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1. Introduction

Many mathematicians have studied in the area of the Bernoulli numbers and polynomials, Euler

numbers and polynomials, Genocchi numbers and polynomials, tangent numbers and polynomials,

poly-Bernoulli numbers and polynomials, poly-Euler numbers and polynomials(see [1-11]). In this

paper, we define modified degenerate poly-tangent polynomials and numbers and study some prop-

erties of the modified degenerate poly-tangent polynomials and numbers. Throughout this paper, we

always make use of the following notations: N denotes the set of natural numbers and Z+ = N∪{0}.
Carlitz [1] has defined the degenerate Stirling numbers of the first kind and second kind,

S1(n, k, λ) and S2(n, k, λ) by means of(
1− (1− t)λ

λ

)k

= k!
∞∑

n=k

S1(n, k, λ)
tn

n!
, (1.1)

(
(1 + λt)1/λ − 1

)k
= k!

∞∑
n=k

S2(n, k, λ)
tn

n!
. (1.2)

Howard [12] has defined the degenerate weighted Stirling numbers of the first kind and second

kind, S1(n, k, x, λ) and S2(n, k, x, λ) by means of

(1− t)λ−x

(
1− (1− t)λ

λ

)k

= k!
∞∑

n=k

S1(n, k, x, λ)
tn

n!
, (1.3)

(1 + λt)x/λ
(
(1 + λt)1/λ − 1

)k
= k!

∞∑
n=k

S2(n, k, x, λ)
tn

n!
. (1.4)

The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =

n−1∏
k=0

(x− λk).

The generalized raising factorial < x|λ >n with increment λ is defined by

< x|λ >n=
n−1∏
k=0

(x+ λk).
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for positive integer n, with the convention (x|λ)0 = 1. We also need the binomial theorem: for a

variable x,

(1 + λt)x/λ =
∞∑

n=0

(x|λ)n
tn

n!
.

The degenerate poly-Bernoulli numbers B(k)
n (λ) were introduced by Kaneko [5] by using the following

generating function

Lik(1− e−t)

1− (1 + λt)−1/λ
=

∞∑
n=0

B(k)
n (λ)

tn

n!
, (k ∈ Z), (1.5)

where

Lik(t) =
∞∑

n=1

tn

nk
(1.6)

is the kth polylogarithm function.

The degenerate poly-Euler polynomials E(k)
n (x, λ) are defined by generating function

Lik(1− e−t)

(1 + λt)1/λ + 1
(1 + λt)x/λ =

∞∑
n=0

E(k)
n (x, λ)

tn

n!
, (k ∈ Z). (1.7)

The familiar degenerate tangent polynomials Tn(x, λ) are defined by the generating func-

tion([7]): (
2

(1 + λt)2/λ + 1

)
(1 + λt)x/λ =

∞∑
n=0

Tn(x, λ)
tn

n!
, (|2t| < π). (1.8)

When x = 0, Tn(0, λ) = Tn(λ) are called the degenerate tangent numbers. The degenerate tangent

polynomials T
(r)
n (x, λ) of order r are defined by(

2

(1 + λt)2/λ + 1

)r

(1 + λt)x/λ =

∞∑
n=0

T(r)
n (x, λ)

tn

n!
, (|2t| < π). (1.9)

It is clear that r = 1 we recover the degenerate tangent polynomials Tn(x, λ).

The degenerate Bernoulli polynomials B
(r)
n (x, λ) of order r are defined by the following gener-

ating function (
t

(1 + λt)1/λ − 1

)r

(1 + λt)x/λ =

∞∑
n=0

B(r)
n (x, λ)

tn

n!
, (|t| < 2π). (1.10)

The degenerate Frobenius-Euler polynomials of order r, denoted by H
(r)
n (u, x, λ), are defined as(

1− u

(1 + λt)1/λ − u

)r

(1 + λt)x/λ =
∞∑

n=0

H(r)
n (u, x, λ)

tn

n!
. (1.11)

The values at x = 0 are called degenerate Frobenius-Euler numbers of order r; when r = 1, the

polynomials or numbers are called ordinary degenerate Frobenius-Euler polynomials or numbers.

