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Simulation and analysis of fractional model of Diffusion process and wave 

propagation via Caputo operator with Natural transform 
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Abstract: This work focuses on the solution and analysis of the fractional model of Diffusion 

process and wave propagation. This model is used to study the diffusion process, anomalous 

diffusive system, wave propagation and various physical phenomena. The Natural transform 

decomposition method is applied for getting the numerical solution. This method perfectly 

combines the Natural transforms and an adomian polynomial based technique. The existence 

and uniqueness is analysed by the aid of the fixed point theorem. The accuracy of the 

presented method is shown by calculating errors and comparing the exact and approximate 

solution graphically. 

Keywords: Fractional model of Diffusion process and wave propagation; Caputo operator; 
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1. Introduction 

In the recent years, the fractional calculus has been developed into a significant area of 

applied mathematics. When modeling real-world occurrences, fractional derivatives and 

fractional integrals yield better results than classical derivatives. The Caputo operator [1] is 

the most accurate derivative among all fractional derivatives. There are several intriguing 

applications for modeling physical processes, including dynamical systems, biology, 

chemistry, electronics, signal processing, viscoelasticity, and finance. Various researchers are 

working on advances of fractional calculus and studied various models like the nonlinear 

Zakharov–Kuznetsov equation with fractional order [2], the  fractional cancer-tumor-immune 

systems [3], the coupled nonlinear Schrodinger equation [4], the fractional three dimensional 

Zakharov–Kuznetsov equation [5], the fractional systems of Impulse Control [6], the Nemati 

and Torres model the respiratory syncytial virus infection [7], the fractional lur’e systems [8], 

fractional systems of state dependent Delayed Impulses [9], the novel coronavirus 

transmission with optimal control [10], the networks model with time-varying delays [11], 

the acute and chronic hepatitis B with optimal control [12], the fractional model of diabetes 

with restraining and time delay [13], the fractional COVID-19 model [14], fractional control 

problem [15], fractional Cattaneo model [16], fractional Brain tumor model [17], fractional 

BBM-Burger equation [18], fractional model of oil pollution [19], heat conduction equation 

[20] and the time-fractional Tricomi equation [21]. 

     For most scientists and academics, fractional calculus is an important field of study due to 

its exciting applications, and many professionals are interested in the analysis of fractional 

differential equations. However, finding exact solutions to fractional differential equations is 

difficult. It can therefore be handled numerically and through the use of approximation 

techniques. Numerous efficient techniques to solve the fractional differential equations have 

been investigated and encouraged such as homotopy analysis transform approach [22], 

operational matrix process [23], fractional differential transform technique [24], tanh-sech  
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approach [25], residual power series technique [26], Sumudu generalized Kudryashov 

approach [27], discrete-time neural networks [28], novel cryptosystem [29], q-homotopy 

analysis transform method [30] and homotopy analysis Sumudu transform technique [31]. 

     Fractional random walks may be explained, anomalous diffusive systems can be 

simulated, and the diffusion and wave propagation processes can be united thanks to the 

recent extensive use of anomalous diffusion model [32]. The basic diffusion and wave 

equation can be used to create the fractional diffusion-wave model [33]. Generally speaking, 

a wave equation represents a procedure in which a disturbance propagates at a constant 

speed, while a diffusion model represents a procedure in which a disruption spreads infinitely 

quickly. The fractional model of Diffusion process and wave propagation, in a way, 

interpolates between these two distinct behaviours in light of their responses to a localised 

disruption [34]. Schneider and Wyss [35] also provided a description of the diffusion and 

wave equations. Agrawal [36] used the infinite sine and Laplace transform to create a general 

solution described in a bounded domain. Next, he examined the fractional model of Diffusion 

process and wave propagation [37] in the presence of a nonhomogeneous environment that 

may be either deterministic or stochastic. Luchko, et al. [38] looked at the fundamental 

Cauchy problem solution for the fractional model of Diffusion process and wave propagation 

and identified the greatest location of the solution as well as other important characteristics. 

Luchko [39, 40] also analysed the given model with 𝛼, 1 ≤  𝛼 ≤  2,  in space and in time. 

