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Abstract 

The significance of software defect prediction (SDP) has been well established owing to its usefulness in 

preventing potential defects in software at the earliest possible phase within its development cycle. Research 

works in SDP utilizing traditional metrics related to code complexity and coupling does not have the capability 

to capture the interrelationships and interactions that are a common characteristic in big software systems. A 

better modelling of the underlying structural relationships within the software  is required to design an efficient 

and accurate SDP model. Network based graphical representations such as call graphs and class dependency 

networks have the potential to capture the intracies of the dependencies and the hidden patterns among those 

dependencies. Call graphs map the function level interactions in the form of caller-callee relationship of the 

function calls within the software while the class dependency network map the module level dependencies 

within the software. This study aims to evaluate call graphs and class dependency networks for a cost effective 

and highly accurate framework of software defect prediction. The evaluation comprises of ten machine learning 

classifiers utilizing the call graphs and class dependency networks of ten real software projects based on Java. 

The findings indicate the superiority of call graphs compared to class dependency networks as the SDP model 

based on improvement in AUC ranging from 2.9% to 8.94% for majority of the datasets owing to their ability to 

better capture the intricate software component relationships which is a critical aspect in SDP. Generative 

Adversarial Network proved to be the most successful classifier, among the evaluated classifiers with the AUC 

of 0.91 and an accuracy of 92.5%. 

Keywords: Software Defect Prediction, Generative Adversarial Networks, Network Representation, Class 

Dependency Networks, Call Graphs,  Cost Analysis 

1. Introduction 

Software testing is a widely acknowledged resource-intensive phase among the various phases of the software 

development life cycle (SDLC). It serves as the crucial stage in SDLC as it ensures the quality of the software 

and is thus regarded as the most expensive phase. This creates a need to enhance testing efficiency so that the 

testing resources are utilized effectively [1]. Software defect prediction serves as one such mechanism that 

reduces the occurrence of defects by identifying at an early stage of SDLC the modules comprising the software 

that have an increased probability of containing defects. This prediction of defect-prone software modules not 

only increases testing efficiency but also enables module-specific targetted testing thus reducing the effort of 

the testing teams and other resources involved in various stages of SDLC. Software defect prediction models 

also greatly the developers to be more aware when developing or modifying the code in further maintenance 

phases. This module-specific targetted testing approach helps to deliver quality software with reduced cost 
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overhead of the resources involved [5, 14]. As the defect-prone modules are detected at an initial stage, it 

significantly reduces the defect count at the testing phase along with the introduction of new defects in the 

maintenance phase. 

Conventional SDP techniques have widely adopted software metrics as the basis for developing the SDP 

models by representing the software in the form of complexity and code metrics. These metrics have helped 

map the code coupling and complexity details of the software components mainly at the class level. With the 

inadvertently increasing complexity of the software, the software metrics cannot keep up and accurately 

represent the dependencies and intricate relationships between the software components [2, 4]. Thus the SDP 

models developed utilizing the software metrics do not seem to perform well over the current software and draw 

attention towards the need for SDP models that can provide accurate prediction results at a relatively low cost. 

This has led to the utilization of advanced techniques which include various code representation techniques that 

capture static and dynamic interactions among the code along with advanced machine learning classifiers to 

more efficiently predict the defect-prone modules. The development of robust SDP models will significantly 

enhance the reliability of the software systems [7]. 

Among the advanced techniques, some studies have used network metrics based on Social Network Analysis to 

provide insight into the architectural structure and relationships within the codebase, enhancing the SDP 

performance of the models. Within the studies using the graph-based software representations, studies have 

mainly used class dependency networks. The class dependency networks provide a high-level view of the 

component relationships. However, this focus of class dependency network leaves other potentially valuable 

graphical representations that can enhance SDP underexplored. Recognizing this research gap, our study 

focuses on investigating the role of alternative network representations, specifically call graphs, in enhancing 

defect prediction accuracy and the cost effectiveness of the SDP model. 
 

2. Existing Research 

Software defect prediction has gained popularity in recent years in software engineering. Various researchers 

have developed SDP models by combining a variety of techniques. These mainly include combining software 

metrics such as static code metrics, and code churn metrics along with network representations such as software 

module networks. The static code metrics widely used in many studies only take into consideration the 

structural features of the software’s  source code [3, 15]. Singh et al. [18] used the NASA AR1 dataset, which 

includes a variety of software measures to evaluate various regression and machine learning techniques for 

SDP. Their decision tree algorithm-based model fared better than models based on regression and other 

machine learning techniques, making it more interpretable for defect prediction and especially excellent at 

capturing intricate relationships between software indicators. Zimmermann et al. [23] identified the role of 

"change bursts" and highlighted its better performance over conventional metrics like complexity of code and 

code churn in detecting faults. Using data complexity metrics, Gupta et al. [16] examined 54 software projects 

through a comprehensive  defect dataset of 327 datasets to find overlaps. Classifiers that were trained on non-

overlapping datasets performed better on test data that had overlaps. The significance of dataset quality and 

effort-sensitive evaluation is highlighted by the fact that models also performed better when evaluation 

measures took defect discovery effort into account. 

