
 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 122 Sweta Mehta et al 122-136

Optimizing Cost Efficiency in Software Defect Prediction Through Network

Representation Methods

Sweta Mehta1, Pankaj K. Goswami1, K.Sridhar Patnaik2,

1 Department of CSE, Sarala Birla University, Ranchi, India

2 Department of CSE, Birla Institute of Technology, Mesra, Ranchi, India

sweta.mehta949@sbu.ac.in, pankaj.goswami@sbu.ac.in, kspatnaik@bitmesra.ac.in,

Corresponding Author: Sweta Mehta, Sarala Birla University, Ranchi, India

sweta.mehta949@sbu.ac.in

Abstract

The significance of software defect prediction (SDP) has been well established owing to its usefulness in

preventing potential defects in software at the earliest possible phase within its development cycle. Research

works in SDP utilizing traditional metrics related to code complexity and coupling does not have the capability

to capture the interrelationships and interactions that are a common characteristic in big software systems. A

better modelling of the underlying structural relationships within the software is required to design an efficient

and accurate SDP model. Network based graphical representations such as call graphs and class dependency

networks have the potential to capture the intracies of the dependencies and the hidden patterns among those

dependencies. Call graphs map the function level interactions in the form of caller-callee relationship of the

function calls within the software while the class dependency network map the module level dependencies

within the software. This study aims to evaluate call graphs and class dependency networks for a cost effective

and highly accurate framework of software defect prediction. The evaluation comprises of ten machine learning

classifiers utilizing the call graphs and class dependency networks of ten real software projects based on Java.

The findings indicate the superiority of call graphs compared to class dependency networks as the SDP model

based on improvement in AUC ranging from 2.9% to 8.94% for majority of the datasets owing to their ability to

better capture the intricate software component relationships which is a critical aspect in SDP. Generative

Adversarial Network proved to be the most successful classifier, among the evaluated classifiers with the AUC

of 0.91 and an accuracy of 92.5%.

Keywords: Software Defect Prediction, Generative Adversarial Networks, Network Representation, Class

Dependency Networks, Call Graphs, Cost Analysis

1. Introduction

Software testing is a widely acknowledged resource-intensive phase among the various phases of the software

development life cycle (SDLC). It serves as the crucial stage in SDLC as it ensures the quality of the software

and is thus regarded as the most expensive phase. This creates a need to enhance testing efficiency so that the

testing resources are utilized effectively [1]. Software defect prediction serves as one such mechanism that

reduces the occurrence of defects by identifying at an early stage of SDLC the modules comprising the software

that have an increased probability of containing defects. This prediction of defect-prone software modules not

only increases testing efficiency but also enables module-specific targetted testing thus reducing the effort of

the testing teams and other resources involved in various stages of SDLC. Software defect prediction models

also greatly the developers to be more aware when developing or modifying the code in further maintenance

phases. This module-specific targetted testing approach helps to deliver quality software with reduced cost

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 123 Sweta Mehta et al 122-136

overhead of the resources involved [5, 14]. As the defect-prone modules are detected at an initial stage, it

significantly reduces the defect count at the testing phase along with the introduction of new defects in the

maintenance phase.

Conventional SDP techniques have widely adopted software metrics as the basis for developing the SDP

models by representing the software in the form of complexity and code metrics. These metrics have helped

map the code coupling and complexity details of the software components mainly at the class level. With the

inadvertently increasing complexity of the software, the software metrics cannot keep up and accurately

represent the dependencies and intricate relationships between the software components [2, 4]. Thus the SDP

models developed utilizing the software metrics do not seem to perform well over the current software and draw

attention towards the need for SDP models that can provide accurate prediction results at a relatively low cost.

This has led to the utilization of advanced techniques which include various code representation techniques that

capture static and dynamic interactions among the code along with advanced machine learning classifiers to

more efficiently predict the defect-prone modules. The development of robust SDP models will significantly

enhance the reliability of the software systems [7].