The degenerate poly-tangent polynomials T (k)
n (x, λ) are defined by the generating function:

2Lik (1− e−t)

(1 + λt)2/λ + 1
(1 + λt)x/λ =

∞∑
n=0

T (k)
n (x, λ)

tn

n!
, (k ∈ Z). (1.12)

When x = 0, T
(k)
n (0, λ) = T

(k)
n (x, λ) are called the degenerate poly-tangent numbers. Many kinds

of of generalizations of these polynomials and numbers have been presented in the literature(see

[1-12]). In the following section, we introduce the modified degenerate poly-tangent polynomials

and numbers. After that we will investigate some their properties. We also give some relationships
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both between these polynomials and modified degenerate poly-tangent polynomials and between

these polynomials and cauchy numbers. Finally, we investigate the zeros of the modified degenerate

poly-tangent polynomials by using computer.

2. Modified degenerate poly-tangent polynomials

In this section, we define modified degenerate poly-tangent numbers and polynomials and pro-

vide some of their relevant properties.

The modified degenerate poly-tangent polynomials T (k)
n (x, λ) are defined by the generating

function:
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

(1 + λt)x/λ =

∞∑
n=0

T (k)
n (x, λ)

tn

n!
, (k ∈ Z). (2.1)

When x = 0, T (k)
n (0, λ) = T (k)

n (x, λ) are called the degenerate poly-tangent numbers. Upon setting

k = 1 in (2.1), we have

T (1)
n (x, λ) =

n∑
l=0

(
n

l

)
λn−1S1(l, 1)Tn−l(x, λ) for n ≥ 1.

By (2.1), we get

∞∑
n=0

T (k)
n (x, λ)

tn

n!
=

(
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

)
(1 + λt)x/λ

=
∞∑

n=0

T (k)
n (λ)

tn

n!

∞∑
n=0

(x|λ)n
tn

n!

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
T (k)
l (λ)(x|λ)n−l

)
tn

n!
.

(2.2)

By comparing the coefficients on both sides of (2.2), we have the following theorem.

Theorem 2.1. For n ∈ Z+, we have

T (k)
n (x, λ) =

n∑
l=0

(
n

l

)
T (k)
l (λ)(x|λ)n−l.

The following elementary properties of the degenerate poly-tangent numbers T (k)
n (λ) and poly-

nomials T (k)
n (x, λ) are readily derived form (2.1). We, therefore, choose to omit details involved.

Theorem 2.2. For k ∈ Z, we have

(1) T (k)
n (x+ y, λ) =

n∑
l=0

(
n

l

)
T (k)
l (x, λ)(y|λ)n−l.

(2) T (k)
n (2− x, λ) =

n∑
l=0

(−1)l
(
n

l

)
T (k)
n−l(2, λ) < x|λ) >l .

Theorem 2.3 For any positive integer n, we have

(1) T (k)
n (mx, λ) =

n∑
l=0

(
n

l

)
T (k)
l (x, λ)((m− 1)x|λ)n−l.

(2) T (k)
n (x+ 1, λ)− T (k)

n (x, λ) =

n−1∑
l=0

(
n

l

)
T (k)
l (x, λ)(1|λ)n−l.

(2.3)
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From (1.6), (1.8), and (2.1), we get

∞∑
n=0

T (k)
n (x, λ)

tn

n!
=

(
2
Lik
(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

)
(1 + λt)x/λ

=
∞∑
l=0

(
1− (1 + λt)−1/λ

)l+1

(l + 1)k
2(1 + λt)x/λ

(1 + λt)2/λ + 1

=
∞∑
l=0

1

(l + 1)k

l+1∑
i=0

(
l + 1

i

)
(−1)i

2(1 + λt)x/λ (1 + λt)
−i/λ

(1 + λt)2/λ + 1

=

∞∑
l=0

1

(l + 1)k

l+1∑
i=0

(
l + 1

i

)
(−1)i

∞∑
n=0

 n∑
j=0

(
n

j

)
Tj(x, λ)(−1)n−j < i|λ >(n−j)

 tn

n!

=
∞∑

n=0

 ∞∑
l=0

l+1∑
i=0

n∑
j=0

1

(l + 1)k

(
l + 1

i

)
(−i)n+i−j

(
n

j

)
Tj(x, λ) < i|λ >(n−j)

 tn

n!
.

(2.4)

By comparing the coefficients on both sides of (2.4), we have the following theorem.