Applied to a range of problems, Social Network Analysis (SNA) has also become increasingly popular in 

software engineering. Wolf et al. [21], for instance, used data from the RTC release 1 repository and SNA to 

examine networks such as those of developers communications for forecasting failures in the builds. Instead of 

concentrating on build failures, our research adopts a new strategy by predicting modules that are prone to 

defects. Researchers have attempted to develop SDP models with alternate methods including SNA. Based on 

the study of Ma et al. [25] compared with the performance of software code metrics, SNA provided promising 
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results for the SDP study on within-project and cross-version scenarios. Comparably, Nguyen et al. [22] showed 

through experimental evaluation that the SDP model’s performance is enhanced by integrating SNA 

measurements with code metrics, especially when applied to a particular project. The results obtained highlight 

the positive effects of using a combination of metrics, data science, and machine learning techniques in SDP. 

Boucher et al. [3] conducted an extensive analysis of a variety of software metrics establishing a connection 

between the defect-prone modules and their respective software metrics. The obtained results highlight the 

potential of utilizing a combination of metrics to improve the SDP model’s performance. This study also 

examined various methods for establishing the value limts for the software’s traditional metrics with results 

indicating the Alves ranking and ROC curve as the acceptable parameters. Ulan et al. [24] presented an 

unsupervised learning-based automated method using weighted aggregate metrics. This approach combined the 

probability theory concepts to determine the weights and scores of metrics. This study focused mainly on the 

software and change metrics. The evaluation's applicability to a broader variety of software applications was 

also called into doubt due to its restriction to a small number of object-oriented measures. 

The previous studies exploring various techniques for SDP have largely utilized traditional software metrics 

which are useful in SDP to a certain extent but seem to overlook the structural relationships between the 

modules in the software [33]. Recent research works have started to incorporate graph or network-based 

representations of software to capture the dependencies and interactions between software modules. A major 

work in this area was presented by Qu et al. [30], wherein a Class Dependency Network was utilized for k-core 

decomposition to rank the defective classes to improve the SDP performance. Zhou et al. [31] utilized the class 

dependency network of the software to obtain the semantic and structural dependency data about the software 

by using Abstract Syntax Trees and Network Embedding techniques. In addition to these works, the study by 

Antal et al. [32] proposed an SDP model that focused on function-level hybrid metrics. Although Their work 

used this approach to validate it for JavaScript Projects, such research works need to be validated for other 

mainstream programming languages. 

 

Raamesh et al. [17] integrated optimization algorithms to propose a hybrid LSTM based model for defect 

detection and correction. The defect datasets of Firefox and Bugzilla are utilized to evaluate the performance of 

the proposed framework based on mean squared error evaluation parameter. Ponnala & Reddy [26] utilized 

Random Forest, Support vector machine, and Light Gradient Boosting machine to propose an ensemble 

approach considering method-level information for developing a defect prediction model. Their approach 

mainly focused on the method caller-callee relationship, the length of the methods, and their complexity, thus 

achieving a ROC value of 0.853. Their work only utilized a single Java project called Broadleaf Commerce 

therefore it is necessary to evaluate its effectiveness across a wide range of projects. The research conducted by 

Kumar & Venkatesan [12] highlighted the benefits of using GAN for software defect prediction however their 

research work utilized very few projects therefore raising the need for its validation over a wide range of 

projects. Alqarni & Aljamaan [14] used an ensemble model comprising AdaBoost for SDP in combination with 

GAN to generate a synthetic dataset to build a stable SDP model that is not based on a skewed defect dataset. 

Their evaluation results indicated the benefits of GAN-based models over traditional SDP models. However in 

these studies discussed above the defect dataset used was software metrics which provides minimal insights into 

complex software dependencies that form the root cause of software defects, in turn resulting in a less effective 

software defect prediction model and raising the need for the development of SDP models that are more 

effective in capturing the complex interactions among the software modules. 
 

3. Methodology 
 

3.1 Metrics for Software  
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Software metrics represent the quantified form of the various aspects of the software. This section describes the 

types of software metrics used by the SDP studies. This study is focused around the following categories of 

software metrics: traditional software metrics and network metrics based on social network analysis. 
 

3.1.1 Conventional Software Metrics 

Software systems characteristics, features, dependencies, and complexities are quantitatively measured using 

software metrics. These are also regarded as the traditional software metrics in software engineering. The most 

initial and important types of metrics were established by Halstead [10] and McCabe [34]. These metrics focus 

on the basic understanding of the software. Further, with the development of software systems pertaining to 

object-oriented programming paradigms, CK metrics [19] were designed to focus largely on object-oriented 

concepts to better model the characteristics of software. These metrics generally comprise complexity metrics 

such as cyclomatic complexity, code churn metrics, and size related metrics. The size metrics mainly deal with 

estimating the size of the software based on certain parameters such as lines of code, on the other hand, the 

complexity metrics are associated with determining the complexity levels of the source code depending on the 

number of linearly independent associations between the software components. Code churn metrics focus on the 

software components or modules that are constantly going under some or the other change during the evolution 

of the software or the later phases such as during maintenance. Object-oriented based software metrics take into 

consideration object-oriented core design frameworks, mainly the coupling, and cohesion between the software 

modules. It also maps the inheritance relationships between the components to measure the design qualities of 

the software that may impact the defect proneness of the software components.  

