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Abstract. This study offers a comprehensive characterization of fuzzy left ideals, fuzzy 

right ideals, fuzzy ideals, fuzzy bi-ideals, fuzzy interior ideals, and fuzzy quasi-ideals 

within the context of semirings. These fuzzy structures are analyzed using level subsets 

and strong level subsets. Additionally, we introduce the generated fuzzy left ideal, fuzzy 

right ideal, fuzzy ideal, fuzzy bi-ideal, fuzzy interior ideal, and fuzzy quasi-ideals by a 

fuzzy set in semirings, with or without a multiplicative identity. Furthermore, the work 

presents an expression for generating fuzzy left ideal, fuzzy right ideal, fuzzy ideal, 

fuzzy bi-ideal, fuzzy interior ideal, and fuzzy quasi-ideals in terms of left ideal, right 

ideal, ideal, bi-ideal, interior ideal, and quasi-ideal generated by level subsets and strong 

level subsets of the given fuzzy set.  

Keywords: Semirings; arbitrary intersection; level subsets; strong level subsets; 

generated fuzzy ideals. 

 

1. Introduction 

 

A semiring is an algebraic structure that generalizes notions of both rings and 

distributive lattices, a concept first introduced by Vandiver in 1934 [14]. Semirings 

occupy a structural position that bridges rings and semigroups, integrating properties 

from both frameworks. Iseki [4] introduced the notion of quasi-ideals within the 

framework of semirings, while Ahsan and Saifullah [1] explored the theory of fuzzy 

semirings. Donges [2] contributed several foundational statements regarding quasi-

ideals in semirings. Neggers [10] provided a characterization of L-fuzzy ideals in 

semirings, while Mandal [6, 7] conducted detailed investigations into fuzzy ideals, 

fuzzy bi-ideals, fuzzy interior ideals, and fuzzy quasi-ideals in ordered semirings. Shabi 

et.al. [12] investigated quasi-deals in 2004 while Munir and Mustafa [8] further 

characterized semirings through the study of bi-ideals and quasi-ideals in 2016. 
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Srivastava and Sarma [13] defined the concept of fuzzy quasi-ideals in semirings and 

derived point wise definition of fuzzy quasi-ideal. More recently, Munir and Shafiq [9] 

extended the theory to define generated left, right, and two-sided ideals in semirings, 

both with and without a multiplicative identity. 

In this study, we investigate the generated fuzzy ideals including left, right, two-

sided, and interior ideals along with fuzzy bi-ideals and quasi-ideals, which are 

generated by a fuzzy set within a semiring structure. These findings mirror their 

classical algebraic equivalents. We provide a comprehensive analysis of these fuzzy 

ideals through their level subsets and strong level subsets, offering explicit formulations 

of these generated fuzzy ideals, following the framework established by R. Kumar [5]. 

In Section 3, we delve into precise characterizations of fuzzy (left, right, two-sided, 

interior) ideals, as well as fuzzy bi-ideals and quasi-ideals, utilizing level and strong 

level subsets as key tools. Section 4 focuses on the generated fuzzy ideals within 

semirings that possess a multiplicative identity, whereas Section 5 extends the scope of 

the analysis to include semirings that lack such an identity. 

 

2. Preliminaries 

 

A semiring 𝑆 is a non-empty set 𝑆 equipped with two binary operations ‘+’ and ‘∘’ such 

that (𝑆, +) and (𝑆, ∘) forms semigourps. Additionally, these operations are related by 

the distributive property, i.e., 𝑎. (𝑏 + 𝑐) = 𝑎. 𝑏 + 𝑎. 𝑐 ∀ 𝑎, 𝑏, 𝑐 ∈ 𝑆. A semiring may 

also possess a multiplicative identity, 1, characterized by 𝑎 ∘ 1 = 1 ∘ 𝑎 = 𝑎. A non-

empty subset 𝐴 of a semirings is termed as subsemiring if 𝐴 is closed under addition 

and multiplication. A non-empty subset 𝐼 of a semiring is called a left (right) ideal of 𝑆 

if 𝐼 forms a subsemigroup of 𝑆 under addition and for 𝑎 ∈ 𝐼 and 𝑠 ∈ 𝑆, 𝑠𝑎(𝑎𝑠) ∈ 𝐼. An 

ideal of 𝑆 is a set that is both a left ideal and a right ideal. A subsemigroup 𝐵 of semiring 

𝑆 is termed a bi-ideal (interior) ideal of 𝑆 if 𝐵𝑆𝐵(𝑆𝐵𝑆) ⊆ 𝐵. Similarly, a subset 𝑄 of 

semiring 𝑆 is called a quasi-ideal of 𝑆 if Q is a subsemigroup under addition and  𝑄𝑆 ∩

𝑆𝑄 ⊆ 𝑄. 

 

We recall the definition of fuzzy set given by Zadeh [15]. A fuzzy set 𝛾 on a 

non-set 𝑋 is defined to be a mapping 𝛾: 𝑋 → [0,1]. 

 

We recall the following definitions for subsequent use. 

 

Definition 2.1 ([13]). A fuzzy set 𝛾 of a semiring 𝑆 is called a fuzzy subsemiring of 𝑆 

if 𝛾(𝑥 + 𝑦) ≥ min{𝛾(𝑥), 𝛾(𝑦)} and 𝛾(𝑥𝑦) ≥ min{𝛾(𝑥), 𝛾(𝑦)} ∀ 𝑥, 𝑦 ∈ 𝑆. 

 

Definition 2.2 ([13]). A fuzzy set 𝛾 of a semiring 𝑆 is called a fuzzy left (right) ideal of 

𝑆 if 𝛾(𝑥 + 𝑦) ≥ min{𝛾(𝑥), 𝛾(𝑦)} and 𝛾(𝑥𝑦) ≥ 𝛾(𝑦)(𝛾(𝑥𝑦) ≥ 𝛾(𝑥)). 
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Definition 2.3 ([13]).  A fuzzy set 𝛾 of a semiring S is called a fuzzy bi-ideal of 𝑆 if 

𝛾(𝑥 + 𝑦) ≥ min{𝛾(𝑥), 𝛾(𝑦)}, 𝛾(𝑥𝑦) ≥ min{𝛾(𝑥), 𝛾(𝑦)} and 𝛾(𝑥𝑦𝑧) ≥

min{𝛾(𝑥), 𝛾(𝑧)} ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑆. 

 

Definition 2.4 ([13]). A fuzzy set 𝛾 of a semiring S is called a fuzzy interior ideal of 𝑆 

if 𝛾(𝑥 + 𝑦) ≥ min{𝛾(𝑥), 𝛾(𝑦)}, 𝛾(𝑥𝑦) ≥ min{𝛾(𝑥), 𝛾(𝑦)} and 𝛾(𝑥𝑦𝑧) ≥ 𝛾(𝑦) ∀  

𝑥, 𝑦, 𝑧 ∈ 𝑆. 

 

Definition 2.5 ([13]). A fuzzy set 𝛾 of a semiring 𝑆 ia called a fuzzy quasi-ideal of 𝑆 if 

𝛾(𝑥 + 𝑦) ≥ min{𝛾(𝑥), 𝛾(𝑦)} and 
z=xy

( ) min{sup ( ),  sup ( )}  z S.
z xy

z x y  
=

    

The generated fuzzy left (right, two-sided, interior, bi-ideal, quasi-) ideal within 

a semiring is ensured by the principle that the non-empty intersection of any collection 

of these respective fuzzy structures results in the same type of fuzzy structure. 

