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Abstract 

Acoustic field equations, as well as the conservation of energy and momentum are determined 
using quaternionic momentum-eigen value equation. The pressure and vector velocity are 
shown to be connected to the scalar and vector wave functions, respectively. When the 
pressure and velocity are determined to satisfy a wave equation traveling at c, the source and 
force are chosen. Maxwell’s electrodynamics with a vanishing magnetic field and a nonzero 
scalar (longitudinal) wave is demonstrated to be comparable to a sound wave with external force 
and source. However, the velocity and pressure satisfy the Klein–Gordon equation under 
specific conditions. This condition can be found in London’s superconductivity. A horn wave 
that obeys the Klein-Gordon equation connects the horn’s cross-sectional area to an external 
source and force densities. 
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1      Introduction 

Burns et al. offer an acoustic field theory that describes the local vector features of longitudinal (curl-free) 
acoustic fields [1]. They believe their method explains the recently discovered nonzero spin angular 
momentum density in inhomogeneous sound fields in fluids or gases. They also stated that the typical 
acoustic Lagrangian formulation with a scalar potential is incapable of effectively describing such vector 
features of acoustic fields. By incorporating a displacement vector potential equivalent to the 
electromagnetic vector potential  [2], a scalar field theory is obtained. Note that the Dirac and Klein-

Gordon fields have spin  and , respectively. The spin of the particle (field) determines its statistical 

behavior. In the realm of quantum mechanics, it is argued that spin is a relativistic behavior of the field. 

The Dirac and Klein-Gordon equations describe spinor and scalar fields, respectively. These equations 
are generalizations to the nonrelativistic Schrodinger equation. It  was argued by Maxwell that the 
electromagnetic field bears a fluid aspect. This can be realized if we express the energy- momentum 
tensor of the electromagnetic field analogously to that of a fluid. The electric current and voltage in the 
transmission line are found to have this pattern in addition to the quantum field as represented by the 
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telegraph equation [3]. The obtained system of equations can be used to describe the quantum 
mechanics of massive bosons. An energy-momentum tensor is also associated with the scalar field 
described by the Klein-Gordon equation. Acoustic waves can have a similar behavior. To this aim, we 
replace the wave function in this equation with the velocity field. They are also related to Euler’s 
equation (conservation of momentum density) and the continuity equation [4]. The pressure, velocity, 
force, and source satisfy the Klein-Gordon equation when sound is subjected to external force and 
source. Interestingly, electromagnetic, quantum, and sound waves all have analogous properties. In field 
theory, a Lagrangian formalism is adopted from which the field equations and the energy-
momentum tensors are derived. This tensor satisfies energy and momentum conservation equations. 
We will employ here quaternions to develop acoustic field theory, which was obtained differently by 
Burns et al. Quaternions are generalization to complex number endowed with interesting algebraic 
merits. Quaternions are a non-abelian group of order 8 [5]. They also have intriguing geometrical 
aspects that let them have wide applications. Their salient property is that they are noncommutative, 
and this make them excellent candidates to describe quantum operators. A single quaternionic 
equation yields four equations. This helps unifies several physical laws emerging from a single 
entity. Maxwell equations were originally written in terms of quaternions. However, the quantum 
electrodynamics is formulated in terms of tensors. We would like here to avail quaternionic algebraic 
properties to formulate acoustics as a field theory rather than a wave theory. We need field parameters 
to achieve this. The velocity and pressure are linked to space and time derivatives of the scalar potential 
describing the acoustic wave. The acoustic wave is depicted as moving like a fluid with an energy 
density and a stress tensor. Recently, it is found that the Klein-Gordon equation can be associated 
with acoustical phenomena relating acoustic phenomena to quantum ones [6]. Earlier, it is shown that 
the Webster equation can be expressed in a Schrodinger-like form bring acoustic to quantum effect [7]. 
 

 

2      Vector quantum mechanics 

A new formulation of quantum mechanics that copes with transmission lines is introduced [8]. Here 
the wave behavior of the electrons due to their mass is the same as that due to their charge that was 
characterized by electromagnetism. We express the quaternionic momentum eigen-value equation by 
[3] 

 

                                                                    (1) 

 

where ψ0 and ψ⃗  describe the wave functions of the particle.  These wave functions describe the matter 
wave associated with the particle mass. They are analogous to the scalar and vector potentials in 
electrodynamics associated with the charge’s electromagnetic field. Expanding the quaternion product   
 

 in eq.(1) and writing     and  , yields
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    (2)



 
 
 
      Journal of Computational Analysis and Applications                                                                       VOL. 34, NO.1 , 2025 

 
 
 