3.1.2 Network Metrics 

Networks provide a graphical representation of concepts that are difficult to comprehend. By visualizing 

software as a network of connected software components it becomes easy to map the complex interactions 

among the software components. The networks provide structural knowledge with the help of metrics known as 

network metrics which map the network structure and relation between the nodes in a quantative measure 

making it easier to use for the underlying tasks, which is Software defect prediction concerning this study. 

These metrics have been derived from studies based on Social Network Analysis (SNA) [21]. In this study, the 

network metrics described in Table 1 are obtained from graphical representations such as call graphs and class 

dependency networks. 

Different measures of the network metrics quantify how the nodes represented by various software components 

in the network representations interact with each other. Network Measures such as degree centrality measures a 

node’s influence on the nodes in its direct connection. The software modules having a high degree of centrality 

represent the modules essential and critical to the functioning of the software. Betweenness centrality identifies 

the connecting modules in the software system that regulate the information flow and may be crucial to 

identifying the defect-prone modules. The software components' interconnectivity and redundancy can be 

mapped in quantitative measure by the metric clustering coefficient which measures how much the software 

components tend to cluster together leading to increased complexity of the software. Such network measures 

help in the identification of the modules prone to defects within the software by providing a deeper insight into 

the software system’s structure and behavior. 

Table 1: Description of network metrics 

S. No. Metric Definition 

1. Pairs Total count of distinct node pairs 

2. Ties edge count represents the total count of directed ties 
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3. Size Count of nodes to which the ego is immediately linked 

4. Density The proportion of potential ties available currently 

5. nWeakComp Total weak components / size 

6. ReachEfficiency 2StepReach / size 

7. 2StepReach The proportion of nodes that are present after two steps 

8. EgoBetween The proportion of routes with the shortest distance between neighbors that go through 

ego. 

9. Broker Total pair of nodes that aren't linked directly. 

10 nBroker Broker / size 

11.  Betweenness Determines the count of shortest paths existing between all the other entities 

12. Reachability Nodes accessible from a specific node 

13. Efficiency   Effective size of a network / network's total size 

14. Hierarchy The distribution of the constraint metrics all over the neighbours 

15. Degree Total count of nodes next to a specific node 

16. Closeness The total length of all shortest routes from a specific node to all the remaining  nodes 

17. Constraint Measures the degree of a node's constraints 

18. Power Specifies the number of links a node has in its neighborhood 

19. Eigenvector Assigns the nodes of the dependency graph with relative scores 

 

3.2 Network Representations 

The network representations map the various software components into nodes and the interactions between 

them as the connections between the nodes. These network representations have effectively helped in the 

efficient evolution, optimization, and maintenance of the software system by identifying the structural and inter-

component relationships in the software’s source code. This section discusses the details of the two network 

representation techniques used in this study: Call Graphs and Class Dependency Networks. 

3.2.1 Call Graphs 

Call graphs are a network representation technique that represents the software as a network by mapping the 

function calls between the software modules [6, 27]. In call graphs, the nodes represent methods or functions 

present in the source code and the edges represent the control flow between the functions. The function level 

caller-callee relationship is indicated through directed edges from the caller function or the invoking function to 

the callee function or the invoked function. This network of function calls can be mapped to be viewed as the 

dependency between classes or other software components based on the function calls between them. Call 

graphs can be static or dynamic depending on when it was generated. Static call graphs are generated using the 

source code before the code is executed just by examining the functions and their relationships as described in 

the code. It provides a thorough comprehensive understanding of the code. The dynamic call graphs are 

generated simultaneously during the execution of the code providing insights into the behavior of the software 

under specific circumstances providing detailed analysis on the runtime interactions. 

This study utilizes static call graphs representation which helps to identify the defect-prone modules owing to 

its in-depth representation of dependencies.  This study is based on the understanding that more the number of 

function calls within the classes, the higher is chance of defects being introduced in those classes during the 

development and maintenance phases owing to the highly complex control and data flow. Thus it helps to 
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design SDP models that focus on more fine-grained dependencies that can help identify possible system 

bottlenecks and areas of the code that can be further optimized to avoid future occurrence of defects [28]. 