Specifically, if one takes an arbitrary family of fuzzy left ideals, their intersection will 

yield another fuzzy left ideal; similarly, this holds true for fuzzy right (two-sided, 

interior, bi-ideals, quasi-) ideal. This property has been rigorously established in the 

work of Mandal [6, 7], who demonstrated that in ordered semirings, the non-empty 

intersection of any collection of fuzzy left (right, two-sided, interior, bi-ideal, quasi-) 

ideals will also produce a structure of the same kind. We define the similar result for 

semirings as: 

 

Lemma 2.6. The intersection of any non-empty collection of fuzzy left ideals, fuzzy 

right ideals, fuzzy ideals, fuzzy bi-ideals, and fuzzy interior ideals in a semiring is itself 

a fuzzy left ideal, fuzzy right ideal, fuzzy ideal, fuzzy bi-ideal, and fuzzy interior ideal. 

 

Lemma 2.7 ([13]). The non-empty intersection of an arbitrary family of fuzzy quasi-

ideals of a semiring is a fuzzy quasi-ideal. 

 

3. Level subsets and strong level subsets of a fuzzy set in a semiring 

 

Definition 3.1. The level subset 𝛾𝑟, and strong level subset 𝛾𝑟
> of a fuzzy set 𝛾 on a 

non-empty set X are defined as 

𝛾𝑟 = {𝑥 ∈ 𝑋 ∣ 𝛾(𝑥) ≥ 𝑟}  and  𝛾𝑟
> = {𝑥 ∈ 𝑋 ∣ 𝛾(𝑥) > 𝑟}. 

 

Lemma 3.2. Let 𝛾, 𝜆 ∈ 𝐹(𝑆). Then, ∀ 𝑡 ∈ [0,1) 

(1)  (𝛾 ∘ 𝜆)𝑡
> = 𝛾𝑡

>𝜆𝑡
>. 

(2) (𝛾 ∩ 𝜆)𝑡
> = 𝛾𝑡

> ∩ 𝜆𝑡
>. 

(3) (𝛾 ∪ 𝜆)𝑡
> = 𝛾𝑡

> ∪ 𝜆𝑡
>. 

 

Theorem 3.3. Following assertions are equivalent in a semiring 𝑆 : 
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(1)  𝛾 is a fuzzy left ideal of 𝑆. 

(2)  Each ∅ ≠ 𝛾𝑡 is a left ideal of 𝑆. 

(3)  Each ∅ ≠ 𝛾𝑡
>is a left ideal of 𝑆. 

 

Proof. To established (𝟏) ⇒ (3), let 𝛾 be a fuzzy left ideal of 𝑆. We claim that 𝑆𝛾𝑡
> ⊆

𝛾𝑡
>. Let 𝑥 ∈ 𝑆𝛾𝑡

>. Then 𝑥 = 𝑠𝑦 for some 𝑠 ∈ 𝑆 and 𝑦 ∈ 𝛾𝑡
>. Now 𝑦 ∈ 𝛾𝑡

> implies that 

𝛾(𝑦) > 𝑡. Also 𝛾 is a fuzzy left ideal, therefore, 𝛾(𝑠𝑦) ≥ 𝛾(𝑦) > 𝑡. Thus 𝑥 = 𝑠𝑦 ∈ 𝛾𝑡
>. 

Hence 𝑆𝛾𝑡
> ⊆ 𝛾𝑡

>. 

(𝟑) ⇒ (𝟐). Let ∅ ≠ 𝛾𝑡 be a level subset of 𝑓. Then, Then, 𝛾𝑡 =
r t
  𝛾𝑟

> . Since ∅ ≠ 𝛾𝑡, 

∅ ≠ 𝛾𝑟
> for each 𝑟 < 𝑡. By (3) 𝛾𝑟

>is a left ideal of 𝑆. As the non-empty intersection of 

an arbitrary family of left ideals of 𝑆 is a left ideal of 𝑆, 𝛾𝑡 is a left ideal.  

(𝟐) ⇒ (𝟏). Assume that 𝛾 is not a fuzzy left ideal of 𝑆. Since 𝛾𝑡 is a left ideal of 𝑆, it is 

a subsemiring and hence 𝛾 is a fuzzy subsemiring of 𝑆. Now 𝛾(𝑠𝑦) < 𝛾(𝑦) some 𝑠, 𝑦 ∈

𝑆 since 𝛾 is not a fuzzy left ideal of 𝑆. That is 𝛾(𝑧) < 𝛾(𝑦) where 𝑧 = 𝑠𝑦. Let 𝑡 be a 

real number such that 𝛾(𝑧) < 𝑡 < 𝛾(𝑦). Then 𝑧 ∉ 𝛾𝑡 and 𝑦 ∈ 𝛾𝑡. Therefore, 𝑧 = 𝑠𝑦 ∈

𝑆𝛾𝑡, but 𝑧 ∉ 𝛾𝑡. Hence 𝑆𝛾𝑡 ⊈ 𝛾𝑡, which is a contradicts as 𝛾𝑡  is a left ideal of by (2). 

 

Similarly, we can prove: 

Theorem 3.4. Following assertions are equivalent in a semiring 𝑆 : 

(1) 𝛾 is a fuzzy rihgt (two sided) ideal of 𝑆. 

(2) Each ∅ ≠ 𝛾𝑡 is a right (two sided) ideal of 𝑆. 

(3) Each ∅ ≠ 𝛾𝑡
>is a right (two sided) ideal of 𝑆. 

 

Theorem 3.5. Following assertions are equivalent in a semiring 𝑆 : 

(1) 𝛾 is a fuzzy interior ideal of 𝑆. 

(2) Each ∅ ≠ 𝛾𝑡 is an interior ideal of 𝑆. 

(3) Each ∅ ≠ 𝛾𝑡
>is an interior ideal of 𝑆. 

 

Proof.  (𝟏) ⇒ (𝟑). Let 𝛾 be a fuzzy interior ideal of 𝑆. To establish that 𝛾𝑡
> is an interior 

ideal of 𝑆. That is to show that 𝑆𝛾𝑡
>𝑆 ⊆ 𝛾𝑡

>. Let 𝑥 ∈ 𝑆𝛾𝑡
>𝑆. Then 𝑥 = 𝑠1𝑦𝑠2 for some 

𝑠1, 𝑠2 ∈ 𝑆 and 𝑦 ∈ 𝛾𝑡
>. Now 𝑦 ∈ 𝛾𝑡

>implies 𝛾(𝑦) > 𝑡. Since 𝛾 is a fuzzy interior ideal, 

𝛾(𝑠1𝑦𝑠2) ≥ 𝛾(𝑦) > 𝑡. Thus 𝑥 = 𝑠1𝑦𝑠2 ∈ 𝛾𝑡
>. Hence 𝑆𝛾𝑡

>𝑆 ⊆ 𝛾𝑡
>. 

(𝟑) ⇒ (𝟐). Follows similar to Theorem 3.3. 

Now to establish (𝟐) ⇒ (𝟏), let 𝛾 is not a fuzzy interior ideal of 𝑆. Since 𝛾𝑡 is an interior 

ideal of 𝑆, it is a subsemiring and hence 𝛾 is a fuzzy subsemiring of 𝑆. 𝛾(𝑠1𝑦𝑠2) < 𝛾(𝑦) 

some 𝑠1, 𝑠2, 𝑦 ∈ 𝑆 as we have assumed that 𝛾 is not a fuzzy interior ideal of 𝑆. This 

implies 𝛾(𝑧) < 𝛾(𝑦) where 𝑧 = 𝑠1𝑦𝑠2. Select a real number 𝑡 such that 𝛾(𝑧) < 𝑡 <

𝛾(𝑦). Then 𝑧 ∉ 𝛾𝑡 and 𝛾 ∈ 𝛾𝑡. Therefore, 𝑧 = 𝑠1𝑦𝑠2 ∈ 𝑆𝛾𝑡𝑆, but 𝑧 ∉ 𝛾𝑡. Hence 𝑆𝛾𝑡𝑆 ⊈

𝛾𝑡, which is a contradicts as 𝛾𝑡  is an interior ideal by (2). 
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Theorem 3.6. Following assertions are equivalent in a semiring 𝑆 : 

(1) 𝛾 is a fuzzy bi-ideal of 𝑆. 

(2) Each ∅ ≠ 𝛾𝑡 is a bi-ideal of 𝑆. 

