NEW GENERALIZED FORMS OF WEAKLY BINARY CLOSED SETS IN BINARY TOPOLOGICAL SPACES

¹M. VINOTH, ²R. ASOKAN and ³P. MAHESHWARAN

^{1,2}Department of Mathematics, School of Mathematics, Madurai Kamaraj University, Madurai District, Tamil Nadu, India.
e-mail : vinothzlatan55@gmail.com, <u>asokan.maths@mkuniversity.ac.in</u>

> ³Department of Mathematics, Vivekananda College, Agasteeswaram, Kanayakumari District, Tamil Nadu, India. e-mail : <u>drmaheshwaran@vkc.edu.in</u>

Abstract. In this paper, we introduce the notions of weakly binary πg -closed sets and weakly binary πg -open sets, which are weaker forms of binary πg -closed sets and binary πg -open sets, respectively. Also, the relationships among related binary generalized closed sets are investigated.

1 Introduction and Preliminaries

In 2011, Nithyanantha Jothi et al., [4] they have introduced topology between two sets and also studied some of their properties. Topology between two sets is the binary structure from X to Y which is defined to be the ordered pairs (A, B) where $A \subseteq X$ and $B \subseteq Y$. In this paper, we introduce the notions of weakly binary πg -closed sets and weakly binary πg -open sets, which are weaker forms of binary πg -closed sets and binary πg -open sets, respectively. Also, the relationships among related binary generalized closed sets are investigated.

Let X and Y be any two nonempty sets. A binary topology [4] from X to Y is a binary structure $\mathcal{M} \subseteq \mathbb{P}(X) \times \mathbb{P}(Y)$ that satisfies the axioms namely

- 1. (ϕ, ϕ) and $(X, Y) \in \mathcal{M}$,
- 2. $(A_1 \cap A_2, B_1 \cap B_2) \in \mathcal{M}$ whenever $(A_1, B_1) \in \mathcal{M}$ and $(A_2, B_2) \in \mathcal{M}$, and
- 3. If $\{(A_{\alpha}, B_{\alpha}): \alpha \in \delta\}$ is a family of members of \mathcal{M} , then $(\bigcup_{\alpha \in \delta} A_{\alpha}, \bigcup_{\alpha \in \delta} B_{\alpha}) \in \mathcal{M}$.

If \mathcal{M} is a binary topology from X to Y then the triplet (X, Y, \mathcal{M}) is called a binary topological space and the members of \mathcal{M} are called the binary open subsets of the binary topological space (X, Y, \mathcal{M}) . The elements of $X \times Y$ are called the binary points of the binary topological space (X, Y, \mathcal{M}) . If Y = X then \mathcal{M} is called a binary topology on X in which case we write (X, \mathcal{M}) as a binary topological space.

²⁰¹⁰ Mathematics Subject Classification. 54C05, 54C08, 54C10.

Key words and phrases. binary π -closed set, binary πg -closed set and $wb\pi g$ -closed set.

Definition 1.1 [4] Let X and Y be any two nonempty sets and let (A, B) and $(C, D) \in \mathbb{P}(X) \times \mathbb{P}(Y)$. We say that $(A, B) \subseteq (C, D)$ if $A \subseteq C$ and $B \subseteq D$.

Definition 1.2 [4] Let (X, Y, \mathcal{M}) be a binary topological space and $A \subseteq X, B \subseteq Y$. Then (A, B) is called binary closed in (X, Y, \mathcal{M}) if $(X \setminus A, Y \setminus B) \in \mathcal{M}$.

Proposition 1.3 [4] Let (X, Y, \mathcal{M}) be a binary topological space and $(A, B) \subseteq (X, Y)$. Proof. Let $(A, B)^{1*} = \cap \{A_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary closed and } (A, B) \subseteq (A_{\alpha}, B_{\alpha})\}$ and $(A, B)^{2*} = \cap \{B_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary closed and } (A, B) \subseteq (A_{\alpha}, B_{\alpha})\}$. Then $((A, B)^{1*}, (A, B)^{2*})$ is binary closed and $(A, B) \subseteq ((A, B)^{1*}, (A, B)^{2*})$.