3.2.2 Class Dependency Networks 

Class dependency network is a widely used graphical representation of the software that mainly maps how the 

classes in an object oriented software system are related to one another. The nodes in this network 

representation are either classes of interfaces and the edges represent the conncetion between them providing a 

representation of the dependencies between various parts of the system by focusing on the structural links 

between the software classes [29]. This representation is useful to visualize the softwares architecture and helps 

to understand the code modularity facilitating the understanding of code interactions, inheritance hierarchy, 

series of linked class dependencies. These also form the basis on which the connections in the class dependency 

network rely. Class dependency networks capture the structural complexity at a very high or abstract level 

based on the above-discussed parameters. Class dependency networks are used for software defect prediction 

because defects within a software module or component get propagated to all the dependent modules and 

components. Thus, defect prediction models have incorporated the dependency-related information from the 

class dependency networks for identifying the defect-prone modules and components. 

3.3 Machine learning algorithms 

This study aims to predict defect-prone modules, specifically classes in the software by categorising the 

software classes as either defect-prone or non-defect-prone. In order to complete this binary classification task, 

a variety of classifiers representing different categories is evaluated [13]. To diversify developed models 

various classifier  categories ranging from simple classifiers to ensemble techniques and advanced variants of 

neural networks is used in this study. Among these categories are tree-based classifiers, which use decision trees 

to make predictions based on feature values; instance-based classifiers, which base their decisions on 

comparisons with training instances; probabilistic classifiers, which estimate probabilities for class membership; 

and linear classifiers, which divide classes using linear decision boundaries. Deep Learning Classifiers use 

neural networks to identify intricate patterns, while Ensemble Classifiers integrate several classifiers to increase 

prediction accuracy. As an example of the variety of approaches investigated to improve the precision of defect 

prediction in software systems, Table 2 presents the seven classifiers used in this investigation. The strengths of 

these classifiers for predicting software defects are well-balanced. Simplicity and interpretability are offered by 

multinomial Naive Bayes and logistic regression, particularly when working with small datasets. Generalisation 

is improved and unbalanced data is efficiently handled by Random Forest and Bagging + Decision Trees. K-

Nearest Neighbours uses feature similarity to identify patterns without making parametric assumptions, whereas 

Gradient Boosting focusses on error correction to provide strong predictions for datasets that are not balanced 

[1]. The Multi-Layer Perceptron with two hidden layers is used in this study to capture subtle, non-linear 

interactions, which allows the model to respond to the complex nature of defect prediction. Long Short-Term 

Memory (LSTM), which is a type of Recurrent Neural Network, is included as an algorithm for developing the 

SDP model for its capability to model complex feature representations [35]. Considering the imbalance in the 

defect datasets due to low percentage of defective classes, the evaluation conducted in this study also includes 

the machine learning algorithms capable of handling such imbalance. This includes LightGBM and Generative 

Adversarial Network wherein the former is a variant of a boosting ensemble while the latter is a variant of 

Neural Network. 

Table 2: Machine Learning algorithms used in this study. 

 
S. No Classifier Notation 

1 Multinomial Naive Bayes MNB 

2 Logistic Regression LR 

3 Random Forest RF 
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4 K-Nearest Neighbors KNN 

5 Gradient Boosting GB 

6 Bagging + Decision Tree BAGD 

7 Multi Layer Perceptron (2 hidden layers) MLP 

8 Long Short-Term Memory LSTM 

9 Light Gradient Boosting Machine LightGBM 

10 Generative Adversarial Network GAN 

 

 

3.4 Dataset Description 

The proposed framework is evaluated using software projects based on Java programming language. The 

projects and defect dataset are obtained from the PROMISE repository [11], which provides the details of these 

projects in the form of defect data obtained at the class level. Table 3 summarizes the details of these projects. It 

presents the total number of classes present along with the total number of defective classes followed by the 

percentage of defective classes. The defect data of every project contains the twenty class-level software metrics 

for each class followed by a column indicating whether the respective class contains defects or not. A specific 

version of a total of ten projects is selected based on varied percentages of defects ranging from 8.97% to 

63.57%. This varied defect percentage brings the required diversity among the projects resulting in the 

development of a robust generalized SDP model. 

 

Table 3 : Detailed description of the software projects 

Project Version Total Classes Defective Classes (%) 

Ant 1.7 745 166 (22.28%) 

Camel 1.6 965 189 (19.58%) 

Ivy 2 352 40 (11.36%) 

jEdit 4.1 312 80 (25.64%) 

Lucene 2.4 340 203 (59.7%) 

Synapse 1.2 256 87 (33.98%) 

Tomcat 6.0 858 77 (8.97%) 

Velocity 1.6 229 78 (34.06%) 

Poi 3 442 281 (63.57%) 

Xalan 2.6 885 412 (46.44%) 

 

3.6 Cost Evaluation 

The cost associated with using an SDP model needs to be evaluated to compute the cost-effectiveness of the 

developed model so that it can be widely used in practice in the industry. When a module predicted as defect-

prone is non-defective or vice versa, the possible impact of this misclassification of the module on the effort 

required to test the modules needs to be considered by the SDP framework aiming to achieve cost-effectiveness. 