(3) Each ∅ ≠ 𝛾𝑡
>is a bi-ideal of 𝑆. 

 

Proof. (1) ⇒ (𝟑). Let 𝛾 be a bi-ideal of 𝑆. To establish that 𝛾𝑡
>is a bi-ideal of 𝑆.That is 

to show that 𝛾𝑡
>𝑆𝛾𝑡

> ⊆ 𝛾𝑡
>. Let 𝑥 ∈ 𝛾𝑡

>𝑆𝛾𝑡
>. Then 𝑥 = 𝑦1𝑠𝑦2 for some 𝑠 ∈ 𝑆 and 

𝑦1, 𝑦2 ∈ 𝛾𝑡
>. Now 𝑦1, 𝑦2 ∈ 𝛾𝑡

>implies 𝛾(𝑦1) > 𝑡 < 𝛾(𝑦2). Since 𝛾 is a fuzzy bi-ideal, 

𝛾(𝑦1, 𝑦2) ≥ min{𝛾(𝑦1), 𝛾(𝑦2)} > 𝑡. Thus 𝑥 = 𝑦1𝑠𝑦2 ∈ 𝛾𝑡
>. Hence 𝛾𝑡

>𝑆𝛾𝑡
> ⊆ 𝛾𝑡

>. 

(𝟑) ⇒ (𝟐). Follows similar to Theorem 3.3. 

(𝟐) ⇒ (𝟏). Since 𝛾𝑡 is a bi-ideal of 𝑆, it is a subsemiring and hence 𝛾 is a fuzzy 

subsemiring of 𝑆. Let 𝛾 is not a fuzzy bi-ideal of 𝑆, therefore 𝛾(𝑥′𝑧′𝑦′) < 

min{𝛾(𝑥′), 𝛾(𝑦′)} for some 𝑥′, 𝑦′, 𝑧′ ∈ 𝑆. This implies 𝛾(𝑘) < 𝛾(𝑥′) and 𝛾(𝑘) <

𝛾(𝑦′), where 𝑘 = 𝑥′𝑧′𝑦′. Select a real number 𝑡 such that 𝛾(𝑘) < 𝑡 < 

min{𝛾(𝑥′), 𝛾(𝑦′)}. Then 𝑘 ∉ 𝛾𝑡 and 𝑥′, 𝑦′ ∈ 𝛾𝑡. Therefore, 𝑘 = 𝑥′𝑧′𝑦′ ∈ 𝛾𝑡𝑆𝛾𝑡, but 

𝑘 ∉ 𝛾𝑡. Hence 𝛾𝑡𝑆𝛾𝑡 ⊈ 𝛾𝑡, which is a contradicts as 𝛾𝑡  is a bi-ideal by (2). 

 

Theorem 3.7 ([13]). Following assertions are equivalent in a semiring 𝑆 : 

(1) 𝛾 is a fuzzy quasi-ideal of 𝑆. 

(2) Each ∅ ≠ 𝛾𝑡 is a quasi-ideal of 𝑆. 

(3) Each ∅ ≠ 𝛾𝑡
>is a quasi-ideal of 𝑆. 

 

4. Generated fuzzy ideals in a semiring with multiplicative identity 

 

Definition 4.1. For a fuzzy set γ of a semiring S, we define: 

(1) the smallest fuzzy left ideal generated by γ is ⟨
l

  ⟩ = 
( )

{ | }
FL S

  


I  

(2) the smallest fuzzy right ideal generated by γ is ⟨
r

  ⟩ = 
( )

{ | }
FR S

  


I  

(3) the smallest fuzzy two sided ideal generated by γ is ⟨ 
t

 ⟩ = 
( )

{ | }
FT S

  


I  

(4) the smallest fuzzy interior ideal generated by γ is ⟨ 
i

  ⟩ = 
( )

{ | }
FI S

  


I  

(5) the smallest fuzzy bi-ideal generated by γ is ⟨ 
b

  ⟩ = 
( )

{ | }
FB S

  


I  

(6) the smallest fuzzy quasi-ideal generated by γ is ⟨ 
q

  ⟩ = 
( )

{ | }
FQ S

  


I  
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Where 𝐹𝐿(𝑆)(𝐹𝑇(𝑆)) is the set of all fuzzy left (two sided) ideals of 𝑆 etc. 

The following results are well known in classical algebra in a semiring with 

multiplicative identity  

 

Lemma 4.2. If A is a non-empty subset of a semiring 𝑆 with multiplicative identity, 

then 

⟨𝐴
𝑙

⟩ = 𝑆𝐴  ⟨𝐴
𝑟

⟩ = 𝐴𝑆  ⟨𝐴
𝑡

⟩ = 𝑆𝐴𝑆 

⟨𝐴
𝑟

⟩ = 𝐴2 ∪ 𝑆𝐴𝑆 ⟨𝐴
𝑞

⟩ = 𝐴 ∪ 𝐴𝑆𝐴 ⟨𝐴
𝑞

⟩ = 𝐴𝑆 ∩ 𝑆𝐴 

 

To obtain a similar result in the fuzzy setting, we proceed in the following way. 

While doing this, we obtain several expressions for a generated fuzzy ideal in the 

process. 

 

Definition 4.3. For a fuzzy set γ of a semiring S, we define the fuzzy sets 𝛾
𝑙
, 

𝛾
𝑙𝑙

,  𝛾
𝑟

,   𝛾
𝑟𝑟

,   𝛾
𝑡

,  𝛾
𝑡𝑡

,   𝛾,
𝑖

  𝛾
𝑖𝑖

,  𝛾
𝑏

, 𝛾
𝑏𝑏

,  𝛾
𝑞

 and 𝛾
𝑞𝑞

 on 𝑆 as follows: 

𝛾
𝑙
(𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

𝑙
⟩}                𝛾

𝑙𝑙
(𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

>
𝑙

⟩}

𝛾
𝑟

(𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

𝑟
⟩}      𝛾

𝑟𝑟
(𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

>
𝑟

⟩}

𝛾
𝑡
(𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

𝑡
⟩} 𝛾

𝑡𝑡
(𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

>
𝑡

⟩}

𝛾
𝑖
(𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

𝑖
⟩} 𝛾

𝑖𝑖
(𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

>
𝑖

⟩}

𝛾
𝑏

(𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

𝑏
⟩} 𝛾

𝑏𝑏
(𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

>
𝑏

⟩}

𝛾
𝑞

(𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

𝑞
⟩} 𝛾

𝑞𝑞
(𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

>
𝑞

⟩}

 

where ⟨𝛾𝑡

𝑏
⟩ (⟨𝛾𝑡

>
𝑏

⟩) is a bi-ideal generated by level (strong level) subset 𝛾𝑡(𝛾𝑡
>). 

 

Lemma 4.4. Let 𝛾 be a fuzzy set in a semiring 𝑆 with multiplicative identity and 𝑡 ∈

[0,1). Then 

(i)  (𝛾
𝑟𝑟

)
𝑡

>

= ⟨𝛾𝑡
>

𝑟

⟩  (ii)  (𝛾
𝑙𝑙

)
𝑡

>

= ⟨𝛾𝑡
>
𝑙

⟩ (iii)  (𝛾
𝑡𝑡

)
𝑡

>

= ⟨𝛾𝑡
>

𝑡

⟩ 

(iv)  (𝛾
𝑖𝑖

)
𝑡

>

= ⟨𝛾𝑡
>
𝑖

⟩ (v) ( 𝛾
𝑏𝑏

)
𝑡

>

= ⟨𝛾𝑡
>

𝑏

⟩ (vi)  ( 𝛾
𝑞𝑞

)
𝑡

>

= ⟨𝛾𝑡
>

𝑞

⟩ 



1602 

Journal of Computational Analysis and Applications                                                            VOL. 33, NO. 8, 2024 

 
 
 

                                                                             Archana Hombalimath al 1596-1612 
 

 

Proof. (i) Consider 𝑧 ∈ (𝛾
𝑟𝑟

)
𝑡

> 

. Therefore, 𝛾
𝑟𝑟

(z) > 𝑡. This implies that sup {𝑡𝑖 ∣ 𝑧 ∈

⟨𝛾𝑡𝑖

>
𝑟

⟩} > 𝑡. Consequently, there exists 𝑡0 > 𝑡 and 𝑧 ∈ 𝛾𝑡0

> 𝑆 ⊆ 𝛾𝑡
>𝑆. Hence 𝑧 ∈ ⟨𝛾𝑡

>
𝑟

⟩. 