                                                                                                                   191                                    Arbab et al 188-199 

which yields the two-wave equations 

 

                                                                                           (3) 

and 
 

                                                                                   (4)    

 

  where  is the particle mass, the  and   are analogous to   and , are the particle wave 

functions, respectively. As in Dirac’s theory of an electron, the group velocity of the 

telegraph wave is equal to the speed of light in a vacuum. . However velocity of the classical 

telegraph wave depends on the wire properties, viz., , where  and  are 

inductance and capacitance per unit length of the wire. The telegraph equation describes 

the propagation of electric signals in transmission lines. They are expressed as [15] 

                                                              (3a) 

and 
 

                                                           (4a)                        

     

 

where  is the conductance per unit length of the wire. These are longitudinal waves 
analogous to acoustic waves. 
Equations (3) and (4) can be called dissipative Klein-Gordon equation. It is also known as 
the undistorted telegraph equation that preserves the identity of the traveling particle. 
In electromag- netism,     and    are  analogous  to  the  electric  and  magnetic  fields,  
respectively.  However,   and iare analogous to the scalar and vector potentials,  

and ,  respectively.  In quantum mechanics, the wave functions  and   represent an 
undistorted traveling wave packet.  Sound wave also travels in a medium due to pressure 
and velocity field variations, and therefore we would expect their intensity to decrease as 
time goes on. 
 

 
1For two quaternions,  one has ). 

The energy and momentum conservation equations of the matter wave described by eq.(2) 
are 
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                                                               (5) 

and 
 

,                                        (6) 

Where 
 

 .                                           (7) 

 

One can now combine  and  in a single tensor, the energy-momentum tensor, as 

 

 

                                                        (8) 

 

Intriguingly, eq.(8) does not involve the particle mass but its field only though the particle 
has mass. This is unlike the situation with Klein-Gordon and Dirac equations. The 
electromagnetic field that Maxwell envisaged as a fluid has stress tensor [2] 

 

                                                  (9) 

 
The energy-momentum tensor of a scalar field is given by 
 

                                                           (10) 

One  now  defines  the  energy  and  momentum  densities  of  the  matter-wave  as  and 
,  respectively. The energy and momentum tensor, eq.(6) for matter waves, are analogous 

to that of the electromagnetic and scalar fields, eqs.(9) and (10). 
Burnt et al. described the acoustic dynamics in the absence of external forces and sources 
by [1] 
 

                                            (11) 

 

Where   .  They employ a scalar potential  and define   

 

                                                                    (12) 
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The free scalar field Lagrangian is defined by    

which can be written as 

,                                                                                            (13) 

 

for sound, employing eq.(12). Setting up the sound Lagrangian, one can easily 
derive the field equation of motion and the energy and momentum conservation 
equations. 

Comparing eq.(2) and (12) reveals that 
 

.                                                                              (14) 

One can similarly reduce   and to one scalar using the definition 
 

                                 .                                       

(15)     

This choice would require , as evident from eq.(2). Therefore, the right-hand side 
of eq.(5) vanishes. Hence, the system becomes classical (ℏ disappears). Therefore, the 
acoustic wave we are dealing with has no quantum character. 
     Taking the divergence of the first equation in eq.(11) and using the second one, yields 
 
                                                           

                                                                   (16) 

 

Therefore, ⃗   and   satisfy  a  wave  equation.  Manipulation  of  Eq.(11)  yields  the  
”Poynting”  vector, energy density, and stress tensor of the acoustic wave as 

 

                                                                         (17) 

Where 

                                                  (18) 

 

3      Sound wave under external force and source 

A wave can move under external force and a source. Let us now consider the acoustic 
theory with force and source as expressed by 2 [1] 
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,                                                        (19) 

 

2We define   instead of  

Taking the divergence of the first equation in eq.(19) and the time-derivative of the second 
equation, yields 

                                                                         (20) 

and 

 

 .                                                                      (21)     

      

If the pressure and velocity satisfy a wave equation traveling at speed , then 

 

                                                                         (22) 

 

Hence, eq.(22) reveals that the source and force satisfy a wave equation too. Equation 
(22) shows that the force and source satisfy the same equation as that of  and ⃗ .  The 
first equation in eq.(22) represents the mass-like conservation and the second one Euler-
like (momentum) equation. Equation (20) can be expressed as a continuity-like equation 
when expressed in the form 

 

                                                                 (23) 

 

One can thus consider new transformations 

 

                                                                              (24) 

 

that are similar to the gauge transformations of the vector and scalar potentials of 
electromagnetism [2]. Therefore, eq.(19) is invariant under the transformations in eq.(24). 
Now the pressure and velocity in eqs.(20) and (21) can be made to satisfy the Klein-
Gordon equation upon choosing 