The incorrectly classified modules of the software drastically increase the effort required by the testing teams, 

owing to the nature of defects and also due to the propagation of the existing defects to the initially unaffected 

modules,  thus increasing the financial implications. The defects that do not get detected at an early stage 

become the cause of many more defects that get introduced in the software, thus increasing the maintenance 

costs due to the increased complexity of fixing these defects. Thus correct identification of the defect and non-

defect prone modules is very important but simultaneously, the misclassification cost of the SDP model needs 

to be considered for its effective utilization. To very nearly estimate the cost of fixing the misclassified 
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modules, the cost associated with fixing defects at different testing stages such as unit, integration, and system 

testing needs to be determined and then added up to compute the total cost involved in software defect 

resolution. A cost analysis framework taking into consideration the cost involved at various testing stages was 

proposed by Kumar et al. [9], which is centered around two factors: the first being the estimated cost of defect 

removal using a software defect prediction model (Ecost)and the second factor being the defect removal cost 

without using any SDP model (Tcost). The study introduced the concept of normalized cost (NEcost) based on 

these two factors Ecost and Tcost. Necost is the indicator of how well the SDP model reduces the testing cost. It 

is considered that if the NEcost values are less than 1, then the SDP model is considered cost-effective while if 

the NEcost value is more than 1 it indicates that using the SDP model is not cost-effective and the conventional 

testing methods are better to use in this case for effective utilization of resources. By this analysis, the 

stakeholders can determine the economic feasibility of using the SDP models in their projects. 

3.6 Overview of experimental setup 

Network representation of the source code models the relationships and interactions between the software 

components. This study utilizes two network representations: class dependency networks and call graphs to map 

the class-level dependencies at different levels of granularity and detail. Section 3.2 discusses the details of 

these two types of representations. Network metrics have been utilized in this study to gain insights from the 

distinct structural information obtained from the network. The study provides an in-depth comparison of the 

performance of network metrics in predicting defects in software compared to conventional metrics. In addition, 

the cost analysis is performed for both types of metrics to determine if using network metrics results in any 

improvement in the cost-effectiveness of the model. 

 

The major steps in this study are initiated by obtaining the source code of the projects from their respective code 

bases, followed by obtaining the defect data of those projects from the well recognized PROMISE repository 

[11] in the software engineering domain. The static representations of the Call Graph and Class Dependency 

Network are produced by parsing the source code of each project using the Understand1 tool thus resulting in 

two graphical representations for each project. The next stage involves capturing the features of the network 

representations by obtaining the network metrics from the call graphs and class dependency networks using the 

Ucinet2 tool. Once the network metrics are obtained, the defect dataset to train the SDP model is designed by 

associating the class-level defect label information obtained from the PROMISE repository with the respective 

class-level network metrics. By correlating the network metrics of a class with the presence or absence of 

defects, the resulting dataset captures the structural relationships at different granularity levels each in the case 

of call graphs and class dependency networks. 

 

 
1 https://scitools.com/ 
2 https://sites.google.com/site/ucinetsoftware/home 
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Fig. 1: Overview of the study design 

 

Further, This dataset is used to first train the developed SDP model followed by its testing where the network 

metrics are used as the predictive features while the defect information is used as the target or output label. To 

perform a comparative analysis of the effect of network metrics based on call graphs and class dependency 

networks, SDP models are developed using both these types of networks and the performance is evaluated and 

comparison is drawn on the basis of evaluation metrics: Area Under the Curve (AUC) and accuracy. This 

evaluation is further strengthened by comparing the performance with the traditional software metrics. For the 

development of SDP models, seven different machine learning classifiers are utilized to identify the best-

performing classifier within the SDP model setup making use of network metrics. To further validate the 

findings of the study, a statistical test, such as the Friedman test, is utilized to assess the effectiveness of the 

proposed SDP models and determine whether their differences are statistically significant or not. Lastly, the 

cost analysis of the models is performed by taking into consideration the low, medium, and high testing 

effectiveness of the testing teams across different testing phases of the software development. The insights 

gained from this analysis of cost help identify the top-performing SDP model taking into consideration the two 

major factors: defect prediction performance and cost-effectiveness, which helps to present a cost-effective, 

generalized robust SDP model. Figure 1 presents an overview of the major stages involved in developing the 

proposed SDP framework. 

4. Experimental Results 

Assessing the effects of various software graphical representations on the cost of identifying software defect-

prone classes is the main goal of this study. The study's experimental findings are presented in this section. The 

performance metrics for the SDP models based on Call Graphs across different projects are shown in Table 4, 

particularly accuracy and AUC. Likewise, Table 5 offers the same metrics for the Class Dependency Network-

based models. Furthermore, the models' performance metrics that were obtained from Software Metrics are 

displayed in Table 7. 

 

Following a thorough examination of these findings, the following important conclusions are drawn: 

 

• Call Graph-based SDP Models: Of the classifiers employed in this category, the Generative Adversarial 

Network proved to be the most successful, with the best AUC of 0.91 and an accuracy of 92.5%. Closely 
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following, the LightGBM classifier demonstrated excellent performance as well, with a 0.90 average 

AUC value. 