We consider the fractional model of Diffusion process and wave propagation as given below 

[40]  

1

𝑀
𝐷𝑡

𝛼
0
𝐶 𝑢(𝑥, 𝑡) = ∆𝑢(𝑥, 𝑡) +

1

𝐾
𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ (0, 𝐿) × (0, 𝑇], 𝑇 > 0,                        (1.1) 

with initial condition 𝑢(𝑥, 0) = ℎ(𝑥). 

Where 𝑀 and 𝐾 are constants, 𝐷𝑡
𝛼

0
𝐶  is the Caputo operator of order 𝛼 (1 <  𝛼 ≤  2), 𝑓(𝑥, 𝑡) 

is source term and ℎ(𝑥) is smooth function of 𝑥. 

     The motive of this research is to analyse and simulate the fractional model of Diffusion 

process and wave propagation via Caputo operator. The existence and uniqueness is analysed 

by aid of fixed point theorem. The Natural transform decomposition technique (NTDT) is 

used to obtain the numerical solution. It perfectly combines the Natural transforms (NT) and 

an adomian polynomial based technique. The main contribution of this research is to provide 

an effective numerical method for obtaining solution of the given model. The results of this 

work will be helpful in the study of wave propagation phenomena, anomalous diffusive 

systems, the diffusion process, and many other real-world phenomena. Also, two examples 

are solved for demonstrating the efficiency of the suggested technique NTDT.  

2. Preliminaries 

Definition 2.1. [1] The Caputo derivative of 𝑦(𝑡) is given by 

                                     Dα𝑦(𝑡) = 𝐼𝑚−𝛼𝐷𝑚𝑦(𝑡) =
1

𝛤(𝑚 − 𝛼)
∫ (𝑡 − 𝑓)𝑚−𝛼−1𝑦𝑚(𝑓)𝑑𝑓,

𝑡

0

 

where  𝑚 − 1 < 𝛼 ≤ 𝑚. 

Definition 2.2. [41] The NT of  𝑦(𝑡) > 0 is given by  



         229 

Journal of Computational Analysis and Applications                                                            VOL. 34, NO. 1, 2025 

 

                                                                                         Priyanka Kanwar al 227-241 
 
 

      𝑁𝑇[𝑦(𝑡)] = ∫ 𝑒−𝑠𝑡𝑦(𝑣𝑡)𝑑𝑡,   𝑠 > 0, 𝑣 > 0                          
∞

0

 

Definition 2.3. [41] The inverse NT of 𝑁𝑇[𝑦(𝑡)] is 𝑦(𝑡) and is given by 

                               𝑁𝑇−1[𝑁𝑇[𝑦(𝑡)]] = 𝑦(𝑡) =
1

2𝜋𝑖
∫ 𝑒

𝑠𝑡
𝑣 𝑁𝑇[𝑦(𝑡)]𝑑𝑠,   𝑠 > 0, 𝑣 > 0         

𝑐+𝑖∞

𝑐−𝑖∞

 

Theorem 2.1. [1] The unique solution of  𝐷𝑡
𝛼𝑦(𝑡)0

𝑐 = 𝑒(𝑡) is the given by 

                                           𝑦(𝑡) = 𝑦(0) +
1

𝛤(𝛼)
∫ (𝑡 − 𝑓)𝛼−1𝑒(𝑓)𝑑𝑓,

𝑡

0

 

here 0 < 𝛼 ≤ 1. 

3. Existence and Uniqueness Analysis  

The fractional model of Diffusion process and wave propagation (1.1) can be written in the 

form 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = 𝜑(𝑥, 𝑡, 𝑢),                                                        0

𝑐                                                                           (3.1)  

where                              𝜑(𝑥, 𝑡, 𝑢) = 𝑀∆𝑢(𝑥, 𝑡) +
𝑀

𝐾
𝑓(𝑥, 𝑡), 

Using theorem (2.1), the equation (3.1) can be transform to the Voltera equation as: 

                                       𝑢(𝑥, 𝑡) − 𝑢(𝑥, 0) =
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝜑(𝑥, 𝑡, 𝑢)𝑑𝑠.

𝑡

0
                             (3.2) 

Next, we have to prove that 𝜑(𝑥, 𝑡, 𝑢) satisfy Lipschitz condition. 