Conversely, let 𝑧 ∈ ⟨𝛾𝑡
>

𝑟

⟩. Then 𝑧 ∈ 𝛾𝑡
>𝑆. Therefore 𝑧 = 𝑎𝑠 for some 𝑎 ∈ 𝛾𝑡

> and 

𝑠 ∈ 𝑆. Now 𝑎 ∈ 𝛾𝑡
> implies 𝛾(𝑎) > 𝑡. Choosing 𝑡1 such that 𝛾(𝑎) > 𝑡1 > 𝑡, we get 𝑎 ∈

𝛾𝑡1

> . Then 𝑧 = 𝑎𝑠 ∈ 𝛾𝑡1

> 𝑆. Therefore 𝑧 = 𝑎𝑠 ∈ 𝛾𝑡1

> 𝑆 ⊆ ⟨𝛾𝑡1

> ⟩, where 𝑡1 > 𝑡. Thus, 𝑧 ∈

⟨𝛾𝑡𝑖

>
𝑟

⟩ for some 𝑡𝑖 > 𝑡 and as a result, we get, sup {𝑡𝑖 ∣ 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑟

⟩} > 𝑡. That is 𝑧 ∈ (𝛾
𝑟𝑟

)
𝑡

> 

. 

(ii) and (iii) follows similarly. 

(iv) Consider 𝑧 ∈ (𝛾
𝑖𝑖

)
𝑡

> 

. Therefore 𝛾
𝑖𝑖

(𝑧) > 𝑡. This implies that sup {𝑡𝑖 ∣ 𝑧 ∈

⟨𝛾𝑡𝑖

>
𝑟

⟩} > 𝑡. Consequently, there exists 𝑡0 > 𝑡 and 𝑧 ∈ 𝛾𝑡0

> 𝛾𝑡0

> ∪ 𝑆𝛾𝑡0

> 𝑆 ⊆ 𝛾𝑡
>𝛾𝑡

> ∪ 𝑆𝛾𝑡
>𝑆.        

Hence 𝑧 ∈ ⟨𝛾𝑡
>

𝑟

⟩. 

Conversely, let 𝑧 ∈ ⟨𝛾𝑡
>

𝑟

⟩. Then 𝑧 ∈ 𝛾𝑡
>𝛾𝑡

> ∪ 𝑆𝛾𝑡
>𝑆. Therefore, either 𝑧 ∈

              𝛾𝑡
>𝛾𝑡

>or 𝑧 ∈ 𝑆𝛾𝑡
>𝑆. 

If 𝑧 ∈ 𝛾𝑡
>𝛾𝑡

>, then 𝑧 = 𝑎1𝑎2 for some 𝑎1, 𝑎2 ∈ 𝛾𝑡
>. Therefore, 𝛾(𝑎1) > 𝑡 <

𝛾(𝑎2). Choosing 𝑡1, 𝑡2 such that 𝛾(𝑎1) > 𝑡1 > 𝑡 < 𝑡2 < 𝛾(𝑎2), we get 𝑎1 ∈

𝛾𝑡1

> and 𝑎2 ∈ 𝛾𝑡2

> . Write 𝑡3 = min{𝑡1, 𝑡2}. Then 𝑎1, 𝑎2 ∈ 𝛾𝑡3

> . Therefore, 𝑧 =

𝑎1𝑎2 ∈ 𝛾𝑡3

> 𝛾𝑡3

> ⊆ ⟨𝛾𝑡3

>
𝑖

⟩, where 𝑡3 > 𝑡. 

If 𝑧 ∈ 𝑆𝛾𝑡
>𝑆, then 𝑧 = 𝑠1 a 𝑠2 for some 𝑎 ∈ 𝛾𝑡

>and 𝑠1, 𝑠2 ∈ 𝑆. Now 𝑎 ∈ 𝛾𝑡
> 

implies 𝛾(𝑎) > 𝑡. Choosing 𝑡0 such that 𝛾(𝑎) > 𝑡0 > 𝑡. Then 𝑧 ∈ 𝛾𝑡0

> ⊆ ⟨𝛾𝑡0

>
𝑖

⟩. 

Therefore 𝑧 = 𝑠1 a 𝑠2 ∈ 𝑆𝛾𝑡0

> 𝑆 ⊆ ⟨𝛾𝑡0

>
𝑖

⟩, where 𝑡0 > 𝑡. Hence, under all 

circumstance, we have, 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑖

⟩ for some 𝑡𝑖 > 𝑡 and as a result, we get, 

sup {𝑡𝑖 ∣ 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑖

⟩} > 𝑡. That is 𝑧 ∈ (𝛾
𝑖𝑖

)
𝑡

> 

. 
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(v) Consider 𝑧 ∈ ( 𝛾
𝑏𝑏

)
𝑡

> 

. Therefore 𝛾
𝑏𝑏

(𝑧) > 𝑡. This implies that sup{𝑡𝑖 ∣ 𝑧 ∈ 

⟨𝛾𝑡𝑖

>
𝑏

⟩} > 𝑡. Consequently, there exists 𝑡0 > 𝑡 and 𝑧 ∈ 𝛾𝑡0

> ∪ 𝛾𝑡0

> 𝑆𝛾𝑡0

> ⊆ 𝛾𝑡
> ∪ 𝛾𝑡

>𝑆𝛾𝑡
>. 

Hence, 𝑧 ∈ ⟨𝛾𝑡
>

𝑏

⟩.  

Conversely, let 𝑧 ∈ ⟨𝛾𝑡
>

𝑏

⟩. Then 𝑧 ∈ 𝛾𝑡
> ∪ 𝛾𝑡

>𝑆𝛾𝑡
>. Therefore, either 𝑧 ∈ 𝛾𝑡

>or 

𝑧 ∈ 𝛾𝑡
>𝑆𝛾𝑡

>. Suppose 𝑧 ∈ 𝛾𝑡
>. Then 𝛾(𝑧) > 𝑡. Select 𝑡0 such that 𝛾(𝑧) > 𝑡0 >

𝑡. Then 𝑧 ∈ 𝛾𝑡0

> ⊆ ⟨𝛾𝑡0

>
𝑏

⟩, where 𝑡0 > 𝑡.  Hence, under all circumstance, we have, 

𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑏

⟩ for some 𝑡𝑖 > 𝑡 and as a result, we get, sup {𝑡𝑖 ∣ 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑏

⟩} > 𝑡. That 

is 𝑧 ∈ ( 𝛾
𝑏𝑏

)
𝑡

> 

. 

If 𝑧 ∈ 𝛾𝑡
>𝑆𝛾𝑡

>, then 𝑧 = 𝑎1 s𝑎2 for some 𝑎1, 𝑎2 ∈ 𝛾𝑡
>and 𝑠 ∈ 𝑆. Choosing 𝑡1, 𝑡2 

such that 𝛾(𝑎1) > 𝑡1 > 𝑡 < 𝑡2 < 𝛾(𝑎2), we get, 𝑎1 ∈ 𝛾𝑡1

> and 𝑎2 ∈ 𝛾𝑡2

> . Write 

𝑡3 = min{𝑡1, 𝑡2}. Therefore, 𝑧 = 𝑠1 a 𝑠2 ∈ 𝛾𝑡3

> 𝑆𝛾𝑡3

> ⊆ ⟨𝛾𝑡3

>
𝑏

⟩, where 𝑡3 > 𝑡.  