• Class Dependency Network-based SDP Models: Among the two classifiers employed in this SDP model 

setup, the Generative Adversarial Network obtained a mean AUC value of 0.83, which is higher than the 

average AUC obtained for the rest of the classifiers. Also, the average accuracy obtained across all the 

projects is 86.13%. 

• Comparative Analysis: In most datasets, models based on Call Graphs constantly performed better than 

those based on Class Dependency Networks when evaluating overall performance across various 

projects. 
 

Table 4: Performance metrics for Call Graph-based SDP models 
Projects Accuracy AUC 

MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN 

Ant 72.86 87.64 89.01 78.82 87.41 90.14 91.13 91.23 90.35 93.46 0.71 0.83 0.83 0.88 0.88 0.85 0.86 0.90 0.91 0.92 

Camel 70.41 75.01 88.1 76.98 85.88 91.13 92.58 91.89 92.05 93.98 0.76 0.81 0.82 0.79 0.79 0.88 0.89 0.90 0.91 0.93 

Ivy 75.34 87.11 89.87 75.11 86.49 89.3 91.08 92.11 91.78 91.77 0.75 0.80 0.84 0.85 0.85 0.85 0.85 0.91 0.90 0.91 

jEdit 73.98 78.23 80.76 75.82 84.98 86.73 90.65 89.98 90.56 92.89 0.73 0.84 0.81 0.76 0.77 0.79 0.81 0.88 0.89 0.91 

Lucene 77.95 86.07 87.43 78.12 88.67 92.05 92.47 91.45 93.41 94.02 0.76 0.81 0.80 0.78 0.81 0.88 0.89 0.90 0.93 0.93 

Synapse 76.44 80.47 84.15 76.22 86.21 90.47 90.49 89.91 90.88 91.46 0.74 0.80 0.82 0.74 0.85 0.88 0.88 0.88 0.89 0.91 

Tomcat 76.11 81.23 83.45 75.41 84.55 90.34 91.12 91.02 92.76 93.88 0.75 0.80 0.81 0.73 0.83 0.89 0.89 0.90 0.91 0.92 

Velocity 75.89 80.47 82.32 75.89 86.32 86.23 87.66 88.56 87.22 91.57 0.74 0.81 0.81 0.73 0.84 0.84 0.86 0.87 0.86 0.89 

Poi 76.21 84.76 84.94 77.11 86.79 87.54 86.21 87.11 88.56 89.42 0.76 0.82 0.83 0.75 0.84 0.85 0.84 0.86 0.87 0.88 

Xalan 77.23 85.39 87.34 78.45 87.11 91.66 90.48 89.99 91.25 92.51 0.76 0.83 0.85 0.77 0.85 0.89 0.88 0.88 0.89 0.90 

Average 75.24 82.64 85.74 76.79 86.44 89.56 90.39 90.33 90.88 92.5 0.75 0.82 0.82 0.78 0.83 0.86 0.87 0.89 0.90 0.91 

 

 

Table 5: Performance metrics for Class Dependency Network-based SDP models 
 

Projects Accuracy AUC 

MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN 

Ant 71.77 83.69 84.05 76.12 80.98 83.17 85.2 86.90 86.45 89.65 0.70 0.80 0.81 0.72 0.76 0.79 0.78 0.80 0.80 0.84 

Camel 70.01 87.91 75.7 69.58 84.68 82.18 70.13 70.87 71.88 73.69 0.74 0.82 0.81 0.70 0.72 0.77 0.66 0.69 0.70 0.72 

Ivy 76.56 86.99 82.57 74.45 82.49 89.76 89.08 89.34 88.71 90.55 0.74 0.80 0.84 0.75 0.80 0.80 0.78 0.87 0.85 0.89 

jEdit 74.33 85.11 80.72 76.62 81.96 87.73 86.12 87.41 86.88 87.12 0.73 0.80 0.78 0.73 0.77 0.79 0.76 0.85 0.84 0.84 

Lucene 74.85 82.02 83.44 74.19 85.01 88.98 87.91 88.32 89.11 89.99 0.74 0.79 0.76 0.71 0.80 0.78 0.76 0.86 0.86 0.86 

Synapse 75.02 79.67 81.67 74.11 83.07 87.31 85.44 84.21 87.92 88.31 0.72 0.76 0.79 0.72 0.82 0.84 0.84 0.83 0.85 0.86 

Tomcat 75.82 78.81 80.24 72.68 80.56 85.02 84.67 85.27 86.44 86.91 0.73 0.75 0.78 0.70 0.78 0.83 0.83 0.84 0.84 0.85 

Velocity 73.45 79.01 81.45 73.31 83.26 81.78 82.01 82.78 83.55 83.12 0.72 0.74 0.79 0.71 0.80 0.80 0.80 0.80 0.81 0.81 

Poi 73.89 82.33 80.67 74.67 84.05 82.37 80.47 81.09 82.47 83.88 0.72 0.80 0.78 0.72 0.83 0.81 0.79 0.79 0.80 0.81 