Among the advanced techniques, some studies have used network metrics based on Social Network Analysis to

provide insight into the architectural structure and relationships within the codebase, enhancing the SDP

performance of the models. Within the studies using the graph-based software representations, studies have

mainly used class dependency networks. The class dependency networks provide a high-level view of the

component relationships. However, this focus of class dependency network leaves other potentially valuable

graphical representations that can enhance SDP underexplored. Recognizing this research gap, our study

focuses on investigating the role of alternative network representations, specifically call graphs, in enhancing

defect prediction accuracy and the cost effectiveness of the SDP model.

2. Existing Research

Software defect prediction has gained popularity in recent years in software engineering. Various researchers

have developed SDP models by combining a variety of techniques. These mainly include combining software

metrics such as static code metrics, and code churn metrics along with network representations such as software

module networks. The static code metrics widely used in many studies only take into consideration the

structural features of the software’s source code [3, 15]. Singh et al. [18] used the NASA AR1 dataset, which

includes a variety of software measures to evaluate various regression and machine learning techniques for

SDP. Their decision tree algorithm-based model fared better than models based on regression and other

machine learning techniques, making it more interpretable for defect prediction and especially excellent at

capturing intricate relationships between software indicators. Zimmermann et al. [23] identified the role of

"change bursts" and highlighted its better performance over conventional metrics like complexity of code and

code churn in detecting faults. Using data complexity metrics, Gupta et al. [16] examined 54 software projects

through a comprehensive defect dataset of 327 datasets to find overlaps. Classifiers that were trained on non-

overlapping datasets performed better on test data that had overlaps. The significance of dataset quality and

effort-sensitive evaluation is highlighted by the fact that models also performed better when evaluation

measures took defect discovery effort into account.

Applied to a range of problems, Social Network Analysis (SNA) has also become increasingly popular in

software engineering. Wolf et al. [21], for instance, used data from the RTC release 1 repository and SNA to

examine networks such as those of developers communications for forecasting failures in the builds. Instead of

concentrating on build failures, our research adopts a new strategy by predicting modules that are prone to

defects. Researchers have attempted to develop SDP models with alternate methods including SNA. Based on

the study of Ma et al. [25] compared with the performance of software code metrics, SNA provided promising

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 124 Sweta Mehta et al 122-136

results for the SDP study on within-project and cross-version scenarios. Comparably, Nguyen et al. [22] showed

through experimental evaluation that the SDP model’s performance is enhanced by integrating SNA

measurements with code metrics, especially when applied to a particular project. The results obtained highlight

the positive effects of using a combination of metrics, data science, and machine learning techniques in SDP.

Boucher et al. [3] conducted an extensive analysis of a variety of software metrics establishing a connection

between the defect-prone modules and their respective software metrics. The obtained results highlight the

potential of utilizing a combination of metrics to improve the SDP model’s performance. This study also

examined various methods for establishing the value limts for the software’s traditional metrics with results

indicating the Alves ranking and ROC curve as the acceptable parameters. Ulan et al. [24] presented an

unsupervised learning-based automated method using weighted aggregate metrics. This approach combined the

probability theory concepts to determine the weights and scores of metrics. This study focused mainly on the

software and change metrics. The evaluation's applicability to a broader variety of software applications was

also called into doubt due to its restriction to a small number of object-oriented measures.

The previous studies exploring various techniques for SDP have largely utilized traditional software metrics

which are useful in SDP to a certain extent but seem to overlook the structural relationships between the

modules in the software [33]. Recent research works have started to incorporate graph or network-based

representations of software to capture the dependencies and interactions between software modules. A major

work in this area was presented by Qu et al. [30], wherein a Class Dependency Network was utilized for k-core

decomposition to rank the defective classes to improve the SDP performance. Zhou et al. [31] utilized the class

dependency network of the software to obtain the semantic and structural dependency data about the software

by using Abstract Syntax Trees and Network Embedding techniques. In addition to these works, the study by

Antal et al. [32] proposed an SDP model that focused on function-level hybrid metrics. Although Their work

used this approach to validate it for JavaScript Projects, such research works need to be validated for other

mainstream programming languages.