Theorem 3.1. The function, 𝜑(𝑥, 𝑡, 𝑢) in the given Voltera equation satisfy the Lipschitz 

condition and contraction if 0 < 𝜂 ≤ 1, where 𝜂 = 𝑀𝛿2. 

Proof.  Let us assume that 𝑢(𝑥, 𝑡) is a bounded function. So, we have 

‖𝜑(𝑥, 𝑡, 𝑢) − 𝜑(𝑥, 𝑡, 𝑝)‖ 

                    = ‖𝑀∆𝑢(𝑥, 𝑡) +
𝑀

𝐾
𝑓(𝑥, 𝑡) − 𝑀∆𝑝(𝑥, 𝑡) −

𝑀

𝐾
𝑓(𝑥, 𝑡)‖, 

                                            = ‖𝑀∆{𝑢(𝑥, 𝑡) − 𝑝(𝑥, 𝑡)}‖, 

                                             ≤ 𝑀𝛿2‖𝑢(𝑥, 𝑡) − 𝑝(𝑥, 𝑡)‖. 

Now by letting  𝜂 = 𝑀𝛿2, we get 

  ‖𝜑(𝑥, 𝑡, 𝑢) − 𝜑(𝑥, 𝑡, 𝑝)‖ ≤ 𝜂‖𝑢(𝑥, 𝑡) − 𝑝(𝑥, 𝑡)‖.                                                                    (3.3) 

Thus, 𝜑(𝑥, 𝑡, 𝑢) satisfy the Lipschitz condition and contraction if 0 < 𝜂 ≤ 1. 

We take the following iterative formula for the existence of the solution  

                            𝑢𝑛+1(𝑥, 𝑡) =
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝜑(𝑥, 𝑡, 𝑢𝑛)𝑑𝑠,

𝑡

0

                                             (3.4) 

with initial condition as 𝑢(𝑥, 0) = 𝑢(𝑥, 𝑡0). 
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The two consecutive terms are differ by 

                              𝜑𝑛(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) − 𝑢𝑛−1(𝑥, 𝑡), 

                                            =
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1{𝜑(𝑥, 𝑡, 𝑢𝑛−1) − 𝜑(𝑥, 𝑡, 𝑢𝑛−2)}𝑑𝑠.

𝑡

0

            (3.5) 

It can be observed that  

                         𝑢𝑛(𝑥, 𝑡) = ∑ 𝜑𝑖(𝑥, 𝑡)

𝑛

𝑖=0

,                                                                                            (3.6) 

so, from equation (3.5), we have 

                    ‖𝜑𝑛(𝑥, 𝑡)‖ = ‖𝑢𝑛(𝑥, 𝑡) − 𝑢𝑛−1(𝑥, 𝑡)‖.                                                                     (3.7) 

Applying triangular inequality on equation (3.4), we have 

                   ‖𝜑𝑛(𝑥, 𝑡)‖ ≤
1

𝛤(𝛼)
𝜂 ‖∫ (𝑡 − 𝑠)𝛼−1𝜑𝑛−1(𝑥, 𝑠)𝑑𝑠

𝑡

0

‖.                                           (3.8) 

Theorem 3.2. The solution of the fractional model of Diffusion process and wave 

propagation exist if  ∃, 𝑡0, satisfying 

1

Γ(𝛼)
𝜂𝑡0

𝛼 ≤ 1. 

Proof. Let 𝑢(𝑥, 𝑡) is a bounded function which satisfy the Lipschitz condition. Utilising 

equation (3.8), we get 

                            ‖𝜑𝑛(𝑥, 𝑡)‖ ≤ ‖𝑢𝑛(𝑥, 𝑡)‖ [
1

Γ(𝛼)
𝜂. 𝑡𝛼]

𝑛

.                                                                (3.9) 

Hence, the existence and continuousness of the obtained solution is proved. 