Proposition 1.4 [4] Let (X, Y, \mathcal{M}) be a binary topological space and $(A, B) \subseteq (X, Y)$. Let $(A, B)^{1*} = \bigcup \{A_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary open and } (A_{\alpha}, B_{\alpha}) \subseteq (A, B)\}$ and $(A, B)^{2*} = \bigcup \{B_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary open and } (A_{\alpha}, B_{\alpha}) \subseteq (A, B)\}$ and $(A, B)^{2*} = \bigcup \{B_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary open and } (A, B) \in (A, B)\}$.

Definition 1.5 [4] The ordered pair $((A, B)^{1*}, (A, B)^{2*})$ is called the binary closure of (A, B), denoted by b-cl(A, B) in the binary space (X, Y, \mathcal{M}) where $(A, B) \subseteq (X, Y)$.

Definition 1.6 [4] The ordered pair $((A, B)^{1*}, (A, B)^{2*})$ defined in proposition 1.4 is called the binary interior of of (A, B), denoted by b-int(A, B). Here $((A, B)^{1*}, (A, B)^{2*})$ is binary open and $((A, B)^{1*}, (A, B)^{2*}) \subseteq (A, B)$.

Definition 1.7 [4] Let (X, Y, \mathcal{M}) be a binary topological space and let $(x, y) \subseteq (X, Y)$. The binary open set (A, B) is said to be a binary neighbourhood of (x, y) if $x \in A$ and $y \in B$.

Proposition 1.8 [4] Let $(A, B) \subseteq (C, D) \subseteq (X, Y)$ and (X, Y, \mathcal{M}) be a binary topological space. Then, the following statements hold:

- 1. b-int $(A, B) \subseteq (A, B)$.
- 2. If (A, B) is binary open, then b-int(A, B) = (A, B).
- 3. b-int $(A, B) \subseteq b$ -int(C, D).
- 4. b-int(b-int(A, B)) = b-int(A, B).
- 5. $(A, B) \subseteq b cl(A, B)$.
- 6. If (A, B) is binary closed, then b-cl(A, B) = (A, B).
- 7. $b-cl(A, B) \subseteq b-cl(C, D)$.
- 8. b-cl(b-cl(A,B)) = b-cl(A,B).

Definition 1.9 A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called

- 1. a binary semi open set [8] if $(A, B) \subseteq b cl(b int(A, B))$.
- 2. a binary regular open set [7] if (A, B) = b-int(b-cl(A, B)).
- 3. a binary α -open [2] if $(A, B) \subseteq b$ -int(b-cl(b-int(A, B))).
- 4. a binary β -open [3] if $(A, B) \subseteq b$ -cl(b-int(b-cl(A, B))).
- 5. a binary π -open [10] if the finite union of binary regular-open sets.

Definition 1.10 A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called

1. a binary g-closed set [5] if $b-cl(A,B) \subseteq (U,V)$ whenever $(A,B) \subseteq (U,V)$ and (U,V) is binary open.

2. a binary sg-closed set [9] if $bs-cl(A, B) \subseteq (U, V)$ whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary semi open.

3. a binary $g\alpha$ -closed set [1] if $b-cl(A,B) \subseteq (U,V)$ whenever $(A,B) \subseteq (U,V)$ and (U,V) is binary α -open.

4. a binary αg -closed set [1] if $b\alpha$ -cl(A, B) $\subseteq (U, V)$ whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary open.

5. a binary πg -closed [10] if b-cl(A, B) $\subseteq (U, V)$, whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary π -open.

6. *brwg*-closed set [3] if $b-cl(b-int(A, B)) \subseteq (U, V)$ whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary regular open.

