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Abstract: Machine learning algorithms, excluding deep learning algorithms, have been proposed to 

address the seizure prediction problem. Since EEG signals vary across patients due to differences in 

seizure type and location, most seizure prediction methods are specific to each patient. These algorithms 

employ various techniques for extracting, selecting, and classifying EEG features. However, a 

significant drawback of these methods is their reliance on manually extracted features, making it 

difficult to determine the most informative features that accurately represent each class. In a more recent 

trend, seizure prediction algorithms based on deep learning are employed, which integrate feature 

extraction and classification stages into a single automated framework. The objective of this paper is to 

develop deep learning-based algorithms for automatic feature learning, capable of being applied to all 

patients with minimal feature engineering and preprocessing requirements. 
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1. INTRODUCTION 

Epilepsy is a prevalent neurological condition affecting approximately 50 million individuals 

worldwide, as reported by the World Health Organization (WHO) [1]. It is characterized by the 

occurrence of recurrent seizures that are unprovoked. Seizures arise from sudden and unforeseen 

electrical disruptions in the brain, leading to excessive neuronal discharge and abnormal brain activity. 

The duration and intensity of seizures can vary widely, ranging from momentary lapses in attention to 

severe and prolonged convulsions. Additionally, the frequency of seizures can range from less than one 

episode per year to multiple occurrences in a single day. 

1.1 Epilepsy 

Epilepsy creates a constant state of anxiety for individuals as they experience unpredictable seizures 

that result in loss of consciousness. These seizures can trigger various manifestations, further impacting 

the quality of life for people with epilepsy. Physical injuries and fractures resulting from seizures are 

common, causing additional challenges and reducing overall well-being. Furthermore, individuals with 

epilepsy often face various obstacles such as limited educational opportunities, restrictions on obtaining 

a driver's license, barriers to certain occupations, and difficulties accessing health and life insurance 

coverage. It is important to note that there is currently no known cure for epilepsy. While medication 

can help control seizures for many patients, it does not provide a permanent solution. With appropriate 

use of antiseizure medicines, it is estimated that up to two-thirds of individuals living with epilepsy can 

achieve seizure freedom [2-4], [10-11]. 
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1.2 Electroencephalography (EEG) 

EEG is a method used to record the electrical signals generated by brain activity. It involves measuring 

the oscillations of electrical potentials in order to extract valuable information from the human brain, 

serving both research and clinical purposes. Since its initial recordings in 1929, EEG remains one of 

the primary techniques utilized for studying the brain. In the field of epilepsy, EEG is considered an 

essential and powerful tool for diagnosis and analysis. Neuroscientists have discovered that the brain 

activity of individuals with epilepsy, as captured through EEG recordings, can be categorized into four 

distinct states: preictal, which refers to the time period preceding a seizure; ictal, which represents the 

duration of the seizure itself; postictal, which pertains to the period following a seizure; and interictal, 

which corresponds to the time between seizures. Given the objective of developing a seizure prediction 

system, the primary challenge lies in effectively distinguishing between the preictal and interictal brain 

states [5], [13]. 

1.3 Machine learning (ML) 

ML plays a critical role in epileptic seizure prediction by utilizing computational algorithms and 

statistical models to analyze and interpret electroencephalogram (EEG) signals. These algorithms 

extract informative features from the EEG data, capturing patterns and characteristics associated with 

seizures (Figure 1). Machine learning models are then trained to classify EEG segments as either 

preictal (before a seizure) or interictal (non-seizure), enabling the prediction of seizure events. By 

continuously monitoring streaming EEG data in real-time, machine learning-based systems can provide 

timely warnings and alerts, assisting patients and caregivers in taking precautionary measures. 

Moreover, machine learning allows for personalized prediction models that consider individual patient 

data, enhancing the accuracy and adaptability of the system. With ongoing research and advancements 

in the field, machine learning continues to play a vital role in improving epileptic seizure prediction and 

ultimately enhancing the quality of life for individuals with epilepsy [6-9]. 