                           𝑢(𝑥, 𝑡) − 𝑢(𝑥, 0) = 𝑢𝑛(𝑥, 𝑡) − 𝜒𝑛(𝑥, 𝑡).                                                        (3.10) 

Here, we consider that  

       ‖𝜒𝑛(𝑥, 𝑡)‖ =  ‖
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1{𝜑(𝑥, 𝑡, 𝑢𝑛) − 𝜑(𝑥, 𝑡, 𝑢𝑛−1)}𝑑𝑠

𝑡

0

‖, 

                          ≤
1

𝛤(𝛼)
 ‖∫ (𝑡 − 𝑠)𝛼−1{𝜑(𝑥, 𝑡, 𝑢𝑛) − 𝜑(𝑥, 𝑡, 𝑢𝑛−1)}𝑑𝑠

𝑡

0

‖, 

                                              ≤
1

𝛤(𝛼)
𝜂‖𝑢𝑛(𝑥, 𝑡) − 𝑢𝑛−1(𝑥, 𝑡)‖𝑡. 

In the same way at 𝑡0, we obtain 
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                      ‖𝜒𝑛(𝑥, 𝑡)‖ ≤ [
1

Γ(𝛼)
𝑡0

𝛼]
𝑛+1

𝜂𝑛+1𝑁,                                                                        (3.11) 

as 𝑛 → ∞, we can clearly see that ‖𝜒𝑛(𝑥, 𝑡)‖ → 0.                                                                                                                          

Theorem 3.3. The solution of the fractional model of Diffusion process and wave 

propagation is unique if the following condition satisfied 

                                      (1 −
1

Γ(𝛼)
𝜂𝑡𝛼) > 0. 

Proof.  Suppose 𝑢∗(𝑥, 𝑡) is another solution of the fractional model of Diffusion process and 

wave propagation, then  

              ‖𝑢(𝑥, 𝑡) − 𝑢∗(𝑥, 𝑡)‖ = ‖
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1{𝜑(𝑥, 𝑡, 𝑢) − 𝜑(𝑥, 𝑡, 𝑢∗)}𝑑𝑠

𝑡

0

‖, 

                                                     ≤
1

𝛤(𝛼)
𝜂‖𝑢(𝑥, 𝑡) − 𝑢∗(𝑥, 𝑡)‖.                                                (3.12) 

Now, on simplifying above equation, we get 

             ‖𝑢(𝑥, 𝑡) − 𝑢∗(𝑥, 𝑡)‖ (1 −
1

Γ(𝛼)
𝜂𝑡𝛼) ≤ 0, 

hence, if  

                                     (1 −
1

Γ(𝛼)
𝜂𝑡𝛼) > 0,                                                                                  (3.15) 

so,                                𝑢(𝑥, 𝑡) = 𝑢∗(𝑥, 𝑡). 

Hence, the existence and uniqueness of the solution of the fractional model of Diffusion 

process and wave propagation is proved. 

4. Proposed Numerical Technique 

In this segment, we present the steps to obtain solution of the fractional model of Diffusion 

process and wave propagation by the proposed technique, NTDT. 

The fractional model of Diffusion process and wave propagation is given by  

𝐷𝑡
𝛼

0
𝐶 𝑢(𝑥, 𝑡) = ∆𝑢(𝑥, 𝑡) + 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ (0, 𝐿) × (0, 𝑇], 𝑇 > 0,                                   (4.1) 

with 𝑢(𝑥, 0) =

ℎ(𝑥),                                                                                                                                    (4.2) 

taking NT of equation (4.1), we get 

𝑁𝑇[ 𝐷𝑡
𝛼𝑢(𝑥, 𝑡)0

𝑐 ] = 𝑁𝑇[∆𝑢(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)]. 

Using differential property of NT and initial condition, we get 
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𝑠𝛼

𝑣𝛼
𝑁𝑇[𝑢(𝑥, 𝑡)] −

𝑠𝛼−1

𝑣𝛼
ℎ(𝑥) = 𝑁𝑇[∆𝑢(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)], 

𝑁𝑇[𝑢(𝑥, 𝑡)] =
1

𝑠
ℎ(𝑥) + (

𝑣

𝑠
)

𝛼

𝑁𝑇[∆𝑢(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)], 

taking inverse NT of above equation, we get  

𝑢(𝑥, 𝑡) = ℎ(𝑥) + 𝑁𝑇−1 {(
𝑣

𝑠
)

