Aut⊗(ω), the group of tensor automorphisms of ω. Proof. The group scheme G is defined by the 

functor 

G(R) = Aut⊗(ωR) 

for every commutative k-algebra R, where ωR is the extension of ω to R-modules. The equivalence between 

C and Repk(G) is established via the fiber functor. 

 

3.3 Reconstructing Semi-Simple Groups 

For a semi-simple algebraic group G, the category Rep(G) is a neutral Tannakian cat- egory with the 

forgetful functor ω : Rep(G) → Vectk serving as the fiber functor. By Tannakian duality, we can 

reconstruct G from Rep(G) and ω. 

Example 3.4. Let G = SLn(k). The category Rep(SLn), together with the standard representation and its 

tensor powers, allows us to recover SLn as the group of tensor automorphisms of the fiber functor. 

 

3.4 Advantages of the Categorical Approach 

This approach provides several benefits: 

• Conceptual Clarity: It unifies various aspects of group theory under a categori- cal framework. 

• Flexibility: Applicable over different fields and in broader contexts. 

• Connections to Other Areas: Links to motives, Galois representations, and noncommutative geometry. 

 

4 Gerbes and Cohomological Invariants 

4.1 Gerbes 

Gerbes are higher categorical analogs of principal bundles and play a significant role in capturing 

cohomological data. 

Definition 4.1. A gerbe over a site S is a stack of groupoids G such that: 

(i) For every object U in S , G (U) is nonempty locally. 

(ii) Any two objects in G (U ) are locally isomorphic. 
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4.2 Cohomological Invariants 

Cohomological invariants are tools that assign to each G-torsor an element in a coho- mology group, 

providing a way to distinguish between torsors that may be indistinct through other means. 

Definition 4.2. A cohomological invariant of degree n is a natural transformation from the functor of G- 

torsors to the n-th cohomology group with coefficients in a fixed mod- ule. 

Example 4.3. The Stiefel–Whitney classes and Chern classes are classical examples of cohomological 

invariants associated with vector bundles. 

 

4.3 Role in Group Classification 

By examining the cohomological invariants associated with a group’s representations, we can capture subtle 

differences between groups that share similar categorical prop- erties. 

Theorem 4.4. Two semi-simple algebraic groups with equivalent representation cate- gories but different 

cohomological invariants are not isomorphic. 

Proof. The cohomological invariants encode essential information about the group’s action on various 

geometric and topological objects. If the invariants differ, the groups cannot be isomorphic, as their actions 

on cohomology are fundamentally different.  

 

5 Classification of Semi-Simple Algebraic Groups 

5.1 Main Classification Theorem 

Theorem 5.1. Every semi-simple algebraic group G over an algebraically closed field k of characteristic 

zero is uniquely determined, up to isomorphism, by its neutral Tan- nakian category Rep(G) equipped with 

its cohomological invariants. 

Proof. By Tannakian duality, Rep(G) reconstructs G up to isomorphism of group schemes. The 

cohomological invariants further distinguish between groups whose rep- resentation categories are 
equivalent but have different cohomological actions.   

 

5.2 Examples 

Example 5.2 (Distinguishing SLn and PGLn). Although SLn and PGLn have closely related representation 

categories, their cohomological invariants differ. For instance, PGLn-torsors correspond to projective 

bundles, while SLn-torsors correspond to vector bundles with trivial determinant, leading to different Chern 

classes. 

Example 5.3 (Spin Groups). The groups SOn and Spinn have representation categories that are related but 

not equivalent. The second Stiefel–Whitney class w2 serves as a cohomological invariant distinguishing 

them, reflecting the obstruction to lifting SOn- torsors to Spinn-torsors. 
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5.3 Applications and Implications 

Our classification method has several important implications: 

• Unified Framework: Provides a consistent approach to classify semi-simple groups without resorting to 

ad hoc methods. 

• Deep Connections: Reveals relationships between group theory, cohomology, and category theory. 

• Potential for Generalization: Sets the stage for extending the classification to more general types of 

groups. 

 

6 Applications to Moduli Spaces and the Geometric Lang- lands Program 

6.1 Moduli Spaces of Principal Bundles 

The moduli space MG of principal G-bundles over a smooth projective curve C is a rich geometric object. 

Understanding its structure is crucial in various areas of mathematics. 

 

6.2 Connection with Tannakian Categories 

The category of representations of the fundamental group π1(C) with values in G can be viewed as a 

Tannakian category. Our approach provides tools to study MG via 

categorical methods. 

 

6.3 Geometric Langlands Program 

Our framework aligns with the geometric Langlands program, which seeks a corre- spondence between 

representations of π1(C) and certain sheaves on MG. The use of cohomological invariants and gerbes 

enriches this correspondence by capturing addi- tional geometric data. 

 

6.4 Implications for Mathematical Physics 

The categorical classification and the connections to moduli spaces have potential ap- plications in 

mathematical physics, particularly in the study of gauge theories and string theory, where semi-simple 

algebraic groups play a significant role. 

 

7 Conclusion and Future Directions 

7.1 Summary 

We have introduced a novel categorical approach to the classification of semi-simple algebraic groups, 

utilizing Tannakian categories, gerbes, and cohomological invariants. 
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This framework not only reaffirms classical results but also provides deeper insights and unifies various 

mathematical concepts. 

 

7.2 Future Research 

Potential directions for future work include: 

• Extending the classification to groups over non-algebraically closed fields. 

• Investigating the role of higher categorical structures and derived categories. 

• Exploring applications to non-semi-simple and non-reductive groups. 

• Applying the methods to problems in arithmetic geometry and number theory. 
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