Theorem 2.4 For n ∈ Z+, we have

T (k)
n (x, λ) =

∞∑
l=0

l+1∑
i=0

n∑
j=0

(−i)n+i−j

(l + 1)k

(
l + 1

i

)(
n

j

)
Tj(x, λ) < i|λ >(n−j)

=
∞∑
l=0

l+1∑
i=0

(−i)i

(l + 1)k

(
l + 1

i

)
Tn(x− i, λ).

By (2.1), we note that

∞∑
n=0

T (k)
n (x, λ)

tn

n!
= 2

∞∑
l=0

(−1)l(1 + λt)2l/λ
∞∑
l=0

(
1− (1 + λt)−1/λ

)l+1

(l + 1)k
(1 + λt)x/λ

= 2

∞∑
l=0

l∑
i=0

(
1− (1 + λt)−1/λ

)i+1

(i+ 1)k
(−1)l−i(1 + λt)(2l−2i)/λ(1 + λt)x/λ

=
∞∑
l=0

l∑
i=0

i+1∑
j=0

2(−1)l+j−i
(
i+1
j

)
(i+ 1)k

(1 + λt)(2l−2i+x)/λ (1 + λt)
−j/λ

=

∞∑
n=0

 ∞∑
l=0

l∑
i=0

i+1∑
j=0

n∑
m=0

2(−1)l+j−i
(
i+1
j

)(
n
m

)
(2l − 2i+ x|λ)m < j|λ >(n−m)

(i+ 1)k

 tn

n!
.

Comparing the coefficients on both sides, we have the following theorem.

Theorem 2.5 For n ∈ Z+, we have

T (k)
n (x, λ) =

∞∑
l=0

l∑
i=0

i+1∑
j=0

n∑
m=0

2(−1)l+j−i
(
i+1
j

)(
n
m

)
(2l − 2i+ x|λ)m < j|λ >(n−m)

(i+ 1)k

=
∞∑
l=0

l∑
i=0

i+1∑
j=0

2(−1)l+j−i
(
i+1
j

)
(2l − 2i− j + x|λ)m

(i+ 1)k
.
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3. Some identities involving degenerate poly-tangent numbers and polynomials

In this section, we give several combinatorics identities involving degenerate poly-tangent num-

bers and polynomials in terms of degenerate Stirling numbers, generalized falling factorial functions,

generalized raising factorial functions, Beta functions, degenerate Bernoulli polynomials of higher

order, and degenerate Frobenius-Euler functions of higher order.

By (2.1) and by using Cauchy product, we get

∞∑
n=0

T (k)
n (x, λ)

tn

n!

=

(
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

)(
1− (1− (1 + λt)−1/λ)

)−x

=
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

∞∑
l=0

(
x+ l − 1

l

)
(1− (1 + λt)−1/λ)l

=
∞∑
l=0

< x >l
((1 + λt)1/λ − 1)l

l!

(
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

(1 + λt)−l/λ

)

=
∞∑
l=0

< x >l

∞∑
n=0

S2(n, l, λ)
tn

n!

∞∑
n=0

T (k)
n (−l, λ)

tn

n!

=

∞∑
n=0

( ∞∑
l=0

n∑
i=l

(
n

i

)
S2(i, l, λ)T (k)

n−i(−l, λ) < x >l

)
tn

n!
,

(3.1)

where < x >l= x(x+ 1) · · · (x+ l − 1)(l ≥ 1) with < x >0= 1.

By comparing the coefficients on both sides of (3.1), we have the following theorem.

Theorem 3.1 For n ∈ Z+, we have

T (k)
n (x, λ) =

∞∑
l=0

n∑
i=l

(
n

i

)
S2(i, l, λ)T (k)

n−i(−l, λ) < x >l .

By (2.1) and by using Cauchy product, we get

∞∑
n=0

T (k)
n (x, λ)

tn

n!

=

(
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

)(
1− (1− (1 + λt)−1/λ)

)−x

=
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

∞∑
l=0

(
x+ l − 1

l

)
(1− (1 + λt)−1/λ)l

=
∞∑
l=0

< x >l
(1 + λt)−l/λ((1 + λt)1/λ − 1)l

l!

(
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

)

=

∞∑
l=0

< x >l

∞∑
n=0

S2(n, l,−l, λ)
tn

n!

∞∑
n=0

T (k)
n (λ)

tn

n!