2 Some weakly binary generalized closed sets

Definition 2.1 A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called

1. a weakly binary πg -closed (briefly $wb\pi g$ -closed) set if b-cl(b-int(A, B)) $\subseteq (E, F)$ whenever $(A, B) \subseteq (E, F)$ and (E, F) is $b\pi$ -open.

2. a wbg-closed set if $b-cl(b-int(A, B) \subseteq (U, V)$ whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary open.

The complement of closed set is called an open set.

Proposition 2.2 In a binary topological space (X, Y, \mathcal{M}) , every $b\pi g$ -closed set is $wb\pi g$ -closed. Let (A, B) be a $b\pi g$ -closed set. Then b- $cl(A, B) \subseteq (G, H)$, whenever $(A, B) \subseteq (G, H)$ and (G, H) is $b\pi$ -open in (X, Y). Since (G, H) is $b\pi$ -open, we have the finite union of binary regular open sets. Thus (G, H) = b-int(b-cl(G, H)) and b-cl(b- $int(G, H)) \subseteq b$ -int(b-cl(G, H)). Therefore, (G, H) is a $b\pi$ -open in (X, Y). This shows that (A, B) is a $wb\pi g$ -closed in (X, Y).

Remark 2.3 The converse of Proposition 2.2 is need not be true in general as shown in the following example.

Example 2.4 Let $X = \{a, b, c\}$, $Y = \{1, 2\}$ and $\mathcal{M} = \{(\phi, \phi), (\{a\}, \{1\}), (\{b\}, \phi), (\{b\}, \{2\}), (\{a, b\}, \{1\}), (\{a, b\}, Y), (X, Y)\}$. Then $b\pi g$ -closed sets are $(\phi, \phi), (\{c\}, \phi), (\{c\}, \{1\}), (\{c\}, Y), (\{a, c\}, \phi), (\{a, c\}, \{1\}), (\{a, c\}, \{2\}), (\{a, c\}, Y), (\{b, c\}, \phi), (\{b, c\}, \{1\}), \{b, c\}, \{2\}), (\{b, c\}, Y), (X, \phi), (X, \{1\}), (X, \{2\}), (X, Y)$ and $wb\pi g$ -closed sets are $(\phi, \phi), (\phi, \{1\}), (\phi, \{2\}), (\phi, Y), (\{a\}, \phi), (\{a\}, \{2\}), (\{c\}, \phi), (\{c\}, \{1\}), (\{c\}, Y), (\{a, c\}, \phi), (\{a, c\}, \{1\}), (\{a, c\}, \{2\}), (\{a, c\}, Y), (\{b, c\}, \phi), (\{b, c\}, \{1\}), (\{b, c\}, \{2\}), (\{a, c\}, Y), (\{b, c\}, \phi), (\{b, c\}, \{1\}), (\{b, c\}, \{2\}), (\{b, c\}, Y), (X, \phi), (X, \{1\}), (X, \{2\}), (X, Y)$. It is clear that the subset $(\phi, \{2\})$ is $wb\pi g$ -closed but not $b\pi g$ -closed in (X, Y, \mathcal{M}) .

Proposition 2.5 In a binary topological space (X, Y, \mathcal{M}) , every $wb\pi g$ -closed set is *brwg*-closed.

Proof. Let (A, B) be any $wb\pi g$ -closed set and let (E, F) be binary regular open set containing (E, F). Then (E, F) is a $b\pi$ -open set containing (A, B). We have b-cl(b-int $(A, B)) \subseteq (E, F)$. Thus (A, B) is brwg-closed.

Remark 2.6 The converse of Proposition 2.5 is need not be true in general as shown in the following example.