𝛼

𝑁𝑇[∆𝑢(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)]}.                                                          (4.3) 

Applying NTDT to above equation. So, we put 

 𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

,                                                                                                               (4.4) 

putting the values of 𝑢(𝑥, 𝑡) form equation (4.4) in equation (4.3), we get 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

= ℎ(𝑥) + 𝑝𝑁𝑇−1 {(
𝑣

𝑠
)

𝛼

𝑁𝑇 [∑ 𝑝𝑛∆𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

+ 𝑓(𝑥, 𝑡)]}.                        (4.5) 

Comparing the coefficients of like power of p, we get 

 𝑢0(𝑥, 𝑡) = ℎ(𝑥), 

 𝑢1(𝑥, 𝑡) = 𝑁𝑇−1 {(
𝑣

𝑠
)

𝛼

𝑁𝑇[∆𝑢0(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)]}, 

 𝑢2(𝑥, 𝑡) = 𝑁𝑇−1 {(
𝑣

𝑠
)

𝛼

𝑁𝑇[∆𝑢1(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)]}, 

                   ⋮ 

 𝑢𝑛(𝑥, 𝑡) = 𝑁𝑇−1 {(
𝑣

𝑠
)

𝛼

𝑁𝑇[∆𝑢𝑛−1(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)]}, 

The final solution is  

𝑢(𝑥, 𝑡) = lim
𝑘→∞

∑ 𝑢𝑛(𝑥, 𝑡)

𝑘

𝑛=0

.                                                                                                             (4.6) 

5. Simulation  

In this segment, we apply NTDT for obtaining the solution of two examples of fractional 

model of Diffusion process and wave propagation. To prove the efficiency of the NTDT, 

absolute errors are calculated and the approximate solution is compared to the exact solution 

graphically.  

Example 5.1. Let us assume the following fractional model of Diffusion process and wave 

propagation 
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𝐷0
𝐶

𝑡
𝛼  𝑢(𝑥, 𝑡) − ∆𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 1 < 𝛼 ≤ 2,                                                                             (5.1) 

with the source term 𝑓(𝑥, 𝑡) = 𝑒𝑥[Γ(𝛼 + 1) − 𝑡𝛼 − 𝑡 − 1] and the exact solution of (5.1), 

for 𝛼 = 2,  is 𝑢(𝑥, 𝑡) = 𝑒𝑥[𝑡𝛼 + 𝑡 + 1] .                                                                                                                                                          

Solution.  From the exact solution we have, 𝑢(𝑥, 0) = 𝑒𝑥. Applying NTDT to equation (5.1), 

so we get 

𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) = 𝑒𝑥 ,                                                                                                                   (5.2) 

𝑢1(𝑥, 𝑡) = 𝑁𝑇−1 {
𝑣𝛼

𝑠𝛼
𝑁𝑇[∆𝑢0(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)]}                                                                

                = 𝑒𝑥 [
Γ(𝛼 + 1)𝑡𝛼

Γ(𝛼 + 1)
−

Γ(𝛼 + 1)𝑡2𝛼

Γ(2𝛼 + 1)
−

𝑡𝛼+1

Γ(𝛼 + 2)
],                                                         (5.3) 

𝑢2(𝑥, 𝑡) = 𝑁𝑇−1 {
𝑣𝛼

𝑠𝛼
𝑁𝑇[∆𝑢1(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)]} 

                = −𝑒𝑥 [
Γ(𝛼 + 1)𝑡3𝛼

Γ(3𝛼 + 1)
+

𝑡2𝛼+1

Γ(2𝛼 + 2)
+

𝑡𝛼+1

Γ(𝛼 + 2)
+ (Γ(𝛼 + 1) + 1)

𝑡𝛼

Γ(𝛼 + 1)
],   (5.4) 

𝑢3(𝑥, 𝑡) = 𝑁𝑇−1 {
𝑣𝛼

𝑠𝛼
𝑁𝑇[∆𝑢2(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)]} 

                 = −𝑒𝑥 [
Γ(𝛼 + 1)𝑡4𝛼

Γ(4𝛼 + 1)
+

𝑡3𝛼+1

Γ(3𝛼 + 2)
+

𝑡𝛼+1

Γ(𝛼 + 2)
+ (1 − Γ(𝛼 + 1))

𝑡𝛼

Γ(𝛼 + 1)

+ (2Γ(𝛼 + 1) + 1)
𝑡2𝛼

Γ(2𝛼 + 1)
],                                                                          (5.5) 

and the final solution is given by 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯                                                          (5.6) 

Table 1.  Absolute error (AE) at 𝑡 = 0.001, and different values of  𝛼, for Ex. 5.1.  