=

∞∑
n=0

( ∞∑
l=0

n∑
i=l

(
n

i

)
S2(i, l,−l, λ)T (k)

n−i(λ) < x >l

)
tn

n!
,

(3.2)

where < x >l= x(x+ 1) · · · (x+ l − 1)(l ≥ 1) with < x >0= 1.

By comparing the coefficients on both sides of (3.2), we have the following theorem.
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Theorem 3.2 For n ∈ Z+, we have

T (k)
n (x, λ) =

∞∑
l=0

n∑
i=l

(
n

i

)
S2(i, l,−l, λ)T (k)

n−i(λ) < x >l .

By (2.1) and by using Cauchy product, we get

∞∑
n=0

T (k)
n (x, λ)

tn

n!
=

(
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

)(
((1 + λt)1/λ − 1) + 1

)x
=

2Lik
(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

∞∑
l=0

(
x

l

)(
(1 + λt)1/λ − 1

)l
=

∞∑
l=0

(x)l

(
(1 + λt)1/λ − 1

)l
l!

(
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

)

=

∞∑
l=0

(x)l

∞∑
n=0

S2(n, l, λ)
tn

n!

∞∑
n=0

T (k)
n

tn

n!

=
∞∑

n=0

( ∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l, λ)T (k)

n−i

)
tn

n!
.

(3.3)

By comparing the coefficients on both sides of (3.3), we have the following theorem.

Theorem 3.3 For n ∈ Z+, we have

T (k)
n (x, λ) =

∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l, λ)T (k)

n−i.

By (1.2), (1.10), (2.1), and by using Cauchy product, we get

∞∑
n=0

T (k)
n (x, λ)

tn

n!

=

(
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

)
(1 + λt)x/λ

=
((1 + λt)1/λ − 1)r

r!

r!

tr

(
t

(1 + λt)1/λ − 1

)r

(1 + λt)x/λ
∞∑

n=0

T (k)
n (λ)

tn

n!

=
((1 + λt)1/λ − 1)r

r!

( ∞∑
n=0

B(r)
n (x, λ)

tn

n!

)( ∞∑
n=0

T (k)
n (λ)

tn

n!

)
r!

tr

=
∞∑

n=0

(
n∑

l=0

(
n
l

)(
l+r
r

)S2(l + r, r, λ)
n−l∑
i=0

(
n− l

i

)
B

(r)
i (x, λ)T (k)

n−l−i(λ)

)
tn

n!
.

By comparing the coefficients on both sides, we have the following theorem.

Theorem 3.4 For n ∈ Z+ and r ∈ N, we have

T (k)
n (x, λ) =

n∑
l=0

n−l∑
i=0

(
n
l

)(
n−l
i

)(
l+r
r

) S2(l + r, r)T
(k)
n−l−iB

(r)
i (x, λ).
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By (1.2), (1.11), (2.1), and by using Cauchy product, we get

∞∑
n=0

T (k)
n (x, λ)

tn

n!

=
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

(1 + λt)x/λ

=
((1 + λt)1/λ − u)r

(1− u)r

(
1− u

(1 + λt)1/λ − u

)r

(1 + λt)x/λ
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

=
∞∑

n=0

H(r)
n (u, x, λ)

tn

n!

r∑
i=0

(
r

i

)
(1 + λt)i/λ(−u)r−i 1

(1− u)r
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

=
1

(1− u)r

r∑
i=0

(
r

i

)
(−u)r−i

∞∑
n=0

H(r)
n (u, x, λ)

tn

n!

∞∑
n=0

T (k)
n (i, λ)

tn

n!

=
∞∑

n=0

(
1

(1− u)r

r∑
i=0

(
r

i

)
(−u)r−i

n∑
l=0

(
n

l

)
H

(r)
l (u, x, λ)T (k)

n−l(i, λ)

)
tn

n!
.

By comparing the coefficients on both sides, we have the following theorem.

Theorem 3.5 For n ∈ Z+ and r ∈ N, we have

T (k)
n (x, λ) =

1

(1− u)r

r∑
i=0

n∑
l=0

(
r

i

)(
n

l

)
(−u)r−iH

(r)
l (u, x, λ)T (k)

n−l(i, λ).

By (1.2), (1.11), (2.1), and by using Cauchy product, we get

∞∑
n=0

T (k)
n (x, λ)

tn

n!