Xalan 76.02 83.71 85.03 74.69 85.44 87.55 85.67 86.21 87.45 88.09 0.71 0.80 0.83 0.72 0.83 0.85 0.84 0.84 0.85 0.85 

Average 74.17 82.93 81.55 74.04 83.15 85.59 83.67 84.24 85.09 86.13 0.73 0.79 0.8 0.72 0.79 0.81 0.78 0.82 0.82 0.83 

 
Table 6: Friedman Test results 

Call Graph-based SDP models 

 MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN 

Accuracy 10.04 8.78 7.31 9.64 8.71 6.68 6.15 5.01 4.67 3.31 

AUC 9.78 6.21 5.29 8.02 7.54 4.58 4.27 3.99 3.15 2.91 

Class Dependency Network-based SDP models 

Accuracy 9.41 8.33 6.34 9.11 7.34 5.68 5.65 5.18 4.88 4.11 

AUC 8.12 6.01 5.78 7.02 4.98 4.58 4.17 4.11 3.96 3.21 

 

 

 

Table 7 : Performance metrics for software metrics-based SDP models 
 

Projects Accuracy AUC 

MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN 

Ant 70.89 79.69 84.05 73.12 79.98 80.03 82.72 83.65 84.91 86.02 0.70 0.77 0.83 0.72 0.79 0.79 0.80 0.82 0.83 0.82 

Camel 70.01 72.91 75.7 69.58 78.68 70.13 82.18 84.22 83.98 85.97 0.74 0.82 0.81 0.70 0.72 0.77 0.79 0.83 0.82 0.82 

Ivy 71.34 84.11 80.87 75.11 75.49 80.3 86.08 85.26 87.07 88.87 0.74 0.80 0.84 0.75 0.80 0.80 0.85 0.83 0.85 0.85 

jEdit 74.33 80.11 75.72 76.62 80.96 76.73 80.12 81.84 82.15 84.02 0.73 0.80 0.78 0.73 0.77 0.79 0.80 0.80 0.80 0.83 

Lucene 74.85 82.02 82.44 74.19 79.01 77.98 80.91 81.68 81.88 83.41 0.74 0.81 0.80 0.73 0.77 0.78 0.77 080 0.79 0.81 

Synapse 72.87 71.54 72.21 73.67 76.78 75.45 80.56 81.93 83.14 84.22 0.70 0.70 0.72 0.71 0.74 0.74 0.79 0.80 0.82 0.80 

Tomcat 73.22 72.34 74.56 74.87 78.13 78.23 81.45 81.79 82.49 85.31 0.71 0.71 0.72 0.72 0.76 0.76 0.80 0.80 0.81 0.80 

Velocity 72.98 72.33 74.89 75.12 78.76 77.14 84.96 83.82 85.33 87.68 0.70 0.71 0.73 0.72 0.76 0.75 0.82 0.82 0.84 0.82 

Poi 74.61 73.11 75.46 75.51 76.32 77.36 83.21 83.05 84.51 86.43 0.72 0.72 0.72 0.72 0.74 0.75 0.81 0.82 0.83 0.82 

Xalan 72.34 72.87 73.57 76.23 78.46 79.98 82.44 82.62 83.77 85.33 0.70 0.70 0.71 0.74 0.77 0.76 0.80 0.81 0.81 0.80 

Average 72.74 76.1 76.95 74.4 78.26 77.33 82.46 82.99 83.92 85.73 0.72 0.75 0.77 0.72 0.76 0.77 0.8 0.81 0.82 0.82 
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The performance of various classifiers across the Call Graph-based and Class Dependency Network-based SDP 

models is statistically compared by the Friedman test results, which are displayed in Table 6. According to the 

test results, the Generative Adversarial Network classifier obtains the lowest rank for both AUC and accuracy 

and also for the two graphical representations call graph and class dependency network, indicating that it 

consistently performs better than other models in all categories, obtaining the lowest mean rank for both the 

evaluation parameters AUC and accuracy levels. According to this, the Generative Adversarial Network is the 

best classifier for identifying software defects in all of these graphical representations. The performance of the 

top-performing classifier is followed by LightGBM, which obtains the second lowest mean rank in the 

Friedman test results, demonstrating that it is also an effective model for defect prediction. Defects can be 

accurately predicted by both classifiers, while the Generative Adversarial Network classifier performs 

somewhat better overall owing to its ability to handle imbalanced defect datasets by generating realistic random 

samples of synthetic data to handle the class imbalance. The SDP model's performance is contrasted with 

models that employ software metrics in Figure 2. Based on network metrics obtained from the call graph, the 

analysis demonstrates an overall improvement in performance for models. 

Furthermore, the findings are examined and the overall cost for every dataset is computed. Figure 3 shows the 

cost analysis (medium testing efficiency) for models created with Software Metrics (SOFM), Call Graph (CG), 

and Class Dependency Network (CDN). Across all datasets, a similar pattern shows that NEcost values increase 

with the percentage of defective classes (POFC). Reducing the cost of defect removal compared to conventional 

testing techniques is essential for accurate and cost-effective defect prediction. Thus, any method of defect 

removal works best for projects in which the proportion of faulty classes stays below the NCOSTM=1.0 level. 