                                                                             (25) 

and 
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                                                                                       (26) 

 

where  is a constant having dimension of length. This situation is analogous to London’s 
equations of superconductivity [9]. Now eqs.(25) and (26) reveal that the force and source 
satisfy the Klein- Gordon equation, viz., 

                                              (27) 

Manipulations of eqs.(25) and (26) show that 

 

                                            (27a) 

Dotting the first equation in eq.(19) by ⃗   and use the second one yields 

 

                                                                         (28) 

and multiplying the first equation by   and the second one by , yield 

 

.                                                                    (29) 

 
Equation (28) is the energy equation of sound in the presence of a source and force. 

Here   represents the energy flux carried by the wave which follows that of Umov [10]. The 
right-hand side 
on eq.(28) represents the power density lost and gained by the fluid (air), and the right-hand 
side on 
eq.(29) represents the force density acting on the fluid (air). Thus, a sound wave has a 
characteristic 

of a wave and a particle at the same time. This is reminiscent of Einstein’s mass-energy 
equivalence. 
Therefore, sound exhibits wave and particle nature. This phenomenon is found to be reflected 
by 
quantum particles. Therefore, the above formalism of sound exhibits a quantum nature of 
sound 
waves. 
Following eq.(13) and (19), the sound Lagrangian including external source and force can be 
expressed as 
 

 .                                                                (30) 
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4       Flow of electric charge in electromagnetism 

We are interested in electromagnetism where the medium is filled with electric charges and 
currents. The electromagnetic field satisfies a wave equation traveling at the speed of light in 
a vacuum. However, not only the electromagnetic field travels in free space at the speed of 
light but in any medium governed by [11] 

 

                                                                           (31) 

 

These equations imply that any change in  and  is transmitted as a wave traveling at the 
speed of light. Manipulations of the above equation yield the wave equations 

                                                   (32) 

Thus, interestingly the electric current travels at the speed of light in a vacuum. The flow of 
current conserves energy and momentum governed by 

 

                                                                   (33) 

where 

 

                           .           (34) 

 

5      Webster horn equation 

An interesting acoustic (sound) equation is that due to Webster [12]. It describes the 
propagation of sound waves in 1-dimension inside horns with a variable cross-section,  
. It is given by 

 

             ,                                                (35) 

 

Which when combined yield 

                                                                       (36) 

 

where  and  are the velocity field and pressure. It reduces to the Klein-Gordon equation 
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                                                                      (37) 

With 

.                                                                                (38) 

 
When eqs.(25) and (26) are combined with eq.(38), the cross-sectional area  can be 
connected with  the  source  and  force  densities,    and .   Three  interesting  types  of  
horns  are  those  having parabolic, conical, and exponential shapes (see the figure) [13]. 
The effective mass ( ) of the traveling wave across the horn will depend on the form of 
the horn, as evident from eq.(38). The horn is characterized by its impedance which is 
defined as the complex ratio between the sound pressure  and particle velocity v,  i.e.,  
  .  The horn exhibits resonance characteristics due to the large change in 
acoustic impedance waves in passing from the mouth to the free atmosphere (air) [14]. 
 
 
 

 

 

 

      A horn with a conical cross-section 
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A horn with an exponential cross-section area ( ) 

 
 

 
 

A horn with a parabolic cross-section 
 

Figure 1: Horn different cross-sections 

6      Concluding remarks 

We used quaternions to develop acoustic field theory, which was obtained differently by 
Burns et al. The velocity and pressure are linked to a scalar potential describing the acoustic 
wave. The acoustic wave is seen as moving like a fluid with an energy density and a 
stress tensor. The energy and momentum conservation equations for sound are determined 
with and without a source and an external force. The sound field equations are invariant 
under new transformations for the force and the source. Sound and quantum waves are 
discovered to have comparable properties. The pressure and velocity of the sound wave 
satisfy the Klein-Gordon equation under particular conditions. This ensures that sound is a 
mass-carrying field. Electromagnetic, quantum, and acoustic waves all share several 



 
 
 
      Journal of Computational Analysis and Applications                                                                       VOL. 34, NO.1 , 2025 

 
 
 

                                                                                                                   199                                    Arbab et al 188-199 

characteristics. This helps us treat acoustic waves as a field endowed with energy and 
momentum. The energy-momentum tensor mimics that of an electromagnetic field, scalar, 
Dirac, and vector quantum waves. The source and force densities of a sound wave 
traveling inside a horn are related to the cross-sectional area of a horn. The horn’s 
nonuniform cross-sectional area exerts a force on the air inside it. 
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