=
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

(1 + λt)x/λ
(1 + λt)1/λ + 1

(1 + λt)1/λ + 1

=
2Lik

(
1− (1 + λt)−1/λ

)
(1 + λt)1/λ + 1

(1 + λt)x/λ
(

(1 + λt)1/λ

(1 + λt)2/λ + 1
+

1

(1 + λt)2/λ + 1

)
=

( ∞∑
n=0

E(k)
n (x, λ)

tn

n!

)( ∞∑
n=0

1

2
(Tn(1, λ) +Tn(λ))

tn

n!

)

=
∞∑

n=0

(
1

2

n∑
l=0

(
n

l

)
(Tn(1, λ) +Tn(λ)) E(k)

n−l(x, λ)

)
tn

n!
.

By comparing the coefficients on both sides, we have the following theorem.

Theorem 3.6 For n ∈ Z+ and r ∈ N, we have

T (k)
n (x, λ) =

1

2

n∑
l=0

(
n

l

)
(Tn(1, λ) +Tn(λ)) E(k)

n−l(x, λ).

By (1.2), (1.11), (2.1), and by using Cauchy product, we get

∞∑
n=0

T (k)
n (x, λ)

tn

n!
=

2Lik
(
1− (1 + λt)−1/λ

)
(1 + λt)2/λ + 1

(1 + λt)x/λ
1− (1 + λt)−1/λ

1− (1 + λt)−1/λ

=
Lik
(
1− (1 + λt)−1/λ

)
1− (1 + λt)−1/λ

(
2(1 + λt)x/λ

(1 + λt)2/λ + 1
− 2(1 + λt)(x−1)/λ

(1 + λt)2/λ + 1

)
=

( ∞∑
n=0

B(k)
n (λ)

tn

n!

)( ∞∑
n=0

(Tn(x, λ)−Tn(x− 1, λ))
tn

n!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
(Tn(x, λ)−Tn(x− 1, λ))B(k)

n−l(x, λ)

)
tn

n!
.
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By comparing the coefficients on both sides, we have the following theorem.

Theorem 3.7 For n ∈ Z+ and r ∈ N, we have

T (k)
n (x, λ) =

n∑
l=0

(
n

l

)
(Tn(x, λ)−Tn(x− 1, λ))B(k)

n−l(λ).

By Theorem 3.6 and Theorem 3.7, we have the following corollary.

Corollary 3.8 For n ∈ Z+ and r ∈ N, we have

n∑
l=0

(
n

l

)
(Tn(1, λ) +Tn(λ)) E(k)

n−l(x, λ)

= 2

n∑
l=0

(
n

l

)
(Tn(x, λ)−Tn(x− 1, λ))B(k)

n−l(λ).

3. Distribution of zeros of the degenerate poly-tangent polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theo-

retical prediction and to discover new interesting pattern of the zeros of the degenerate poly-tangent

polynomials T (k)
n (x, λ). The degenerate poly-tangent polynomials T (k)

n (x, λ) can be determined

explicitly. A few of them are

T (k)
0 (x, λ) = 0,

T (k)
1 (x, λ) = 1,

T (k)
2 (x, λ) = −3 + 21−k − λ+ 2x

T (k)
3 (x, λ) = 4− 3 · 22−k + 2 · 31−k + 9λ− 3 · 21−kλ+ 2λ2 − 9x

+ 3 · 21−kx− 6λx+ 3x2,

T (k)
4 (x, λ) = 3 + 33−2k + 7 · 21−k + 3 · 23−k − 8 · 31−k − 4 · 32−k − 24λ

+ 3 · 23−kλ+ 3 · 24−kλ− 4 · 32−kλ− 33λ2 + 11 · 21−kλ2 − 6λ3

+ 16x− 3 · 24−kx+ 8 · 31−kx+ 54λx− 3 · 22−kλx− 3 · 23−kλx

+ 22λ2x− 18x2 + 3 · 22−kx2 − 18λx2 + 4x3.