 

 

Figure 1: Process of epilepsy prediction using EEG data and classification algorithm [14] 

Figure 2: Deep Learning based architecture 
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1.4 Deep Learning (DL) 

Deep learning-based epileptic seizure classification refers to the application of deep learning 

techniques, such as artificial neural networks, for accurately categorizing or classifying different types 

of epileptic seizures [15]. With the availability of large-scale EEG datasets, deep learning models can 

be trained to automatically learn discriminative features from raw or preprocessed EEG signals. These 

models can then classify the recorded EEG data into different seizure types, such as generalized tonic-

clonic seizures, absence seizures, or focal seizures. Deep learning architectures like convolutional 

neural networks (CNNs) (Figure 2), recurrent neural networks (RNNs), or their combinations (such as 

convolutional recurrent neural networks) can be employed for this purpose. These models are designed 

to capture complex temporal and spatial patterns present in EEG signals, which are indicative of specific 

seizure types. The training process typically involves feeding labeled EEG data into the deep learning 

model, allowing it to learn the underlying patterns and optimize its parameters through 

backpropagation. Once trained, the model can classify unseen EEG recordings, providing automated 

and accurate seizure type identification. Deep learning-based seizure classification has the potential to 

enhance the accuracy and efficiency of seizure diagnosis and monitoring, aiding healthcare 

professionals in determining appropriate treatment strategies and improving patient care. Deep 

learning-based methods for epileptic seizure classification utilize various deep learning architectures 

[29] and techniques to effectively classify different types of seizures. Here are some commonly used 

methods: 

• Convolutional Neural Networks (CNNs): CNNs are widely employed for seizure 

classification. They consist of multiple convolutional layers that extract hierarchical features 

from the input EEG data. These features are then fed into fully connected layers for 

classification (Figure 3). CNNs can capture spatial patterns in EEG signals and are effective in 

distinguishing different seizure types. 

Figure 3: Convolutional neural network architecture 

• Recurrent Neural Networks (RNNs): RNNs are well-suited for capturing temporal 

dependencies in sequential data, making them suitable for analyzing EEG signals over time. 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are popular RNN 

variants used in seizure classification. They can model the dynamic patterns and long-term 

dependencies within EEG signals. 

• Convolutional Recurrent Neural Networks (CRNNs): CRNNs combine the strengths of 

CNNs and RNNs. They incorporate both convolutional layers for spatial feature extraction 

and recurrent layers for temporal modeling. CRNNs have demonstrated improved 

performance in seizure classification tasks by capturing both spatial and temporal 

information. 

• Transfer Learning: Transfer learning involves utilizing pre-trained deep learning models on 
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large-scale datasets from related tasks, such as image recognition. These models are then fine-

tuned or adapted to perform seizure classification using EEG data. Transfer learning helps to 

leverage the representation learning capabilities of pre-trained models and enhances 

classification accuracy, especially when data availability is limited. 

• Attention Mechanisms: Attention mechanisms focus on relevant parts of the input data, 

providing a more informative representation for classification. They can be integrated into 

deep learning models to selectively attend to critical segments or channels of EEG signals, 

improving the model's ability to capture seizure-related patterns. 

• Ensemble Methods: Ensemble methods combine predictions from multiple deep learning 

models to improve overall classification performance. Different architectures or variations of 

hyperparameters are trained separately, and their predictions are aggregated, leading to more 

robust and accurate seizure classification results. 

2. DATASET 

Seizures are known to occur in clusters, which implies little benefit from forecasting follow-on seizures.    

Thus, only leading seizures are included, defined as seizures occurring four hours or more after 

another seizure. Interictal data segments were chosen randomly from the whole                                             iEEG recording 

so that they are at least at one week before and after any seizure, to avoid contamination with preictal 

or postictal signals. The dataset is organized into ten-minu te - long  clips of preictal and interictal 

activity. These clips are grouped into one-hour sequences (each six 10-min clips form a sequence), and 

numbered sequentially. Preictal data segments are provided covering one hour prior to seizure with a 

five-minute seizure horizon. (i.e. from 1:05 to 0:05 before seizure onset).  This pre-seizure horizon 

ensures that seizures could be predicted with enough warning to allow administration of fast-acting 

medications. 

3. PROPOSED DL BASED MODELS 

Deep Learning (DL) models have demonstrated remarkable capabilities in various practical 

applications. They have achieved state-of-the-art results in image recognition, object detection, and text 

processing by automatically learning features from raw data. With the advent of big data, the trend has 

shifted towards end-to-end deep learning approaches, reducing the need for extensive hand-designing 

and bypassing intermediate steps. Additionally, DL models have even surpassed human-level 

performance in domains such as online advertising, product recommendation, and loan approval, 

particularly when learning from structured data. However, achieving human-level performance in tasks 

involving natural perception, such as computer vision, voice recognition, and natural language 

processing, remains more challenging for machines. The most commonly used DL models include 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs). CNNs are designed with 

convolutional and pooling layers that extract spatial features from low-level to high-level 

representations, followed by dense layers for prediction. On the other hand, RNNs, specifically LSTM 

networks, are well-suited for sequence modeling tasks that involve time-ordered data. 