Raamesh et al. [17] integrated optimization algorithms to propose a hybrid LSTM based model for defect

detection and correction. The defect datasets of Firefox and Bugzilla are utilized to evaluate the performance of

the proposed framework based on mean squared error evaluation parameter. Ponnala & Reddy [26] utilized

Random Forest, Support vector machine, and Light Gradient Boosting machine to propose an ensemble

approach considering method-level information for developing a defect prediction model. Their approach

mainly focused on the method caller-callee relationship, the length of the methods, and their complexity, thus

achieving a ROC value of 0.853. Their work only utilized a single Java project called Broadleaf Commerce

therefore it is necessary to evaluate its effectiveness across a wide range of projects. The research conducted by

Kumar & Venkatesan [12] highlighted the benefits of using GAN for software defect prediction however their

research work utilized very few projects therefore raising the need for its validation over a wide range of

projects. Alqarni & Aljamaan [14] used an ensemble model comprising AdaBoost for SDP in combination with

GAN to generate a synthetic dataset to build a stable SDP model that is not based on a skewed defect dataset.

Their evaluation results indicated the benefits of GAN-based models over traditional SDP models. However in

these studies discussed above the defect dataset used was software metrics which provides minimal insights into

complex software dependencies that form the root cause of software defects, in turn resulting in a less effective

software defect prediction model and raising the need for the development of SDP models that are more

effective in capturing the complex interactions among the software modules.

3. Methodology

3.1 Metrics for Software

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 125 Sweta Mehta et al 122-136

Software metrics represent the quantified form of the various aspects of the software. This section describes the

types of software metrics used by the SDP studies. This study is focused around the following categories of

software metrics: traditional software metrics and network metrics based on social network analysis.

3.1.1 Conventional Software Metrics

Software systems characteristics, features, dependencies, and complexities are quantitatively measured using

software metrics. These are also regarded as the traditional software metrics in software engineering. The most

initial and important types of metrics were established by Halstead [10] and McCabe [34]. These metrics focus

on the basic understanding of the software. Further, with the development of software systems pertaining to

object-oriented programming paradigms, CK metrics [19] were designed to focus largely on object-oriented

concepts to better model the characteristics of software. These metrics generally comprise complexity metrics

such as cyclomatic complexity, code churn metrics, and size related metrics. The size metrics mainly deal with

estimating the size of the software based on certain parameters such as lines of code, on the other hand, the

complexity metrics are associated with determining the complexity levels of the source code depending on the

number of linearly independent associations between the software components. Code churn metrics focus on the

software components or modules that are constantly going under some or the other change during the evolution

of the software or the later phases such as during maintenance. Object-oriented based software metrics take into

consideration object-oriented core design frameworks, mainly the coupling, and cohesion between the software

modules. It also maps the inheritance relationships between the components to measure the design qualities of

the software that may impact the defect proneness of the software components.

3.1.2 Network Metrics

Networks provide a graphical representation of concepts that are difficult to comprehend. By visualizing

software as a network of connected software components it becomes easy to map the complex interactions

among the software components. The networks provide structural knowledge with the help of metrics known as

network metrics which map the network structure and relation between the nodes in a quantative measure

making it easier to use for the underlying tasks, which is Software defect prediction concerning this study.

These metrics have been derived from studies based on Social Network Analysis (SNA) [21]. In this study, the

network metrics described in Table 1 are obtained from graphical representations such as call graphs and class

dependency networks.

Different measures of the network metrics quantify how the nodes represented by various software components

in the network representations interact with each other. Network Measures such as degree centrality measures a

node’s influence on the nodes in its direct connection. The software modules having a high degree of centrality

represent the modules essential and critical to the functioning of the software. Betweenness centrality identifies

the connecting modules in the software system that regulate the information flow and may be crucial to

identifying the defect-prone modules. The software components' interconnectivity and redundancy can be

mapped in quantitative measure by the metric clustering coefficient which measures how much the software

components tend to cluster together leading to increased complexity of the software. Such network measures

help in the identification of the modules prone to defects within the software by providing a deeper insight into

the software system’s structure and behavior.