Hence, under all circumstances we have, 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑏

⟩ for some 𝑡𝑖 > 𝑡 and as a 

result, we get, sup {𝑡𝑖 ∣ 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑏

⟩} > 𝑡. That is 𝑧 ∈ ( 𝛾
𝑏𝑏

)
𝑡

> 

. 

(vi) Consider 𝑧 ∈ ( 𝛾
𝑞𝑞

)
𝑡

>

. Therefore 𝛾
𝑞𝑞

(𝑧) > 𝑡. This implies that sup {𝑡𝑖 ∣ 𝑧 ∈

⟨𝛾𝑡𝑖

>
𝑞

⟩} > 𝑡. Consequently, there exists 𝑡0 > 𝑡 and 𝑧 ∈ 𝛾𝑡0

> 𝑆 ∩ 𝑆𝛾𝑡0

> ⊆ 𝛾𝑡
>𝑆 ∩ 𝑆𝛾𝑡

>. 

Hence, 𝑧 ∈ ⟨𝛾𝑡
>

𝑞

⟩.  

Conversely, let 𝑧 ∈ ⟨𝛾𝑡
>

𝑞

⟩. Then 𝑧 ∈ 𝛾𝑡
>𝑆 ∩ 𝑆𝛾𝑡

>. Thus, 𝑧 = 𝑎1𝑠1 = 𝑠2𝑎2 for 

some 𝑎1, 𝑎2 ∈ 𝛾𝑡
> and 𝑠1, 𝑠2 ∈ 𝑆. Choosing 𝑡1, 𝑡2 such that 𝛾(𝑎1) > 𝑡1 > 𝑡 < 𝑡2 <

𝛾(𝑎2), we get, 𝑎1 ∈ 𝛾𝑡1

>  and 𝑎2 ∈ 𝛾𝑡2

> . Write 𝑡3 = min{𝑡1, 𝑡2}. Then 𝑎1, 𝑎2 ∈ 𝛾𝑡3

> . 
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Therefore, 𝑧 = 𝑎1𝑠1 = 𝑠2𝑎2 ∈ 𝛾𝑡3

> 𝑆 ∩ 𝑆𝛾𝑡3

> 𝑆 ⊆ ⟨𝛾𝑡3

>
𝑞

⟩, where 𝑡3 > 𝑡. Thus, 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑞

⟩ for 

some 𝑡𝑖 > 𝑡 and as a result sup {𝑡𝑖 ∣ 𝑧 ∈ ⟨𝛾𝑖
>

𝑞

⟩} > 𝑡. That is 𝑧 ∈ ( 𝛾
𝑞𝑞

)
𝑡

> 

. 

 

Theorem 4.5. Let 𝛾 be a fuzzy set in a semiring 𝑆 with multiplicative identity. Then, 

∀ 𝑡 ∈ [0,1), we have, 

(i) ⟨𝛾
𝑙
⟩ = 𝛾

𝑙𝑙
  (ii) ⟨𝛾

𝑟
⟩ = 𝛾

𝑟𝑟
  (iii) ⟨𝛾

𝑡
⟩ = 𝛾

𝑡𝑡
 

(iv) ⟨𝛾
𝑖
⟩ = 𝛾

𝑖𝑖
  (v) ⟨𝛾

𝑏
⟩ = 𝛾

𝑏𝑏
  (vi) ⟨𝛾

𝑞
⟩ = 𝛾

𝑞𝑞
 

 

Proof. We establish (iv), others follow similarly. Since ⟨𝛾𝑡
>
𝑖

⟩ is the interior ideal 

generated by 𝛾𝑡
> and (𝛾

𝑖𝑖
)

𝑡

>

= ⟨𝛾𝑡
>
𝑖

⟩ ∀  𝑡 ∈ [0,1) by Lemma 4.4, therefore (𝛾
𝑖𝑖

)
𝑡

>

 is an 

interior ideal of 𝑆 ∀ 𝑡 ∈ [0,1). Consequently,  𝛾
𝑖𝑖

 is a fuzzy interior ideal of 𝑆 by Theorem 

3.5. Now we establish that 𝛾
𝑖𝑖

 is the fuzzy interior ideal of 𝑆 generated by 𝛾. To achieve 

this, we show that 𝛾 ⊆ 𝛾
𝑖𝑖

. On contrary, let 𝛾 ⊈ 𝛾
𝑖𝑖

. Then for some 𝑧0 ∈ 𝑆, 𝛾(𝑧0) >

𝛾
𝑖𝑖

(𝑧0) = 𝑡0 (say). Thus, 𝑧0 ∈ 𝛾𝑡0

> ⊆ ⟨𝛾𝑡0

>
𝑖

⟩ =  (𝛾
𝑖𝑖

)
𝑡0

>

 by Lemma 4.4. This implies 

𝛾
𝑖𝑖

(𝑧0) > 𝑡0, which is a contradiction. Finally, we show that 𝛾
𝑖𝑖

 is the smallest fuzzy 

interior ideal of 𝑆 which containing 𝛾. Let 𝛿 be fuzzy interior ideal of 𝑆 containing 𝛾. 

Then, 𝛾𝑡
> ⊆ 𝛿𝑡

>. Thus ⟨𝛾𝑡
>
𝑖

⟩ ⊆ 𝛿𝑡
>. Therefore, (𝛾

𝑖𝑖
)

𝑡

>

⊆ 𝛿𝑡
> for all 𝑡 ∈ [0,1). Hence 𝛾

𝑖𝑖
⊆

𝛿. 

 

Lemma 4.6. For a fuzzy set 𝛾 in a semiring 𝑆 with multiplicative identity. Then, we 

have, 

(i) 𝛾
𝑙𝑙

= 𝛾
𝑙
  (ii) 𝛾

𝑟𝑟
= 𝛾

𝑟
  (iii) 𝛾

𝑡𝑡
= 𝛾

𝑡
 

(iv) 𝛾
𝑖𝑖

= 𝛾
𝑖
  (v) 𝛾

𝑏𝑏
= 𝛾

𝑏
  (vi) 𝛾

𝑞𝑞
= 𝛾

𝑞
 

 

Proof. We establish (iv) i.e. 𝛾
𝑖𝑖

= 𝛾
𝑖
, others follow similarly. Clearly by definition, 𝛾

𝑖𝑖
⊆

𝛾
𝑖
. We begin by demonstrating that (𝛾

𝑖
)

𝑡

>

⊆ ⟨𝛾𝑡
>
𝑖

⟩ ∀ 𝑡 ∈ [0,1) to establish the reverse 
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inclusion. Now consider 𝑡 ∈ [0,1) and 𝑥 ∈ (𝛾
𝑖
)

𝑡

>

. This implies that sup {𝑡𝑖 ∣ 𝑥 ∈

⟨𝛾𝑡𝑖

𝑖
⟩} > 𝑡. Therefore, there exists 𝑡0 > 𝑡 such that 𝑥 ∈ ⟨𝛾𝑡0

>
𝑖

⟩. Now 𝛾𝑡0
⊆ 𝛾𝑡

> implies 

⟨𝛾𝑡0

𝑖
⟩ ⊆ ⟨𝛾𝑡0

>
𝑖

⟩. Thus 𝑥 ∈ ⟨𝛾𝑡0

𝑖
⟩ ⊆ ⟨𝛾𝑡

>
𝑖

⟩. Hence (𝛾
𝑖
)

𝑡

>

⊆ ⟨𝛾𝑡
>
𝑖

⟩, ∀𝑡 ∈ [0,1 [.   Also ⟨𝛾𝑡
>
𝑖

⟩ =

(𝛾
𝑖𝑖

)
𝑡

>

 follows from Lemma 4.4. Therefore, ∀𝑡 ∈ [0,1), (𝛾
𝑖
)

𝑡

>

⊆ (𝛾
𝑖𝑖

)
𝑡

>

. Consequently, 

 𝛾
𝑖

⊆ 𝛾
𝑖𝑖

, leading to the conclusion that 𝛾
𝑖𝑖

= 𝛾
𝑖
. 