Example 2.7 Let $X = \{1,2\}$, $Y = \{a, b\}$ and $\mathcal{M} = \{(\phi, \phi), (\phi, \{b\}), (\{1\}, \{a\}), (\{1\}, Y), (X, Y)\}$. Then the *wb* πg -closed sets are $(\phi, \phi), (\phi, \{a\}), (\phi, Y), (\{1\}, \phi), (\{2\}, \phi), (\{2\}, \{a\}), (\{2\}, \{b\}), (\{2\}, Y), (X, \phi), (X, \{a\}), (X, \{a\}), (X, \{b\}), (X, Y)$ and *brwg*-closed sets are $(\phi, \phi), (\phi, \{a\}), (\phi, Y), (\{1\}, \phi), (\{1\}, \{b\}), (\{1\}, Y), (\{2\}, \phi), (\{2\}, \{a\}), (\{2\}, \{b\}), (\{2\}, Y), (X, \phi), (X, \{a\}), (X, \{a\}), (X, \{a\}), (X, \{a\}), (X, \{a\}), (\{2\}, \{a\}), (\{2\}, \{b\}), (\{2\}, Y), (X, \phi), (X, \{a\}), (X, \{b\}), (X, Y)$. It is clear that the subset $(\{1\}, \{b\})$ is *brwg*-closed but not a *wb* πg -closed.

Proposition 2.8 In a binary topological space (X, Y, \mathcal{M}) , every *wbg*-closed set is *wb\pi g*-closed.

Proof. Let (A, B) be any *wbg*-closed set and let (E, F) be $b\pi$ -open set containing (A, B). Then (E, F) is an binary open set containing (A, B). We have $b - cl(b - int(A, B)) \subseteq (E, F)$. Thus (A, B) is $wb\pi g$ -closed.

Remark 2.9 The converse of Proposition 2.8 is need not be true in general as shown in the following example.

Example 2.10 Let $X = \{a, b\}$, $Y = \{1, 2\}$ and $\mathcal{M} = \{(\phi, \phi), (\phi, \{1\}), (\phi, \{2\}), (\phi, Y), (\{a\}, \{1\}), (\{a\}, Y), (\{b\}, \{1\}), (\{b\}, Y), (X, \{1\}), (X, Y)\}$. Then $wb\pi g$ -closed sets are $\mathbb{P}(X) \times \mathbb{P}(Y)$ and wbg-closed sets are $(\phi, \phi), (\phi, \{2\}), (\{a\}, \phi), (\{a\}, \{2\}), (\{b\}, \phi), (\{b\}, \{2\}), (X, \phi), (X, \{1\}), (X, \{2\}), (X, Y)$. It is clear that the subset $(\{a\}, \{1\})$ is $wb\pi g$ -closed but not a wbg-closed.

Theorem 2.11 If a subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is both binary closed and $b\alpha g$ -closed, then it is $wb\pi g$ -closed in (X, Y, \mathcal{M}) .

Proof. Let (A, B) be an $b\alpha g$ -closed set in (X, Y, \mathcal{M}) and (E, F) be an $b\pi$ -open set containing (A, B). Then (E, F) is binary open containing (A, B) and so $(E, F) \supseteq b\alpha - cl(A, B) = (A, B) \cup b$ cl(b-int(b-cl(A, B))). Since (A, B) is binary closed, $(E, F) \supseteq b$ -cl(b-int(A, B)) and hence (A, B) is $wb\pi g$ -closed in (X, Y, \mathcal{M}) .

Theorem 2.12 If a subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is both $b\pi$ -open and $wb\pi g$ -closed, then it is binary closed.

Proof. Since (A, B) is both $b\pi$ -open and $wb\pi g$ -closed, $(A, B) \supseteq b$ -cl(b-int(A, B)) = b-cl(A, B) and hence (A, B) is binary closed in (X, Y, \mathcal{M}) .

Corollary 2.13 If a subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is both $b\pi$ -open and $wb\pi g$ -closed, then it is both binary regular open and binary regular closed in (X, Y, \mathcal{M}) .

Proof. Since (A, B) is both $b\pi$ -open and $wb\pi g$ -closed, $(A, B) \supseteq b$ -cl(b-int $(A, B)) \supseteq b$ -int(b-cl(A, B)) = b-cl(A, B) = (A, B) and hence (A, B) is both binary regular open and binary regular closed in (X, Y, \mathcal{M}) .