𝒙 AE at 𝜶 = 𝟏. 𝟗𝟎 AE at 𝜶 = 𝟏. 𝟗𝟓 AE at 𝜶 = 𝟐 

0.1 1.10758𝑒−03 1.10680𝑒−03 1.10627𝑒−03 

0.2 1.22407𝑒−03 1.22320𝑒−03 1.22262𝑒−03 

0.3 1.35280𝑒−03 1.35185𝑒−03 1.35120𝑒−03 

0.4 1.49508𝑒−03 1.49403𝑒−03 1.49331𝑒−03 

0.5 1.65232𝑒−03 1.65116𝑒−03 1.65037𝑒−03 

0.6 1.82609𝑒−03 1.82481𝑒−03 1.82394𝑒−03 

0.7 2.01815𝑒−03 2.01673𝑒−03 2.01576𝑒−03 

0.8 2.23040𝑒−03 2.22883𝑒−03 2.22776𝑒−03 

0.9 2.46497𝑒−03 2.46324𝑒−03 2.46206𝑒−03 

1.0 2.72422𝑒−03 2.72230𝑒−03 2.72100𝑒−03 
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Figure 1.  The exact and NTDT solutions at 𝑡 = 0.01, for Ex. 5.1. 

Figure 2. The NTDT solution for 𝛼 = 2, for Ex. 5.2. 
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Example 5.2. Let us assume the following fractional model of Diffusion process and wave 

propagation  

𝐷0
𝐶

𝑡
𝛼  𝑢(𝑥, 𝑡) − ∆𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 1 < 𝛼 ≤ 2,                                                                             (5.7) 

with the source term 𝑓(𝑥, 𝑡) = 𝑠𝑖𝑛(𝜋𝑥) 𝑡
5

2 (
𝑡−𝛼𝛤(

7

2
)

𝛤(
7

2
−𝛼)

− 𝜋2) and the exact solution of (5.7),  for 

𝛼 = 2,  is 𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛(𝜋𝑥) 𝑡5/2.                                                                                                  

Solution.  From the exact solution we have, 𝑢(𝑥, 0) = 0. Applying NTDT to equation (5.7), 

so we get 

𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) = 0,                                                                                                                     (5.8) 

𝑢1(𝑥, 𝑡) = 𝑁𝑇−1 {
𝑣𝛼

𝑠𝛼
𝐿𝑇[∆𝑢0(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)]}                                                                

                = Γ (
7

2
)  𝑠𝑖𝑛(𝜋𝑥) [

𝑡5/2

Γ (
7
2)

−
𝜋2𝑡𝛼+5/2

Γ(𝛼 + 7/2)
],                                                                    (5.9) 

𝑢2(𝑥, 𝑡) = 𝑁𝑇−1 {
𝑣𝛼

𝑠𝛼
𝑁𝑇[∆𝑢1(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)]} 

                 = Γ (
7

2
)  𝑠𝑖𝑛(𝜋𝑥) [

𝑡5/2

Γ (
7
2)

−
2𝜋2𝑡𝛼+

5
2

Γ (𝛼 +
7
2)

+
𝜋4𝑡2𝛼+5/2

Γ(2𝛼 + 7/2)
],                                       (5.10) 

Figure 3. The exact solution for 𝛼 = 2, for Ex. 

5.2. 