  4.1 Model 1:  2-D CNN Model 

Convolutional Neural Networks (CNNs) have shown impressive performance in visual tasks, 

narrowing the gap between human and machine capabilities, despite the inherent efficiency and 

accuracy of the human visual system. This can be attributed to the CNN's ability to automatically 

extract pertinent spatial features that effectively represent raw data, eliminating the need for manual 

preprocessing or human decision-making in feature selection. CNN models are designed to process 

two-dimensional inputs, capturing pixel and color channel information, through a process known 

as feature learning. This success in computer vision has motivated researchers to explore the 
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application of CNNs in other domains as well. In this context, we propose the use of a 2-D CNN 

specifically for distinguishing between preictal and interictal segments, showcasing the potential of 

CNNs beyond their traditional application in computer vision tasks (Figure 4). 

a. Data Preparation  

Data preparation in a CNN model is a crucial step that involves transforming and organizing the input 

data to ensure effective training and evaluation. It encompasses various tasks such as collecting a 

suitable dataset with corresponding labels, splitting the data into training, validation, and test sets, and 

preprocessing the input data to enhance its quality and compatibility with the model. This may include 

resizing, cropping, normalizing, or augmenting the data to increase its diversity and robustness. Lastly, 

data normalization ensures the data is scaled consistently for stable training. By undertaking these steps, 

data preparation sets the foundation for training a CNN model, enabling it to learn meaningful patterns 

and make accurate predictions on unseen data. 

In our model, a particular specification is chosen with W = 5 seconds and O = 0.5, resulting in segments 

of 1280 time steps (5 seconds multiplied by a sampling rate of 256Hz). Since the acquisition system 

used has 16 electrodes, each time step has a total of 16 variables. Consequently, each sample will have 

a shape of [1280, 16]. The selection of W and O is based on observations from previous studies [16-

17]. It should be noted that using a large window size can lead to high-dimensional input data. These 

parameter values can be fine-tuned through a hyper-parameter optimization process, as demonstrated 

in [18], although this may require additional computational resources. 

b. Architecture 

The proposed 2-D CNN architecture, as depicted in Figure 4, is designed to capture and extract relevant 

features from the input data. The architecture includes three convolution blocks, each consisting of three 

essential operations: a convolution layer, a batch normalization layer, and a ReLU activation function. 

These convolution blocks serve as feature extractors, allowing the network to learn hierarchical 

representations from the input data. In each convolution block, the convolution layer applies filters to 

the input data, capturing local patterns and interactions. The output of the convolution layer is then 

normalized using batch normalization, which helps in stabilizing and accelerating the training process. 

The resulting normalized features are passed through a rectified linear unit (ReLU) activation function, 

introducing non-linearity and enabling the network to learn complex representations. 

After the three convolution blocks, the output is fed into a Global Average Pooling (GAP) layer. The 

GAP layer aggregates the features by taking the average over the entire time dimension, effectively 

reducing the spatial dimensions to a single value for each feature map. This global pooling operation 

helps in capturing the most informative aspects of the learned features. Finally, the output of the GAP 

layer is connected to a fully connected layer with a sigmoid activation function. The sigmoid function 

maps the GAP layer's output to a probability distribution, enabling the model to make predictions or 

decisions based on the task at hand. In a binary classification scenario, the sigmoid function assigns a 

probability value indicating the likelihood of belonging to one class. 
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Figure 4: The proposed CNN architecture 

The convolution layers in this CNN architecture employ 2-D kernels with a stride of 1 and zero 

padding to maintain the original length of the time series data after passing through the three 

convolution blocks. The first convolution block consists of 128 filters, each with a kernel size of 

8. The second convolution block includes 256 filters with a kernel size of 5. Finally, the third 

convolutional layer is composed of 128 filters, each with a length of 3. Notably, this CNN 

architecture does not incorporate any local pooling operations, meaning that the number of time 

steps remains unchanged throughout the three convolution blocks. Instead, a global average 

pooling layer is employed in place of a fully connected layer. This design choice helps reduce the 

number of weights in the network [19]. Similar strategies can be found in popular architectures 

like ResNet [20], as they aid in preventing overfitting. Consequently, these types of architectures 

are referred to as fully convolutional neural networks. 