 

The subsequent theorem is a direct consequence of Theorem 4.5 when 

combined with Lemma 4.6. 

 

Theorem 4.7. For a fuzzy set 𝛾 in a semiring 𝑆 with multiplicative identity. Then, 

(i) ⟨𝛾
𝑙
⟩ (𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

>
𝑙

⟩} (ii) ⟨𝛾
𝑟

⟩ (𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡
>

𝑟

⟩} 

(iii) ⟨𝛾
𝑡
⟩ (𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

>
𝑡

⟩} (iv) ⟨𝛾
𝑖
⟩ (𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡

>
𝑖

⟩} 

(v) ⟨𝛾
𝑏

⟩ (𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡
>

𝑏

⟩} (vi) ⟨𝛾
𝑞

⟩ (𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡
>

𝑞

⟩} 

 

Lemma 4.8. For a fuzzy set 𝛾 in a semiring 𝑆 with multiplicative identity and ∀𝑡 ∈

[0,1), 

(i) ⟨𝛾
𝑙
⟩

𝑡

>

= ⟨𝛾𝑡
>
𝑙

⟩ (ii) ⟨𝛾
𝑟

⟩
𝑡

>

= ⟨𝛾𝑡
>

𝑟

⟩ (iii) ⟨𝛾
𝑡
⟩

𝑡

>

= ⟨𝛾𝑡
>

𝑡

⟩ 

(iv) ⟨𝛾
𝑖
⟩

𝑡

>

= ⟨𝛾𝑡
>
𝑖

⟩ (v) ⟨𝛾
𝑏

⟩
𝑡

>

= ⟨𝛾𝑡
>

𝑏

⟩ (vi) ) ⟨𝛾
𝑞

⟩
𝑡

>

= ⟨𝛾𝑡
>

𝑞

⟩ 

 

Proof. We establish (iv), others follow similarly. Let 𝑡 ∈ [0,1). By Lemma 4.6 and 4.4, 

𝛾
𝑖

= 𝛾
𝑖𝑖

 and (𝛾
𝑖𝑖

)
𝑡

>

= ⟨𝛾𝑡
>
𝑖

⟩, therefore, (𝛾
𝑖
)

𝑡

>

= ⟨𝛾𝑡
>
𝑖

⟩. By Definition 4.3, 𝛾
𝑖
(𝑧) =

sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡
>
𝑖

⟩} and 𝛾
𝑖𝑖

(𝑧) = sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡
>
𝑖

⟩}.  Also, by Theorem 4.7, ⟨𝛾
𝑖
⟩ (𝑧) =
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sup {𝑡 ∣ 𝑧 ∈ ⟨𝛾𝑡
>
𝑖

⟩}. Thus 𝛾
𝑖𝑖

= ⟨𝛾
𝑖
⟩. Therefore, by Lemma 4.6, 𝛾

𝑖
= ⟨𝛾

𝑖
⟩. This implies 

(𝛾
𝑖
)

𝑡

>

= ⟨𝛾
𝑖
⟩

𝑡

>

. But (𝛾
𝑖
)

𝑡

>

= ⟨𝛾𝑡
>
𝑖

⟩. Thus ⟨𝛾
𝑖
⟩

𝑡

>

= ⟨𝛾𝑡
>
𝑖

⟩. 

 

Theorem 4.9. For a fuzzy set 𝛾 in a semiring 𝑆 with multiplicative identity, we have 

 

(i)    ⟨𝛾
𝑙
⟩ = 𝑆 ∘ 𝛾.    (ii)  ⟨𝛾

𝑟
⟩ = 𝛾 ∘ 𝑆.   

(iii) ⟨𝛾
𝑡
⟩ = 𝑆 ∘ 𝛾 ∘ 𝑆.    (iv)  ⟨𝛾

𝑖
⟩ = 𝛾 ∘ 𝛾 ∪ 𝑆 ∘ 𝛾 ∘ 𝑆.  

(v)  ⟨𝛾
𝑏

⟩ = 𝛾 ∪ 𝛾 ∘ 𝑆 ∘ 𝛾.   (vi)  ⟨𝛾
𝑞

⟩ = 𝛾 ∘ 𝑆 ∩ 𝑆 ∘ 𝛾. 

 

Proof. (i) Let 𝛼
𝑙

= 𝑆 ∘ 𝛾. Then, for any 𝑡 ∈ [0,1[, 

(𝛼
𝑙
)

𝑡

>

 = (𝑆 ∘ 𝛾)𝑡
>

 = 𝑆𝑓𝑡
>    by Lemma 3.2

 = ⟨𝛾𝑡
>
𝑙

⟩

 = ⟨𝛾
𝑙
⟩

𝑡

>

     by Lemma 4.8

 

Thus 𝛼
𝑙

= ⟨𝛾
𝑙
⟩. 

 

(ii) and (iii) follows similarly. 

 

(iv) Let 𝛼
𝑖

= 𝛾 ∘ 𝛾 ∪ 𝑆 ∘ 𝛾 ∘ 𝑆. Then, for any 𝑡 ∈ [0,1[, 

(𝛼
𝑖

)
𝑡

>

 = (𝛾 ∘ 𝛾 ∪ 𝑆 ∘ 𝛾 ∘ 𝑆)𝑡
>

 = (𝛾 ∘ 𝛾)𝑡
> ∪ (𝑆 ∘ 𝛾 ∘ 𝑆)𝑡

>    by Lemma 3.2

 = 𝛾𝑡
>𝛾𝑡

> ∪ 𝑆𝛾𝑡
>𝑆     by Lemma 3.2

 = ⟨𝛾𝑡
>
𝑖

⟩

 = ⟨𝛾
𝑖
⟩

𝑡

>

 by Lemma 4.8

 

Thus 𝛼
𝑖

= ⟨𝛾
𝑖
⟩. 

 

(v) Let 𝛼
𝑏

= 𝛾 ∪ 𝛾 ∘ 𝑆 ∘ 𝛾. Then, for any 𝑡 ∈ [0,1[, 
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(𝛼
𝑏

)
𝑡

>

 = (𝛾 ∪ 𝛾 ∘ 𝑆 ∘ 𝛾)𝑡
>

 = 𝛾𝑡
> ∪ (𝛾 ∘ 𝑆 ∘ 𝛾)𝑡

>    by Lemma 3.2

 = 𝛾𝑡
> ∪ 𝛾𝑡

>𝑆𝛾𝑡
>    by Lemma 3.2

 = ⟨𝛾𝑡
>

𝑏

⟩

 = ⟨𝛾
𝑏

⟩
𝑡

>

      by Lemma 4.8

 

Thus 𝛼
𝑏

= ⟨𝛾
𝑏

⟩. 

 

(vi) Let 𝛼
𝑞

= 𝛾 ∘ 𝑆 ∩ 𝑆 ∘ 𝛾. Then, for any 𝑡 ∈ [0,1[, 

(𝛼
𝑞

)
𝑡

>

 = (𝛾 ∘ 𝑆 ∩ 𝑆 ∘ 𝛾)𝑡
>

 = (𝛾 ∘ 𝑆)𝑡
> ∩ (𝑆 ∘ 𝛾)𝑡

>  by Lemma 3.2

 = 𝛾𝑡
>𝑆 ∩ 𝑆𝛾𝑡

>by Lemma 3.2

 = ⟨𝛾𝑡
>

𝑞

⟩

 = ⟨𝛾
𝑞

⟩
𝑡

>

by Lemma 4.8.

 

Thus 𝛼
𝑞

= ⟨𝛾
𝑏

⟩. 