Table 1: Description of network metrics

S. No. Metric Definition

1. Pairs Total count of distinct node pairs

2. Ties edge count represents the total count of directed ties

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 126 Sweta Mehta et al 122-136

3. Size Count of nodes to which the ego is immediately linked

4. Density The proportion of potential ties available currently

5. nWeakComp Total weak components / size

6. ReachEfficiency 2StepReach / size

7. 2StepReach The proportion of nodes that are present after two steps

8. EgoBetween The proportion of routes with the shortest distance between neighbors that go through

ego.

9. Broker Total pair of nodes that aren't linked directly.

10 nBroker Broker / size

11. Betweenness Determines the count of shortest paths existing between all the other entities

12. Reachability Nodes accessible from a specific node

13. Efficiency Effective size of a network / network's total size

14. Hierarchy The distribution of the constraint metrics all over the neighbours

15. Degree Total count of nodes next to a specific node

16. Closeness The total length of all shortest routes from a specific node to all the remaining nodes

17. Constraint Measures the degree of a node's constraints

18. Power Specifies the number of links a node has in its neighborhood

19. Eigenvector Assigns the nodes of the dependency graph with relative scores

3.2 Network Representations

The network representations map the various software components into nodes and the interactions between

them as the connections between the nodes. These network representations have effectively helped in the

efficient evolution, optimization, and maintenance of the software system by identifying the structural and inter-

component relationships in the software’s source code. This section discusses the details of the two network

representation techniques used in this study: Call Graphs and Class Dependency Networks.

3.2.1 Call Graphs

Call graphs are a network representation technique that represents the software as a network by mapping the

function calls between the software modules [6, 27]. In call graphs, the nodes represent methods or functions

present in the source code and the edges represent the control flow between the functions. The function level

caller-callee relationship is indicated through directed edges from the caller function or the invoking function to

the callee function or the invoked function. This network of function calls can be mapped to be viewed as the

dependency between classes or other software components based on the function calls between them. Call

graphs can be static or dynamic depending on when it was generated. Static call graphs are generated using the

source code before the code is executed just by examining the functions and their relationships as described in

the code. It provides a thorough comprehensive understanding of the code. The dynamic call graphs are

generated simultaneously during the execution of the code providing insights into the behavior of the software

under specific circumstances providing detailed analysis on the runtime interactions.

This study utilizes static call graphs representation which helps to identify the defect-prone modules owing to

its in-depth representation of dependencies. This study is based on the understanding that more the number of

function calls within the classes, the higher is chance of defects being introduced in those classes during the

development and maintenance phases owing to the highly complex control and data flow. Thus it helps to

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 127 Sweta Mehta et al 122-136

design SDP models that focus on more fine-grained dependencies that can help identify possible system

bottlenecks and areas of the code that can be further optimized to avoid future occurrence of defects [28].

3.2.2 Class Dependency Networks

Class dependency network is a widely used graphical representation of the software that mainly maps how the

classes in an object oriented software system are related to one another. The nodes in this network

representation are either classes of interfaces and the edges represent the conncetion between them providing a

representation of the dependencies between various parts of the system by focusing on the structural links

between the software classes [29]. This representation is useful to visualize the softwares architecture and helps

to understand the code modularity facilitating the understanding of code interactions, inheritance hierarchy,

series of linked class dependencies. These also form the basis on which the connections in the class dependency

network rely. Class dependency networks capture the structural complexity at a very high or abstract level

based on the above-discussed parameters. Class dependency networks are used for software defect prediction

because defects within a software module or component get propagated to all the dependent modules and

components. Thus, defect prediction models have incorporated the dependency-related information from the

class dependency networks for identifying the defect-prone modules and components.

3.3 Machine learning algorithms

This study aims to predict defect-prone modules, specifically classes in the software by categorising the

software classes as either defect-prone or non-defect-prone. In order to complete this binary classification task,

a variety of classifiers representing different categories is evaluated [13]. To diversify developed models

various classifier categories ranging from simple classifiers to ensemble techniques and advanced variants of

neural networks is used in this study. Among these categories are tree-based classifiers, which use decision trees

to make predictions based on feature values; instance-based classifiers, which base their decisions on

comparisons with training instances; probabilistic classifiers, which estimate probabilities for class membership;

and linear classifiers, which divide classes using linear decision boundaries. Deep Learning Classifiers use

neural networks to identify intricate patterns, while Ensemble Classifiers integrate several classifiers to increase

prediction accuracy. As an example of the variety of approaches investigated to improve the precision of defect

prediction in software systems, Table 2 presents the seven classifiers used in this investigation. The strengths of

these classifiers for predicting software defects are well-balanced. Simplicity and interpretability are offered by

multinomial Naive Bayes and logistic regression, particularly when working with small datasets. Generalisation

is improved and unbalanced data is efficiently handled by Random Forest and Bagging + Decision Trees. K-