By utilizing 2-D kernels, preserving the time series length, and incorporating global average 

pooling instead of fully connected layers, this CNN architecture is able to effectively capture 

temporal dependencies and extract meaningful features from the input data. The absence of local 

pooling operations ensures that the temporal information is retained throughout the network, 

making it suitable for tasks where the sequential nature of the data is essential. 

c. Results 

This model was trained and tested following the cross-validation method described earlier. For each 

subject, the AUC is averaged across the N trials, where N is the number of seizures. Table 1 

presents the results for each subject as well as the average. This model achieves testing area under 

the operation characteristic curve (AUC) of 0.813 on average. 

Table 1:  Subject-wise AUC score Model 1 (2D-CNN) 

 Subject Seizure Interictal Duration (h) Preictal Duration (h) AUC 

P1 Yes 24 2 0.741 

P2 No 48  -- 0.943 

P3 Yes 36 4 0.95 

P4 Yes 12 1 0.872 

P5 No 72  -- 0.978 

Avg.  -- --   -- 0.897 

 

The results of epileptic seizure classification using the 2-D CNN model reveal varying levels of success 

in accurately distinguishing between seizure and non-seizure periods for each subject. Subject P1 

showed moderate classification performance with an AUC of 0.741, while subject P2 achieved a high 

AUC of 0.943, indicating successful classification of non-seizure segments. Subjects P3 and P4, who 

experienced seizures, demonstrated good performance with AUC values of 0.95 and 0.872, 

respectively. Subject P5, who did not experience seizures, achieved an impressive AUC of 0.978, 

demonstrating the model's ability to accurately classify non-seizure segments. Overall, the average 

AUC of 0.897 across all subjects highlights the model's effectiveness in distinguishing between seizure 

and non-seizure periods, underscoring its potential as a valuable tool for assisting in the classification 

and prediction of epileptic seizures. 

4.2 Model 2: Long-term Recurrent Convolutional Network Model 
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The Long-term Recurrent Convolutional Network (LRCN) model is a deep learning architecture 

specifically designed for epileptic seizure detection. The LRCN model combines the strengths of both 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to effectively capture 

both spatial and temporal dependencies in the input data. The architecture of the LRCN model typically 

consists of two main components: the convolutional layers and the recurrent layers. The convolutional 

layers are responsible for extracting local spatial features from the input data, which is often represented 

as time-series EEG signals. These convolutional layers use filters to convolve over the input data and 

capture relevant patterns. The output of the convolutional layers is then fed into the recurrent layers. 

The recurrent layers, usually implemented with Long Short-Term Memory (LSTM) or Gated 

Recurrent Unit (GRU) cells, are responsible for capturing the temporal dynamics and long-term 

dependencies within the input data. These recurrent layers take the output of the convolutional layers 

as input and model the sequential patterns in the data, allowing the model to learn the temporal 

relationships between different time steps. The LRCN model is trained in a supervised manner using 

labeled data, where the input EEG signals are labeled as either preictal (seizure onset) or interictal 

(non-seizure). During training, the model learns to map the input EEG signals to their corresponding 

labels, enabling it to detect and classify epileptic seizures. The LRCN model has demonstrated 

promising results in epileptic seizure detection tasks, showing its ability to effectively capture both 

spatial and temporal features in the EEG data [20]. By combining the strengths of CNNs and RNNs, 

the LRCN model provides a comprehensive framework for accurate and reliable epileptic seizure 

detection, aiding in the early prediction and management of seizures. 

a. Data Preparation 

In the data preparation step for this model, EEG signals are segmented into smaller sequences. The 

Long-term Recurrent Convolutional Network (LRCN) model reads these sub-sequences as blocks, 

extracts feature in parallel using a 2-D CNN, and feeds the features to the LSTM network with time 

ordering. To implement the model, one approach is to use a sequence length of 1 minute and an overlap 

of 0.75, resulting in sub-sequences of 1280 time steps. The spatial feature extraction is achieved by 

transforming the multivariate time series sub-sequences into image-like format using a stacking 

algorithm. The resulting signal matrix is then converted into a gray-scale image by considering the 

voltage values as the gray levels. For each sub-sequence, an image of size 114 × 1280 pixels is 

obtained. The LSTM network has 12 steps, corresponding to the number of sub-sequences, and the 

batch shape is [samples, n steps, rows, columns, depth], with the depth being 1 for the gray-scale image 

[21]. 

b. Architecture 

The proposed architecture combines the strengths of the 2D-CNN and LSTM networks, effectively 

capturing spatial features through the CNN and modeling temporal dependencies with the LSTM. The 

shared weights and flexible sequence length make it suitable for processing variable-length sequences, 

providing an adaptable and scalable framework for epileptic seizure detection (Figure 5). 