 

Fig. 2: Comparison of mean prediction accuracy (SOFM: Software Metrics, CDN: Class Dependency Network, CG: Call Graph) 

Utilising network metrics obtained from call graphs to forecast software flaws and evaluate related expenses 

according to testing effectiveness is the main contribution of this study. The majority of approaches have 

historically concentrated on class dependency networks, which highlight high-level relationships across classes 

but frequently ignore the specific dependencies within the system. SDP models' performance was assessed in a 

variety of situations, including within-project, followed by cross-version, and cross-project scenarios, in earlier 

studies, such as the research conducted by Gong et al. [8]. These research looked at the costs of employing these 

SDP models and evaluated their efficacy using network measures from class dependency networks, but they did 

not take testing efficiency across phases into consideration. Although Biçer et al. [20] recommended using 

network metrics derived from developer connection networks, these studies did not fully analyse the effects of 

applying various classifiers to classify models as either defect-prone or non-defect-prone. A comparative 
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analysis of these studies across a number of parameters is provided in Table 8. The cross-validation accuracy 

and AUC findings, as well as the comparative analysis, highlight how well network metrics derived from call 

graphs function for defect prediction. 

 
Table 8: Comparative analysis with previous research works 

Parameters Gong [8] Biçer [20] Present Work 

Network used Class Dependency Network Developer Communication 

Network 

Call Graph, 

Class Dependency Network 

Dataset Groovy, HBase, ActiveMQ, Camel, Hive, JRuby, 

Derby, Wicket and Lucene 

IBM Rational Team Concert, 

Drupal 

Ant, Camel, Ivy, jEdit, Lucene 

ML 

Algorithms 

RF, Naive Bayes Naive Bayes MNB, LR, RF, KNN, GB, BAGD, MLP, LightGBM, LSTM, 

GAN 

Model 

Evaluation 

Friedman Test, Wilcoxon-signed rank Test, 

Nemenyi Test 

Probability of false alarms 

and detection 

 

Prediction accuracy and AUC, 

Friedman Test 

 

Cost 
Evaluaton 

Cost-effectiveness  curve and Effort reduction 
measures 

Cost-effectiveness  curve Cost evaluation model comprising testing efficiency in Unit, 
Integration, System, and Field testing. 

SDP context Within-project, Cross-version, Cross-project Within-project Within-project 

 

Fig. 3: Cost analysis of the developed models 

5. Threats to Validity 

This section covers the three main categories of internal, external, and construct validity, which are potential 

challenges to the validity of our study. Risks for internal validity include the possibility of errors in the defect 

datasets obtained from the PROMISE repository, variations in survey-derived cost parameters, and the effect of 

dataset imbalance on prediction results. Using methods like undersampling and oversampling as well as 

adjusting parameter settings may be necessary to resolve these problems. Though our work focusses on Java 

projects, further research should confirm that our SDP model is applicable to other programming paradigms and 

cross-project situations in terms of external validity. The model's emphasis on defect existence without 

addressing defect quantity or localisation, as well as the impact of network embedding dimensions on 

performance, are the final threats to construct validity. The efficacy of the model might be improved by 

investigating different embedding techniques and dimensions. 

 

6. Conclusion and Future Work 
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This study offers a defect prediction technique that uses software networks—more especially, call graphs—and 

takes cost into account when predicting software system defects. The proposed model performs better than 

conventional SDP models that just use software metrics, as well as models that use network metrics from class 

dependency networks. Through the training of ten classifiers and the generation of network metrics from call 

graphs, we thoroughly analyse SDP performance and compare it with models based on class dependency 

networks. The study also assesses how much cost effective the SDP model is in practical usage. This study 

highlights that the call graph is an excellent graphical representation of software, we evaluate the performance 

of the suggested model on ten different Java projects. The proposed SDP models improves the AUC ranging 

from 2.9% to 8.94% for majority of the datasets owing to their ability to better capture the intricate software 

component relationships which is a critical aspect in SDP. Generative Adversarial Network proved to be the 

most successful classifier, with the AUC of 0.91 and an accuracy of 92.5% due to its ability to handle 

imbalanced dataset. The ability of the call graph to depict intricate relationships and dependencies is responsible 

for the improved defect prediction, which leads to more precise predictions and lowers the cost of software 

development. The cost-effectiveness of using the proposed SDP framework, is well established through this 

study as the Figure 3 indicates lowest cost for call graph representation compared to class dependency network 

and software metrics. 
 

Future work could build on this work by adding data balancing and feature selection techniques, which could 

improve the SDP model's efficiency by eliminating redundant or irrelevant information from the dataset, 

resulting in more accurate predictions; furthermore, extending the model's evaluation to include a greater 

variety of defect datasets across different projects could provide a more thorough understanding of the model's 

effectiveness and generalisability, which would help validate the model's performance in diverse software 

environments and ensure its robustness across various contexts. 
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