         236 

Journal of Computational Analysis and Applications                                                            VOL. 34, NO. 1, 2025 

 

                                                                                         Priyanka Kanwar al 227-241 
 
 

𝑢3(𝑥, 𝑡) = 𝑁𝑇−1 {
𝑣𝛼

𝑠𝛼
𝑁𝑇[∆𝑢2(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)]} 

                =  Γ (
7

2
)  𝑠𝑖𝑛(𝜋𝑥) [

𝑡5/2

Γ (
7
2)

−
2𝜋2𝑡𝛼+

5
2

Γ (𝛼 +
7
2)

+
2𝜋4𝑡2𝛼+5/2

Γ(2𝛼 + 7/2)
−

𝜋6𝑡3𝛼+
5
2

Γ (3𝛼 +
7
2)

],             (5.11) 

and the final solution is given by 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯                                                       (5.12) 

Table 2.  Absolute error (AE) at 𝑥 = 15, and various values of 𝛼, for Ex. 6.2.  

𝒕 AE at 𝜶 = 𝟏. 𝟗𝟎 AE at 𝜶 = 𝟏. 𝟗𝟓 AE at 𝜶 = 𝟐 

0.01 1.2565 𝑒−23 9.2152 𝑒−24 6.7550 𝑒−24 

0.02 2.6532 𝑒−22 2.0144 𝑒−22 1.5286 𝑒−22 

0.03 1.5801 𝑒−21 1.2241 𝑒−21 9.4791 𝑒−22 

0.04 5.6046 𝑒−21 4.4046 𝑒−21 3.4600 𝑒−21 

0.05 1.4967 𝑒−20 1.1893 𝑒−20 9.4466 𝑒−21 

0.06 3.3399 𝑒−20 2.6780 𝑒−20 2.1465 𝑒−20 

0.07 6.5847 𝑒−20 5.3202 𝑒−20 4.2968 𝑒−20 

0.08 1.1857 𝑒−19 9.6430 𝑒−20 7.8394 𝑒−19 

0.09 1.9923 𝑒−19 1.6297 𝑒−19 1.3325 𝑒−19 

0.10 3.1699 𝑒−19 2.6061 𝑒−19 2.1420 𝑒−19 

 

Figure 4. The NTDT solution for 𝛼 = 2, for Ex. 5.2. 
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Figure 6. The exact and NTDT solutions for  𝑥 = 1, for Ex. 5.2. 

Figure 5. The exact solution for 𝛼 = 2, for Ex. 

5.2. 
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6. RESULT DISCUSSION 

The fractional model of Diffusion process and wave propagation is investigated in this article 

via Natural transform. The NTDT is used to get the numerical solution of fractional model of 

Diffusion process and wave propagation. The absolute error is calculated at 𝑡 = 0.001  and 

different values of 𝛼 and the results are given in table 1, for Ex. 5.1. The absolute errors are 

computed at 𝑥 = 15 and various values of 𝛼, for Ex. 5.2 and given in table 2. From, the 

tables it noticed that the NTDT is very accurate as errors are very less for the proposed 

technique NTDT. In Fig. 1, the 2-D graphs of exact and NTDT solution at 𝑡 = 0.01 are 

presented for Ex. 5.1. Here, we can clearly see that both solutions overlap each other. The 3-

D graphs of exact and NTDT solutions shown through Fig. (2 − 3) and Fig. (4 − 5) at 𝛼 =

2, for Ex. 5.1 and Ex. 5.2, respectively. It is observed that both solution surface shows exactly 

same behaviour. Fig. 6 demonstrate the two dimensional graph of exact and approximate 

solutions at 𝑥 = 1 and again they overlap each other. Hence, from the results of tables and 

graphs it can be said that the NTDT is an effective technique to solve the fractional models. 

7. CONCLUSION 

The fractional model of Diffusion process and wave propagation is investigated in this work 

by a semi analytical technique. The NTDT, which is combination of Natural transform and 

Adomian decomposition technique, is used to solve the fractional model of Diffusion process 

and wave propagation. The existence and uniqueness of the solution is investigated by aid of 

fixed point theorem. We solve two different examples, and the numerical results show that 

the suggested technique, NTDT, provides a solution that converges to the correct answer with 

relatively little absolute error. Studying anomalous diffusive systems, diffusion theory, wave 

propagation phenomena, and a variety of real-world phenomena will be greatly aided by this 

work. 

     Thus, it can be said that the suggested technique, NTDT, is a very effective method that 

manages non-linearity and other constraints with ease and is applicable to a variety of real 

life physical processes. 
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