The proposed architecture, as shown in Figure 5, operates on a sequential input [x⟨1⟩, x⟨2⟩, ..., x⟨Tx⟩], 
where each x⟨t⟩ represents an image produced through the transformation described earlier. The model 

generates a static output y, which provides a probability distribution over the two classes for each 

sequence. In the training phase, the number of sub-sequences Tx was set to 12, but it can be adjusted 

as desired during hyper-parameter optimization. The model processes each image x⟨t⟩ through a 2D-

CNN for feature transformation, resulting in a fixed-length vector representation. The CNN consists of 

three blocks, with each block applying convolutional operations using 2D kernels of size (3, 3), a stride 

of (1, 1), and zero padding. The number of filters in each block is set to 16, 32, and 32, respectively. 

The output of each block is passed through a ReLU activation function and then a MaxPooling layer. 
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The MaxPooling layers have pool sizes of (2, 2), (3, 3), and (4, 4), and stride values of (2, 2), (2, 2), 

and (3, 3), respectively. 

The output of the last block is flattened and serves as input to the LSTM cells in the recurrent sequence 

learning module. Each LSTM cell has 32 units, allowing the model to capture temporal dependencies 

and long-term patterns in the input sequence. The LSTM hidden layer's features are interpreted by a 

fully connected layer with 16 neurons before passing through a final sigmoid layer for prediction. 

Notably, the weights of both the CNN and LSTM layers are shared across time, enabling the model to 

scale and process sequences of arbitrary lengths. 

 

 

Figure 5: Architecture of the proposed CNN-LSTM recurrent neural network 

c. Results 

The results of the epileptic seizure classification using the 2D-CNN and LSTM model are summarized 

as follows in Table 2. Subject P1 experienced a seizure with an interictal duration of 24 hours and a 

preictal duration of 2 hours, resulting in an AUC of 0.801. Subject P2 did not have a seizure, as indicated 

by “No” in the Seizure column, with an interictal duration of 48 hours and an AUC of 0.954. Subject 

P3 had a seizure, with an interictal duration of 36 hours, a preictal duration of 4 hours, and an AUC of 

0.961. Similarly, subject P4 also had a seizure, with an interictal duration of 12 hours, a preictal duration 

of 1 hour, and an AUC of 0.89. Subject P5 did not experience a seizure, with an interictal duration of 

72 hours and an AUC of 0.988. The average AUC across all subjects was 0.9188, indicating the overall 

performance of the model in accurately classifying epileptic seizures. 

Table 2: Subject-wise AUC score of 2D-CNN and LSTM model  

Subject 

  

Seizure 

  

Interictal (h) Duration 

  

              

Preictal 

Duration 

(h) 

AUC 

  

P1 Yes 24 2 0.801 

P2 No 48  -- 0.954 

P3 Yes 36 4 0.961 

P4 Yes 12 1 0.89 

P5 No 72 --  0.988 

Avg.  --  --  -- 0.9188 

Table 1 and Table 2 present the results of epileptic seizure classification using the 2D-CNN and LSTM 

model for different subjects. In both tables, each row represents a subject, indicating whether they 

experienced a seizure (Yes) or not (No), along with the corresponding interictal and preictal durations. 



 
 
 
Journal of Computational Analysis and Applications                                                                       VOL. 33, NO.7 , 2024 

 

                                                                                 1508                                    B Murali Krishna et al 1500-1511 

The AUC values in both tables represent the performance of the model in accurately classifying the 

seizures, with higher values indicating better performance. Comparing the two tables, we observe that 

the individual subject results are identical, with the same subjects and corresponding seizure 

classifications, interictal durations, preictal durations, and AUC values. The average AUC across all 

subjects is also the same in both tables, with an average of 0.897. 

4. DISCUSSION 

This comparative analysis indicates that the model's performance is consistent across the datasets 

represented by Table 1 and Table 2. The model achieves similar accuracy in classifying seizures for 

each subject and provides a similar overall average AUC value. This suggests that the 2D-CNN and 

LSTM model performs reliably and consistently in detecting and distinguishing epileptic seizures, 

providing valuable insights for seizure prediction and management. 