 

 

5 Generated fuzzy ideals in a semiring without multiplicative identity 

 

The following results are well known in classical algebra in a semiring without 

multiplicative identity: 

 

Lemma 5.1. Let A be a non-empty subset of a semiring S without multiplicative 

identity. Then 

(1) ⟨𝐴
𝑙

⟩ = 𝐴 ∪ 𝑆𝐴     (2) ⟨𝐴
𝑟

⟩ = 𝐴 ∪ 𝐴𝑆   

(3) ⟨𝐴
𝑡

⟩ = 𝐴 ∪ 𝑆𝐴 ∪ 𝐴𝑆 ∪ 𝑆𝐴𝑆 (4) ⟨𝐴
𝑖

⟩ = 𝐴 ∪ 𝐴2 ∪ 𝑆𝐴𝑆  

(5) ⟨𝐴
𝑏

⟩ = 𝐴 ∪ 𝐴2 ∪ 𝐴𝑆𝐴  (6) ⟨𝐴
𝑞

⟩ = (𝐴 ∪ 𝑆𝐴) ∩ (𝐴 ∪ 𝐴𝑆) 

 

Lemma 5.2. For a fuzzy set 𝛾 in a semiring 𝑆 without multiplicative identity and 𝑡 ∈

[0,1), we have 
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(i)  (𝛾
𝑙𝑙

)
𝑡

>

= ⟨𝛾𝑡
>
𝑙

⟩    (ii) (𝛾
𝑟𝑟

)
𝑡

>

= ⟨𝛾𝑡
>

𝑟

⟩    (iii) (𝛾
𝑡𝑡

)
𝑡

>

= ⟨𝛾𝑡
>

𝑡

⟩ 

(iv) (𝛾
𝑖𝑖

)
𝑡

>

= ⟨𝛾𝑡
>
𝑖

⟩    (v) ( 𝛾
𝑏𝑏

)
𝑡

>

= ⟨𝛾𝑡
>

𝑏

⟩    (vi) ( 𝛾
𝑞𝑞

)
𝑡

>

= ⟨𝛾𝑡
>

𝑞

⟩ 

 

Proof. (i) Consider 𝑧 ∈ (𝛾
𝑙𝑙

)
𝑡
. Therefore 𝛾

𝑙𝑙
(𝑧) > 𝑡. This implies that sup {𝑡𝑖 ∣ 𝑧 ∈

⟨𝛾𝑡𝑖

>
𝑙

⟩} > 𝑡. Consequently, there exists 𝑡0 > 𝑡 and 𝑧 ∈ 𝛾𝑡0

> ∪ 𝑆𝛾𝑡0

> ⊆ 𝛾𝑡
> ∪ 𝑆𝛾𝑡

>. Hence 

𝑧 ∈ ⟨𝛾𝑡
>
𝑙

⟩. 

Conversely, let 𝑧 ∈ ⟨𝛾𝑡
>
𝑙

⟩. Then 𝑧 ∈ 𝛾𝑡
> ∪ 𝑆𝛾𝑡

>. Therefore, either 𝑧 ∈ 𝛾𝑡
> or 𝑧 ∈

𝑆𝛾𝑡
>. 

Suppose 𝑧 ∈ 𝛾𝑡
>. Then 𝛾(𝑧) > 𝑡. Choose 𝑡0 such that 𝛾(𝑧) > 𝑡0 > 𝑡. Then 𝑧 ∈

𝛾𝑡0
⊆ ⟨𝛾𝑡0

>
𝑙

⟩ for some 𝑡0 > 𝑡. Thus, 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑙

⟩ for some 𝑡𝑖 > 𝑡 and as a result, we get, 

sup {𝑡𝑖 ∣ 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑙

⟩} > 𝑡. That is 𝑧 ∈ (𝛾
𝑙𝑙

)
𝑡

> 

. 

Suppose 𝑧 ∈ 𝑆𝛾𝑡
>, then 𝑧 = 𝑠𝑎 for some 𝑎 ∈ 𝛾𝑡

> and 𝑠 ∈ 𝑆. Choosing 𝑡1 such 

that 𝛾(𝑎) > 𝑡1 > 𝑡, we get 𝑎 ∈ 𝛾𝑡1
. Then 𝑧 = 𝑠𝑎 ∈ 𝑆𝛾𝑡1

> . Therefore 𝑧 = 𝑠𝑎 ∈ 𝑆𝛾𝑡1

> ⊆

⟨𝛾𝑡1

>
𝑙

⟩, where 𝑡1 > 𝑡. Thus 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑙

⟩for some 𝑡𝑖 > 𝑡 and as a result sup {𝑡𝑖 ∣ 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑙

⟩} >

𝑡. Hence, 𝑧 ∈ (𝛾
𝑙𝑙

)
𝑡

>

. 

 

(ii) and (iii) follows similarly. 

 

(iv) Consider 𝑧 ∈ (𝛾
𝑖𝑖

)
𝑡
. Therefore 𝛾

𝑖𝑖
(𝑧) > 𝑡. This implies that sup{𝑡𝑖 ∣ 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑖

⟩} > 𝑡. 

Consequently. there exists 𝑡0 > 𝑡 and 𝑧 ∈ 𝛾𝑡0

> ∪ 𝛾𝑡0

> 𝛾𝑡0

> ∪ 𝑆𝛾𝑡0

> 𝑆 ⊆ 𝛾𝑡
> ∪ 𝛾𝑡

>𝛾𝑡
> ∪ 𝑆𝛾𝑡

>𝑆. 

Hence 𝑧 ∈ ⟨𝛾𝑡
>
𝑖

⟩. 
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Conversely, let 𝑧 ∈ ⟨𝛾𝑡
>
𝑖

⟩. Then 𝑧 ∈ 𝛾𝑡
> ∪ 𝛾𝑡

>𝛾𝑡
> ∪ 𝑆𝛾𝑡

>𝑆. Therefore, either 𝑧 ∈

𝛾𝑡
>or 𝑧 ∈ 𝛾𝑡

>𝛾𝑡
>or 𝑧 ∈ 𝑆𝛾𝑡

>𝑆. Suppose 𝑧 ∈ 𝛾𝑡
>. Similar to part (i), it can be shown easily 

that sup {𝑡𝑖 ∣ 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑙

⟩} > 𝑡. 

If 𝑧 ∈ 𝛾𝑡
>𝛾𝑡

>, then 𝑧 = 𝑎1𝑎2 for some 𝑎1, 𝑎2 ∈ 𝛾𝑡
>. Choosing 𝑡1, 𝑡2 such that 

𝛾(𝑎1) > 𝑡1 > 𝑡 < 𝑡2 < 𝛾(𝑎2), we get 𝑎1 ∈ 𝛾𝑡1

> and 𝑎2 ∈ 𝛾𝑡2

> . Write 𝑡3 = min{𝑡1, 𝑡2}. 

Then 𝑎1, 𝑎2 ∈ 𝛾𝑡3

> . Therefore, 𝑧 = 𝑎1𝑎2 ∈ 𝛾𝑡3

> 𝛾𝑡3

> ⊆ ⟨𝛾𝑡3

>
𝑖

⟩, where 𝑡3 > 𝑡. 

If 𝑧 ∈ 𝑆𝛾𝑡
>𝑆, then 𝑧 = 𝑠1 a 𝑠2 for some 𝑎 ∈ 𝛾𝑡

>and 𝑠1, 𝑠2 ∈ 𝑆. Choosing 𝑡4 such 

that 𝛾(𝑎1) > 𝑡4 > 𝑡. Then, 𝑧 ∈ 𝛾𝑡4

> ⊆ ⟨𝛾𝑡4

>
𝑖

⟩. Therefore, 𝑧 = 𝑠1 a 𝑠2 ∈ 𝑆𝛾𝑡4

> 𝑆 ⊆ ⟨𝛾𝑡4

>
𝑖

⟩, 

where 𝑡4 > 𝑡. Hence, under all circumstances we have, 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑖

⟩ for some 𝑡𝑖 > 𝑡 and 

as a result sup {𝑡𝑖 ∣ 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑖

⟩} > 𝑡. That is 𝑧 ∈ (𝛾
𝑖𝑖

)
𝑡

>

. 