We investigate the beautiful zeros of thedegenerate poly-tangent polynomials T (k)
n (x, λ) by

using a computer. We plot the zeros of the poly-tangent polynomials T (k)
n (x, λ) for n = 30, k =

−5,−1, 1, 5, λ = 1/2, and x ∈ C(Figure 1). In Figure 1(top-left), we choose n = 30 and k = −5. In

Figure 1(top-right), we choose n = 30 and k = −1. In Figure 1(bottom-left), we choose n = 30 and

k = 1. In Figure 1(bottom-right), we choose n = 30 and k = 5. Stacks of zeros of T (k)
n (x, λ) for

1 ≤ n ≤ 30 from a 3-D structure are presented(Figure 2). In Figure 2(left), we choose k = −5. In

Figure 2(middle), we choose k = 1. In Figure 2(right), we choose k = 5. Our numerical results for

approximate solutions of real zeros of T (k)
n (x, λ), λ = 1/2 are displayed(Tables 1, 2).
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Figure 1: Zeros of T (k)
n (x, λ)

Table 1. Numbers of real and complex zeros of T (k)
n (x, λ)

k = −10 k = 1 k = 10

degree n real complex zeros real complex zeros real complex zeros

2 1 0 1 0 1 0

3 2 0 2 0 2 0

4 3 0 3 0 3 0

5 4 0 4 0 4 0

6 5 0 5 0 5 0

7 6 0 2 4 2 4

8 5 2 3 4 3 4

9 6 2 4 4 4 4

10 5 4 5 4 5 4

11 6 4 6 4 6 4

12 7 4 7 4 5 6

The plot of real zeros of T (k)
n (x, λ) for 1 ≤ n ≤ 30 structure are presented(Figure 3). In Figure

3(left), we choose k = −5 and λ = 1/2. In Figure 3(middle),we choose k = 1 and λ = 1/2. In Figure

3(right), we choose k = 5 and λ = 1/2.

We observe a remarkable regular structure of the complex roots of the degenerate poly-tangent
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Figure 2: Stacks of zeros of T (k)
n (x, λ) for 1 ≤ n ≤ 30

Figure 3: Real zeros of T (k)
n (x, λ) for 1 ≤ n ≤ 30

polynomials T (k)
n (x, λ). We also hope to verify a remarkable regular structure of the complex roots

of the degenerate poly-tangent polynomials T (k)
n (x, λ)(Table 1).

Next, we calculated an approximate solution satisfying poly-tangent polynomials T (k)
n (x, λ) = 0

for x ∈ R. The results are given in Table 2 and Table 3.

Table 2. Approximate solutions of T (k)
n (x, λ) = 0, λ = 1/2, k = −5

degree n x

2 30.250

3 −53.896, −6.1044

4 −77.421, −8.8591, −2.9699

5 −100.91, −11.489, −3.9628, −1.6365

6 −124.39, −14.080, −4.7720, −2.3421, −0.66874

7 −147.85, −16.655, −5.4611, −3.0181, −1.0879, 0.076439
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Table 3. Approximate solutions of T (k)
n (x, λ) = 0, λ = 1/2, k = 5

degree n x

2 1.7188

3 0.95682, 2.9807

4 0.44597, 2.2234, 3.9869

5 0.13979, 1.4750, 3.4758, 4.7844

6 0.090663, 0.71964, 2.7246, 4.7571, 5.3017

7 1.9752, 3.9751

By numerical computations, we will make a series of the following conjectures:

Conjecture 4.1. Prove that T (k)
n (x, λ), x ∈ C, has Im(x, λ) = 0 reflection symmetry analytic

complex functions. However, T
(k)
n (x, λ), k ̸= 1, has not Re(x, λ) = a reflection symmetry for a ∈ R.

Using computers, many more values of n have been checked. It still remains unknown if the

conjecture fails or holds for any value n(see Figures 1, 2, 3). We are able to decide if T (k)
n (x, λ)) = 0

has n− 1 distinct solutions(see Tables 1, 2, 3).

Conjecture 4.2. Prove that T (k)
n (x, λ)) = 0 has n− 1 distinct solutions.

Since n−1 is the degree of the polynomial T (k)
n (x, λ), the number of real zeros RT (k)

n (x,λ)
lying on

the real plane Im(x, λ) = 0 is then RT (k)
n (x,λ)

= n−1−CT (k)
n (x,λ)

, where CT (k)
n (x,λ)

denotes complex

zeros. See Table 1 for tabulated values of RT (k)
n (x,λ)

and CT (k)
n (x,λ)

. The author has no doubt that

investigations along these lines will lead to a new approach employing numerical method in the

research field of the degenerate poly-tangent polynomials T (k)
n (x, λ) which appear in mathematics

and physics.
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