Nearest Neighbours uses feature similarity to identify patterns without making parametric assumptions, whereas

Gradient Boosting focusses on error correction to provide strong predictions for datasets that are not balanced

[1]. The Multi-Layer Perceptron with two hidden layers is used in this study to capture subtle, non-linear

interactions, which allows the model to respond to the complex nature of defect prediction. Long Short-Term

Memory (LSTM), which is a type of Recurrent Neural Network, is included as an algorithm for developing the

SDP model for its capability to model complex feature representations [35]. Considering the imbalance in the

defect datasets due to low percentage of defective classes, the evaluation conducted in this study also includes

the machine learning algorithms capable of handling such imbalance. This includes LightGBM and Generative

Adversarial Network wherein the former is a variant of a boosting ensemble while the latter is a variant of

Neural Network.

Table 2: Machine Learning algorithms used in this study.

S. No Classifier Notation

1 Multinomial Naive Bayes MNB

2 Logistic Regression LR

3 Random Forest RF

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 128 Sweta Mehta et al 122-136

4 K-Nearest Neighbors KNN

5 Gradient Boosting GB

6 Bagging + Decision Tree BAGD

7 Multi Layer Perceptron (2 hidden layers) MLP

8 Long Short-Term Memory LSTM

9 Light Gradient Boosting Machine LightGBM

10 Generative Adversarial Network GAN

3.4 Dataset Description

The proposed framework is evaluated using software projects based on Java programming language. The

projects and defect dataset are obtained from the PROMISE repository [11], which provides the details of these

projects in the form of defect data obtained at the class level. Table 3 summarizes the details of these projects. It

presents the total number of classes present along with the total number of defective classes followed by the

percentage of defective classes. The defect data of every project contains the twenty class-level software metrics

for each class followed by a column indicating whether the respective class contains defects or not. A specific

version of a total of ten projects is selected based on varied percentages of defects ranging from 8.97% to

63.57%. This varied defect percentage brings the required diversity among the projects resulting in the

development of a robust generalized SDP model.

Table 3 : Detailed description of the software projects

Project Version Total Classes Defective Classes (%)

Ant 1.7 745 166 (22.28%)

Camel 1.6 965 189 (19.58%)

Ivy 2 352 40 (11.36%)

jEdit 4.1 312 80 (25.64%)

Lucene 2.4 340 203 (59.7%)

Synapse 1.2 256 87 (33.98%)

Tomcat 6.0 858 77 (8.97%)

Velocity 1.6 229 78 (34.06%)

Poi 3 442 281 (63.57%)

Xalan 2.6 885 412 (46.44%)

3.6 Cost Evaluation

The cost associated with using an SDP model needs to be evaluated to compute the cost-effectiveness of the

developed model so that it can be widely used in practice in the industry. When a module predicted as defect-

prone is non-defective or vice versa, the possible impact of this misclassification of the module on the effort

required to test the modules needs to be considered by the SDP framework aiming to achieve cost-effectiveness.

The incorrectly classified modules of the software drastically increase the effort required by the testing teams,

owing to the nature of defects and also due to the propagation of the existing defects to the initially unaffected

modules, thus increasing the financial implications. The defects that do not get detected at an early stage

become the cause of many more defects that get introduced in the software, thus increasing the maintenance

costs due to the increased complexity of fixing these defects. Thus correct identification of the defect and non-

defect prone modules is very important but simultaneously, the misclassification cost of the SDP model needs

to be considered for its effective utilization. To very nearly estimate the cost of fixing the misclassified