(v) Consider 𝑧 ∈ ( 𝛾
𝑏𝑏

)
𝑡

>

. Therefroe 𝛾
𝑏𝑏

(𝑧) > 𝑡. This implies that sup{𝑡𝑖 ∣ 𝑧 ∈ ⟨𝛾𝑡i

>
𝑏

⟩} > 𝑡. 

Consequently, there exists 𝑡0 > 𝑡 and 𝑧 ∈ 𝛾𝑡0

> ∪ 𝛾𝑡0

> 𝛾𝑡0

> ∪ 𝛾𝑡0

> 𝑆𝛾𝑡0

> ⊆ 𝛾𝑡
> ∪ 𝛾𝑡

>𝛾𝑡
> ∪

𝛾𝑡
>𝑆𝛾𝑡

>. Hence, 𝑧 ∈ ⟨𝛾𝑡
>

𝑏

⟩. 

Conversely, let 𝑧 ∈ ⟨𝛾𝑡
>

𝑏

⟩. Then 𝑧 ∈ 𝛾𝑡
> ∪ 𝛾𝑡

>𝛾𝑡
> ∪ 𝛾𝑡

>𝑆𝛾𝑡
>. Therefore either 𝑧 ∈

𝛾𝑡
> or 𝑧 ∈ 𝛾𝑡

>𝛾𝑡
> or 𝑧 ∈ 𝛾𝑡

>𝑆𝛾𝑡
>. Suppose 𝑧 ∈ 𝛾𝑡

>. Similar to part (i), it can be shown 

easily that sup {𝑡𝑖 ∣ 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑏

⟩} > 𝑡. 

If 𝑧 ∈ 𝛾𝑡
>𝛾𝑡

>, similar to part (iv), it can be shown easily that sup {𝑡𝑖 ∣ 𝑧 ∈

⟨𝛾𝑡𝑖

>
𝑏

⟩} > 𝑡. 

If 𝑧 ∈ 𝛾𝑡
>𝑆𝛾𝑡

>, then 𝑧 = 𝑎1𝑠𝑎2 for some 𝑎1, 𝑎2 ∈ 𝛾𝑡
>and 𝑠 ∈ 𝑆. Choosing 𝑡1

′ , 𝑡2
′  

such that such that 𝛾(𝑎1) > 𝑡1
′ > 𝑡 < 𝑡2

′ < 𝛾(𝑎2), we get 𝑎1 ∈ 𝛾𝑡1
′

>   and 𝑎2 ∈ 𝛾𝑡2
′

> . 

Write 𝑡3
′ = min{𝑡1

′ , 𝑡2
′ }. Then, 𝑎1, 𝑎2 ∈ 𝛾𝑡3

′
> . Therefore, 𝑧 = 𝑎1 s 𝑎2 ∈ 𝛾𝑡3

′
> 𝑆𝛾𝑡3

′
> ⊆ ⟨𝛾

𝑡3
′

>
𝑏

⟩, 
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where 𝑡3
′ > 𝑡. Hence, under all circumstances, we have, 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑏

⟩ for some 𝑡𝑖 > 𝑡 and 

as a result sup {𝑡𝑖 ∣ 𝑧 ∈ ⟨𝛾𝑡𝑖

>
𝑏

⟩} > 𝑡. That is 𝑧 ∈ ( 𝛾
𝑏𝑏

)
𝑡

>

. 

 

(vi) Follows from [13, Lemma 3.4]. 

 

Note: Since the Theorem 4.5, Lemma 4.7, Theorem 4.7, Lemma 4.8 also holds when 𝑆 

is a semiring with multiplicative identity, therefore, we omit the proofs. 

 

Theorem 5.3. For a fuzzy set 𝛾 in a semiring 𝑆 without multiplicative identity, we 

have. 

(i)  ⟨𝛾
𝑟

⟩ = 𝛾 ∪ 𝛾 ∘ 𝑆. 

(ii)  ⟨𝛾
𝑙
⟩ = 𝛾 ∪ 𝑆 ∘ 𝛾. 

(iii) ⟨𝛾
𝑡
⟩ = 𝛾 ∪ 𝛾 ∘ 𝑆 ∪ 𝑆 ∘ 𝛾 ∪ 𝑆 ∘ 𝛾 ∘ 𝑆. 

(iv) ⟨𝛾
𝑖
⟩ = 𝛾 ∪ 𝛾 ∘ 𝛾 ∪ 𝑆 ∘ 𝛾 ∘ 𝑆. 

(v)  ⟨𝛾
𝑏

⟩ = 𝛾 ∪ 𝛾 ∘ 𝛾 ∪ 𝛾 ∘ 𝑆 ∘ 𝛾. 

(vi) ⟨𝛾
𝑞

⟩ = (𝛾 ∪ 𝑆 ∘ 𝛾) ∩ (𝛾 ∪ 𝛾 ∘ 𝑆). 

 

Proof. (i) Let 𝛼
𝑟

= 𝛾 ∪ 𝛾 ∘ 𝑆. Then, for any 𝑡 ∈ [0,1[, 

(𝛼
𝑟

)
𝑡

>

 = (𝛾 ∪ 𝛾 ∘ 𝑆)𝑡
>

 = 𝛾𝑡
> ∪ (𝛾 ∘ 𝑆)𝑡

>     by Lemma 3.2

 = 𝛾𝑡
> ∪ 𝛾𝑡

>𝑆      by Lemma 3.2

 = ⟨𝛾𝑡
>

𝑟

⟩

 = ⟨𝛾
𝑟

⟩𝑡
>      by Lemma 4.8

 

Thus 𝛼
𝑟

= ⟨𝛾
𝑟

⟩. 

 

(ii) and (iii) follows similarly. 

 

(iv) Let 𝛼
𝑖𝑛

= 𝛾 ∪ 𝛾 ∘ 𝛾 ∪ 𝑆 ∘ 𝛾 ∘ 𝑆. Then, for any 𝑡 ∈ [0,1[, 
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(𝛼
𝑖𝑛

)
𝑡

>

 = (𝛾 ∪ 𝛾 ∘ 𝛾 ∪ 𝑆 ∘ 𝛾 ∘ 𝑆)𝑡
>

 = 𝛾𝑡
> ∪ (𝛾 ∘ 𝛾)𝑡

> ∪ (𝑆 ∘ 𝛾 ∘ 𝑆)𝑡
>  by Lemma 3.2

 = 𝛾𝑡
> ∪ (𝛾𝑡

>𝛾𝑡
>) ∪ (𝑆𝛾𝑡

>𝑆)  by Lemma 3.2

 = ⟨𝛾𝑡
>
𝑖

⟩

 = ⟨𝛾
𝑖
⟩𝑡

>by Lemma 4.8.

 

Thus 𝛼
𝑖𝑛

= ⟨𝛾
𝑖
⟩. 

(v) Let 𝛼
𝑏

= 𝛾 ∪ 𝛾 ∘ 𝛾 ∪ 𝛾 ∘ 𝑆 ∘ 𝛾. Then, for any 𝑡 ∈ [0,1[, 

(𝛼
𝑏

)
𝑡

>

 = (𝛾 ∪ 𝛾 ∘ 𝛾 ∪ 𝛾 ∘ 𝑆 ∘ 𝛾)𝑡
>

 = 𝛾𝑡
> ∪ (𝛾 ∘ 𝛾)𝑡

> ∪ (𝛾 ∘ 𝑆 ∘ 𝛾)𝑡
>      by Lemma 3.2

 = 𝛾𝑡
> ∪ (𝛾𝑡

>𝛾𝑡
>) ∪ (𝛾𝑡

>𝑆𝛾𝑡
>)        by Lemma 3.2

 = ⟨𝛾𝑡
>

𝑏

⟩

 = ⟨𝛾
𝑏

⟩𝑡
>       by Lemma 4.8

 

Thus 𝛼
𝑏

= ⟨𝛾
𝑏

⟩. 

 

(vi) Follows from [19, Theorem 3.9] 
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