Theorem 2.14 Let (X, Y, \mathcal{M}) be a $b\pi g \cdot T_{1/2}$ space and $(A, B) \subseteq (X, Y)$ be $b\pi$ -open. Then, (A, B) is $wb\pi g$ -closed if and only if (A, B) is $b\pi g$ -closed.

Proof. Let (A, B) be $b\pi g$ -closed. By Proposition 2.2, it is $wb\pi g$ -closed. Conversely, let (A, B) be $wb\pi g$ -closed. Since (A, B) is $b\pi$ -open, by Theorem 2.12, (A, B) is binary closed. Since (X, Y) is $b\pi g$ - $T_{1/2}$, (A, B) is $b\pi g$ -closed.

Theorem 2.15 A subset (A, B) is $wb\pi g$ -closed if and only if b-cl(b-int(A, B)) - (A, B) contains no non-empty $b\pi$ -closed set.

Proof. Necessity. Let (U, V) be a $b\pi$ -closed set such that $(U, V) \subseteq b - cl(b - int(A, B)) - (A, B)$. Since $(U, V)^c$ is $b\pi$ -open and $(A, B) \subseteq (U, V)^c$, from the definition of $wb\pi g$ -closed set it follows that $b - cl(b - int(A, B)) \subseteq (U, V)^c$. ie. $(U, V) \subseteq (b - cl(b - int(A, B)))^c$. This implies that $(U, V) \subseteq (b - cl(b - int(A, B))) \cap (b - cl(b - int(A, B)))^c = (\phi, \phi)$.

Sufficiency. Let $(A, B) \subseteq (G, H)$, where (G, H) is $b\pi$ -open set in (X, Y). If b-cl(b-int(A, B)) is not contained in (G, H), then b-cl(b-int(A, B)) $\cap (G, H)^c$ is a non-empty $b\pi$ -closed subset of b-cl(b-int(A, B)) – (A, B), we obtain a contradiction. This proves the sufficiency and hence the theorem.

Corollary 2.16 A $wb\pi g$ -closed set (A, B) is binary regular closed if and only if b-cl(b-int(A, B)) - (A, B) is $b\pi$ -closed and b-cl(b-int(A, B)) $\supseteq (A, B)$.

Proof. Necessity. Since the subset (A, B) is binary regular closed, $b-cl(b-int(A, B)) - (A, B) = (\phi, \phi)$ is binary regular closed and hence $b\pi$ -closed.

Sufficiency. By Theorem 2.15, b-cl(b-int(A,B)) - (A,B) contains no non-empty $b\pi$ -closed set. That is $b-cl(b-int(A,B)) - (A,B) = (\phi,\phi)$. Therefore (A,B) is binary regular closed.

Theorem 2.17 Let (X, Y, \mathcal{M}) be a binary topological space and $(G, H) \subseteq (A, B) \subseteq (X, Y)$. If (G, H) is $wb\pi g$ -closed set relative to (A, B) and (A, B) is both binary open and $wb\pi g$ -closed subset of (X, Y) then (G, H) is $wb\pi g$ -closed set relative to (X, Y).

Proof. Let $(G, H) \subseteq (J, K)$ and (J, K) be a $b\pi$ -open in (X, Y, \mathcal{M}) . Then $(G, H) \subseteq (A, B) \cap (J, K)$. Since (G, H) is $wb\pi g$ -closed relative to (A, B), b-cl(b- $int(G, H)) \subseteq (A, B) \cap (J, K)$. That is $(A, B) \cap b$ -cl(b- $int(G, H)) \subseteq (A, B) \cap (J, K)$. We have $(A, B) \cap b$ -cl(b- $int(G, H)) \subseteq (J, K)$ and then $((A, B) \cap b$ -cl(b- $int(G, H))) \cup (b$ -cl(b- $int(G, H)))^c \subseteq (J, K) \cup (b$ -cl(b- $int(G, H)))^c$. Since (A, B) is $wb\pi g$ -closed in (X, Y, \mathcal{M}) , we have b-cl(b- $int(A, B)) \subseteq (J, K) \cup (b$ -cl(b $int(G, H)))^c$. Therefore b-cl(b- $int(G, H)) \subseteq (J, K)$ since b-cl(b-int(G, H)) is not contained in $(b-cl(b-int(G,H)))^{c}$. Thus (G,H) is $wb\pi g$ -closed set relative to (X,Y,\mathcal{M}) .