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 129 Sweta Mehta et al 122-136

modules, the cost associated with fixing defects at different testing stages such as unit, integration, and system

testing needs to be determined and then added up to compute the total cost involved in software defect

resolution. A cost analysis framework taking into consideration the cost involved at various testing stages was

proposed by Kumar et al. [9], which is centered around two factors: the first being the estimated cost of defect

removal using a software defect prediction model (Ecost)and the second factor being the defect removal cost

without using any SDP model (Tcost). The study introduced the concept of normalized cost (NEcost) based on

these two factors Ecost and Tcost. Necost is the indicator of how well the SDP model reduces the testing cost. It

is considered that if the NEcost values are less than 1, then the SDP model is considered cost-effective while if

the NEcost value is more than 1 it indicates that using the SDP model is not cost-effective and the conventional

testing methods are better to use in this case for effective utilization of resources. By this analysis, the

stakeholders can determine the economic feasibility of using the SDP models in their projects.

3.6 Overview of experimental setup

Network representation of the source code models the relationships and interactions between the software

components. This study utilizes two network representations: class dependency networks and call graphs to map

the class-level dependencies at different levels of granularity and detail. Section 3.2 discusses the details of

these two types of representations. Network metrics have been utilized in this study to gain insights from the

distinct structural information obtained from the network. The study provides an in-depth comparison of the

performance of network metrics in predicting defects in software compared to conventional metrics. In addition,

the cost analysis is performed for both types of metrics to determine if using network metrics results in any

improvement in the cost-effectiveness of the model.

The major steps in this study are initiated by obtaining the source code of the projects from their respective code

bases, followed by obtaining the defect data of those projects from the well recognized PROMISE repository

[11] in the software engineering domain. The static representations of the Call Graph and Class Dependency

Network are produced by parsing the source code of each project using the Understand1 tool thus resulting in

two graphical representations for each project. The next stage involves capturing the features of the network

representations by obtaining the network metrics from the call graphs and class dependency networks using the

Ucinet2 tool. Once the network metrics are obtained, the defect dataset to train the SDP model is designed by

associating the class-level defect label information obtained from the PROMISE repository with the respective

class-level network metrics. By correlating the network metrics of a class with the presence or absence of

defects, the resulting dataset captures the structural relationships at different granularity levels each in the case

of call graphs and class dependency networks.

1 https://scitools.com/
2 https://sites.google.com/site/ucinetsoftware/home

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 130 Sweta Mehta et al 122-136

Fig. 1: Overview of the study design

Further, This dataset is used to first train the developed SDP model followed by its testing where the network

metrics are used as the predictive features while the defect information is used as the target or output label. To

perform a comparative analysis of the effect of network metrics based on call graphs and class dependency

networks, SDP models are developed using both these types of networks and the performance is evaluated and

comparison is drawn on the basis of evaluation metrics: Area Under the Curve (AUC) and accuracy. This

evaluation is further strengthened by comparing the performance with the traditional software metrics. For the

development of SDP models, seven different machine learning classifiers are utilized to identify the best-

performing classifier within the SDP model setup making use of network metrics. To further validate the

findings of the study, a statistical test, such as the Friedman test, is utilized to assess the effectiveness of the

proposed SDP models and determine whether their differences are statistically significant or not. Lastly, the

cost analysis of the models is performed by taking into consideration the low, medium, and high testing

effectiveness of the testing teams across different testing phases of the software development. The insights

gained from this analysis of cost help identify the top-performing SDP model taking into consideration the two

major factors: defect prediction performance and cost-effectiveness, which helps to present a cost-effective,

generalized robust SDP model. Figure 1 presents an overview of the major stages involved in developing the

proposed SDP framework.

4. Experimental Results

Assessing the effects of various software graphical representations on the cost of identifying software defect-

prone classes is the main goal of this study. The study's experimental findings are presented in this section. The

performance metrics for the SDP models based on Call Graphs across different projects are shown in Table 4,

particularly accuracy and AUC. Likewise, Table 5 offers the same metrics for the Class Dependency Network-

based models. Furthermore, the models' performance metrics that were obtained from Software Metrics are

displayed in Table 7.