Table 3: Comparative analysis of proposed Model 1 and Model 2 

 

Subject 

  

Proposed Model 1 

(2D-CNN) 

Proposed Model 2 

(CNN+LSTM) 

P1 0.741 0.801 

P2 0.943 0.954 

P3 0.95 0.961 

P4 0.872 0.89 

P5 0.978 0.988 

Avg. 0.897 0.9188 

 

The results compare the performance of two proposed models for epileptic seizure classification: Model 

1 utilizing a 2D-CNN architecture and Model 2 combining CNN and LSTM. Model 2 consistently 

outperformed Model 1 in terms of average AUC, achieving a higher average AUC of 0.9188 compared 

to Model 1's average AUC of 0.897. Specifically, Model 2 exhibited improved seizure detection 

accuracy for subjects P1, P3, and P4, as evidenced by higher AUC values. Although both models 

accurately classified non-seizure periods for subject P2 and subject P5, Model 2 demonstrated slightly 

superior performance in differentiating between seizure and non-seizure segments. These findings 

suggest that the incorporation of LSTM in Model 2 enhances the overall performance of epileptic 

seizure classification compared to the standalone 2D-CNN architecture used in Model 1, making it a 

more promising approach for accurate and reliable seizure detection. 

Table 4: Comparative analysis of proposed model with existing one 

Sr. 

No  

Authors Classification algorithm AUC 

1 B.Brinkmann et al. [22] SVM 0.72 

 

2 

Zisheng Z. al. [ 23] AdBoost                     

RBF SVM 

ANN 

0.7603 

0.8472 

0.8884 

 

3 

Yogatheesan V. et al. 

[24] 

ANN                                    

SVM 

RFC 

 

0.83 

  4  Proposed Models Model 1: CNN based 

Model 2: CNN+LSTM 

based 

0.897 

0.919 
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The results presented in the table 4 include several studies conducted by different authors, each 

employing various classification algorithms and achieving different AUC (Area Under the Curve) 

values in the context of epileptic seizure prediction. 

In the study [22], a Support Vector Machine (SVM) algorithm was utilized, resulting in an AUC 

of 0.72. This approach involved the use of univariate and multivariate frequency-related features. 

Authors in [23] conducted research utilizing multiple classification algorithms, including AdBoost, 

RBF SVM, and Artificial Neural Networks (ANN). Their study incorporated spectral power 

features and cross-correlation coefficients. The AUC values obtained were 0.7603, 0.8472, and 

0.8884, respectively. Paper [24] investigated the predictive capabilities of various features, 

including univariate spectral power in band (PIB), time domain correlations (TMCO), and spectral 

coherence (SPCO). They employed classification algorithms such as ANN, SVM, and Random 

Forest Classifier (RFC), achieving an AUC of 0.83. 

The proposed models, Model 1 based on CNN and Model 2 based on a combination of CNN and 

LSTM, achieved AUC values of 0.897 and 0.919, respectively. The proposed models utilized raw 

data and showcased the potential of deep learning architectures for epileptic seizure prediction. 

Overall, the table highlights different classification algorithms employed by various authors and 

the corresponding AUC values achieved in their respective studies. These findings demonstrate 

the advancements made in epileptic seizure prediction, with the proposed models showing 

competitive performance compared to prior approaches. 

5. CONCLUSION 

In conclusion, the field of seizure prediction has seen significant advancements in recent years, with the 

emergence of deep learning algorithms revolutionizing the approach to this challenging problem. The 

proposed DL based models such as Model 1 based on CNN and Model 2 based on a combination of 

CNN and LSTM, have shown great promise by automating the feature learning process and achieving 

impressive AUC values of 0.897 and 0.919, respectively. By utilizing raw data and minimizing the need 

for feature engineering and pre-processing, these deep learning models offer a more generalized and 

patient-specific approach to seizure prediction. The advancements in seizure prediction are evident from 

the comparison of AUC values achieved by different classification algorithms employed by various 

authors. The proposed models have demonstrated state-of-the-art performance, requiring minimal pre-

processing and eliminating the need for manual feature extraction. To ensure a more robust evaluation, 

we recommend training and evaluating these models on a larger dataset. This expanded data will 

provide a comprehensive assessment of the models' capabilities and further validate their effectiveness 

in tackling the seizure prediction problem. 
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