Corollary 2.18 If (A, B) is both binary open and $wb\pi g$ -closed and (J, K) is binary closed in a binary topological space (X, Y, \mathcal{M}) , then $(A, B) \cap (J, K)$ is $wb\pi g$ -closed in (X, Y, \mathcal{M}) .

Proof. Since (J, K) is binary closed, we have $(A, B) \cap (J, K)$ is binary closed in (A, B). Therefore $b\text{-}cl((A, B) \cap (J, K)) = (A, B) \cap (J, K)$ in (A, B). Let $(A, B) \cap (J, K) \subseteq (O, P)$, where (O, P) is $b\pi$ -open in (A, B). Then $b\text{-}cl(b\text{-}int((A, B) \cap (J, K))) \subseteq (O, P)$ and hence $(A, B) \cap (J, K)$ is $wb\pi g$ -closed in (A, B). By Theorem 2.17, $(A, B) \cap (J, K)$ is $wb\pi g$ -closed in (X, Y, \mathcal{M}) .

Theorem 2.19 If (A, B) is $wb\pi g$ -closed and $(A, B) \subseteq (J, K) \subseteq b$ -cl(b-int(A, B)), then (J, K) is $wb\pi g$ -closed.

Proof. Since $(A, B) \subseteq (J, K)$, $b - cl(b - int(J, K)) - (J, K) \subseteq b - cl(b - int(A, B)) - (A, B)$. By Theorem 2.15 b - cl(b - int(A, B)) - (A, B) contains no non-empty $b\pi$ -closed set and so b - cl(b - int(J, K)) - (J, K). Again by Theorem 2.15, (J, K) is $wb\pi g$ -closed.

Theorem 2.20 Let (X, Y, \mathcal{M}) be a binary topological space and $(A, B) \subseteq (J, K) \subseteq (X, Y)$ and (J, K) be binary open. If (A, B) is $wb\pi g$ -closed in (X, Y), then (A, B) is $wb\pi g$ -closed relative to (J, K).

Proof. Let $(A, B) \subseteq (J, K) \cap (G, H)$ where (G, H) is $b\pi$ -open in (X, Y, \mathcal{M}) . Since (A, B) is $wb\pi g$ -closed in (X, Y, \mathcal{M}) , $(A, B) \subseteq (G, H)$ implies $b\text{-}cl(b\text{-}int(A, B)) \subseteq (G, H)$. That is $(J, K) \cap (b\text{-}cl(b\text{-}int(A, B))) \subseteq (J, K) \cap (G, H)$ where $(J, K) \cap b\text{-}cl(b\text{-}int(J, K))$ is binary closure of binary interior of (A, B) in (U, V, \mathcal{M}') . Thus (A, B) is $wb\pi g$ -closed relative to (U, V, \mathcal{M}') .

Theorem 2.21 If a subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is binary nowhere dense, then it is $wb\pi g$ -closed.

Proof. Since $b\text{-int}(A, B) \subseteq b\text{-int}(b\text{-cl}(A, B))$ and (A, B) is binary nowhere dense, $b\text{-int}(A, B) = (\phi, \phi)$. Therefore $b\text{-cl}(b\text{-int}(A, B)) = (\phi, \phi)$ and hence (A, B) is $wb\pi g$ -closed in (X, Y, \mathcal{M}) .

The converse of Theorem 2.21 need not be true as seen in the following Example.

Example 2.22 Let $X = \{a, b\}$, $Y = \{1, 2\}$ and $\mathcal{M} = \{\phi, \phi\}$, $(\phi, \{1\})$, $(\phi, \{2\})$, (ϕ, Y) , $(\{a\}, \{1\})$, $(\{a\}, Y)$, $(\{b\}, \{2\})$, $(\{b\}, Y)$, (X, Y)}. Then the subset $(\{a\}, \{2\})$ is $wb\pi g$ -closed in (X, Y, \mathcal{M}) but not binary nowhere dense in (X, Y, \mathcal{M}) .

Remark 2.23 The following example shows that, if any subsets (A, B) and (C, D) of binary topological space (X, Y) are $wb\pi g$ -closed, then their intersection need not be $wb\pi g$ -closed.

Example 2.24 In Example 2.7, the subsets (ϕ, Y) and $(\{2\}, \{b\})$ are $wb\pi g$ -closed but their intersection $(\phi, \{b\})$ is not $wb\pi g$ -closed in (X, Y, \mathcal{M}) .

Proposition 2.25 In a binary topological space (X, Y, \mathcal{M}) , every $bg\alpha$ -closed set is $wb\pi g$ -closed.

Proof. Let (A, B) be any $bg\alpha$ -closed subset of (X, Y, \mathcal{M}) and let (G, H) be an $b\pi$ -open set containing (A, B). Then (G, H) is $b\alpha$ -open set containing (A, B). Now $(C, D) \supseteq b\alpha$ cl $(A, B) \supseteq b$ -cl(b-int(b-cl $(A, B))) \supseteq b$ -cl(b-int(A, B)). Thus (A, B) is $wb\pi g$ -closed in (X, Y, \mathcal{M}) .

Remark 2.26 The following example shows that converse of Proposition 2.25 is need not be true in general.

Example 2.27 Let $X = \{a, b\}$, $Y = \{1, 2\}$ and $\mathcal{M} = \{(\phi, \phi), (\phi, \{1\}), (\{a\}, \{1\}), (\{b\}, \{1\}), (X, Y)\}$. Then $wb\pi g$ -closed sets are $\mathbb{P}(X) \times \mathbb{P}(Y)$ and bga-closed sets are $(\phi, \phi), (\phi, \{2\}), (\{a\}, \{2\}), (\{b\}, \{2\}), (X, \{2\}), (X, Y)$. It is clear that the subset $(\{a\}, \{1\})$ is $wb\pi g$ -closed but not bga-closed in (X, Y, \mathcal{M}) .

Remark 2.28 The following example shows that the family of $wb\pi g$ -closedness is independent of the family of binary semi-closedness in (X, Y, \mathcal{M}) .

Example 2.29 In Example 2.7, the semi-closed sets are (ϕ, ϕ) , $(\phi, \{b\})$, $(\{1\}, \{a\})$, $(\{2\}, \phi)$, $(\{2\}, \{b\})$, $(X, \{a\})$, (X, Y). Then the subset $(\phi, \{a\})$ is $wb\pi g$ -closed in (X, Y, \mathcal{M}) but not binary semi-closed and also the subset $(\phi, \{b\})$ is binary semi-closed but not $wb\pi g$ -closed in (X, Y, \mathcal{M}) .

Theorem 2.30 1. Every $b\pi g$ -open set is $wb\pi g$ -open in a binary topological space (X, Y, \mathcal{M}) ; 2. Every bwg-open set is $wb\pi g$ -open in a binary topological space (X, Y, \mathcal{M}) .

Proof. The proof follows from Proposition 2.2 and 2.8.

Theorem 2.31 A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is $wb\pi g$ -open if $(G, H) \subseteq b$ -int(b-cl(A, B)) whenever $(G, H) \subseteq (A, B)$ and (G, H) is $b\pi$ -closed.

Proof. Let (A, B) be any $wb\pi g$ -open. Then $(A, B)^c$ is $wb\pi g$ -closed. Let (G, H) be a $b\pi$ -closed set contained in (A, B). Then $(G, H)^c$ is a $b\pi$ -open set in (X, Y) containing $(A, B)^c$. Since $(A, B)^c$ is $wb\pi g$ -closed, we have $b\text{-}cl(b\text{-}int((A, B)^c)) \subseteq (G, H)^c$. Therefore $(G, H) \subseteq b\text{-}int(b\text{-}cl(A, B))$.

Conversely, we suppose that $(G, H) \subseteq b$ -int(b-cl(A, B)) whenever $(G, H) \subseteq (A, B)$ and (G, H)is $b\pi$ -closed. Then $(G, H)^c$ is a $b\pi$ -open set containing $(A, B)^c$ and $(G, H)^c \supseteq (b$ -int(b $cl(A, B)))^c$. It follows that $(G, H)^c \supseteq b$ -cl(b-int $((A, B)^c))$. Hence $(A, B)^c$ is $wb\pi g$ -closed and so (A, B) is $wb\pi g$ -open.

Conclusion

Main aim of this paper, we introduced the notions of weakly binary πg -closed sets and weakly binary πg -open sets, which are weaker forms of binary πg -closed sets and binary πg -open sets, respectively. Also, the relationships among related binary generalized closed sets are investigated with suitable examples are given.

References

[1] Abinaya.D and Gilbert Rani, D.; Bianry *a*-generalized closed sets in binary topological spaces, Indian Journal of Natural Sciences, 14(77) (2023), 54089-54094. https://tnsroindia.org.in/JOURNAL/issue77/ISSUE.

[2] Carlos Granados., On binary α -open sets and binary α - ω -open sets in binary topological spaces, South Asian Journal of Mathematics, 11(1) (2021), 1-11. http://www.sajmonline.com/uploads/sajm11-1-1.pdf.

[3] Jayalakshmi.S and Manonmani, A.; Binary regular beta closed sets and Binary regular beta open sets in Binary topological spaces, The International Journal of Analytical and Experimental Modal Analysis, 12(4) (2020), 494-497. DOI:18.0002.IJAEMA.2020.V12I3.200001.0156354.

[4] Nithyanantha Jothi.S and Thangavelu, P.; Topology between two sets, Journal of Mathematical Sciences & Computer Applications, 1(3) (2011), 95-107. DOI: https://doi.org/10.5147/jmsca.v1i3.96.

[5] Nithyanantha Jothi.S and Thangavelu, P.; Generalized binary closed sets in binary topological spaces, Ultra Scientist 26(1)(A) (2014), 25-30. https://www.ultrascientist.org/18/research-papers.

[6] Nithyanantha Jothi.S and Thangavelu, P.; Binary- $T_{1/2}$ -space, Acta Ciencia Indica, XLIM(3) (2015), 241-247 http://www.acta.co.in/acta-bo/files/published-general/5cefaf7b9e061-149-M015.pdf.

[7] Nithyanantha Jothi.S and Thangavelu, P.; Generalized binary regular closed sets, IRA-International Journal of Applied Sciences, 4(2) (2016),259-263. DOI: http://dx.doi.org/10.21013/jas.v4.n2.p6.

[8] Nithyanantha Jothi. S.; Binary Semi open sets in Binary topological Spaces, International journal of Mathematical Archieve, 7(9) (2016), 73-76.http://www.ijma.info/index.php/ijma/article/view/4423.

[9] Santhini.C and Dhivya, T.; New notion of generalised binary closed sets in binary topological space, International Journal of Mathematical Archive, 9(10) (2018), 1-7.http://ijma.info/index.php/ijma/article/view/5857.

[10] Vinoth.M and Asokan. R,; Binary π -closed sets and binary πg -closed sets in binary topological spaces, Indian Journal of Natural Sciences, 14(81) (2023), 86-90.