Following a thorough examination of these findings, the following important conclusions are drawn:

• Call Graph-based SDP Models: Of the classifiers employed in this category, the Generative Adversarial

Network proved to be the most successful, with the best AUC of 0.91 and an accuracy of 92.5%. Closely

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 131 Sweta Mehta et al 122-136

following, the LightGBM classifier demonstrated excellent performance as well, with a 0.90 average

AUC value.

• Class Dependency Network-based SDP Models: Among the two classifiers employed in this SDP model

setup, the Generative Adversarial Network obtained a mean AUC value of 0.83, which is higher than the

average AUC obtained for the rest of the classifiers. Also, the average accuracy obtained across all the

projects is 86.13%.

• Comparative Analysis: In most datasets, models based on Call Graphs constantly performed better than

those based on Class Dependency Networks when evaluating overall performance across various

projects.

Table 4: Performance metrics for Call Graph-based SDP models
Projects Accuracy AUC

MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN

Ant 72.86 87.64 89.01 78.82 87.41 90.14 91.13 91.23 90.35 93.46 0.71 0.83 0.83 0.88 0.88 0.85 0.86 0.90 0.91 0.92

Camel 70.41 75.01 88.1 76.98 85.88 91.13 92.58 91.89 92.05 93.98 0.76 0.81 0.82 0.79 0.79 0.88 0.89 0.90 0.91 0.93

Ivy 75.34 87.11 89.87 75.11 86.49 89.3 91.08 92.11 91.78 91.77 0.75 0.80 0.84 0.85 0.85 0.85 0.85 0.91 0.90 0.91

jEdit 73.98 78.23 80.76 75.82 84.98 86.73 90.65 89.98 90.56 92.89 0.73 0.84 0.81 0.76 0.77 0.79 0.81 0.88 0.89 0.91

Lucene 77.95 86.07 87.43 78.12 88.67 92.05 92.47 91.45 93.41 94.02 0.76 0.81 0.80 0.78 0.81 0.88 0.89 0.90 0.93 0.93

Synapse 76.44 80.47 84.15 76.22 86.21 90.47 90.49 89.91 90.88 91.46 0.74 0.80 0.82 0.74 0.85 0.88 0.88 0.88 0.89 0.91

Tomcat 76.11 81.23 83.45 75.41 84.55 90.34 91.12 91.02 92.76 93.88 0.75 0.80 0.81 0.73 0.83 0.89 0.89 0.90 0.91 0.92

Velocity 75.89 80.47 82.32 75.89 86.32 86.23 87.66 88.56 87.22 91.57 0.74 0.81 0.81 0.73 0.84 0.84 0.86 0.87 0.86 0.89

Poi 76.21 84.76 84.94 77.11 86.79 87.54 86.21 87.11 88.56 89.42 0.76 0.82 0.83 0.75 0.84 0.85 0.84 0.86 0.87 0.88

Xalan 77.23 85.39 87.34 78.45 87.11 91.66 90.48 89.99 91.25 92.51 0.76 0.83 0.85 0.77 0.85 0.89 0.88 0.88 0.89 0.90

Average 75.24 82.64 85.74 76.79 86.44 89.56 90.39 90.33 90.88 92.5 0.75 0.82 0.82 0.78 0.83 0.86 0.87 0.89 0.90 0.91

Table 5: Performance metrics for Class Dependency Network-based SDP models

Projects Accuracy AUC

MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN

Ant 71.77 83.69 84.05 76.12 80.98 83.17 85.2 86.90 86.45 89.65 0.70 0.80 0.81 0.72 0.76 0.79 0.78 0.80 0.80 0.84

Camel 70.01 87.91 75.7 69.58 84.68 82.18 70.13 70.87 71.88 73.69 0.74 0.82 0.81 0.70 0.72 0.77 0.66 0.69 0.70 0.72

Ivy 76.56 86.99 82.57 74.45 82.49 89.76 89.08 89.34 88.71 90.55 0.74 0.80 0.84 0.75 0.80 0.80 0.78 0.87 0.85 0.89

jEdit 74.33 85.11 80.72 76.62 81.96 87.73 86.12 87.41 86.88 87.12 0.73 0.80 0.78 0.73 0.77 0.79 0.76 0.85 0.84 0.84

Lucene 74.85 82.02 83.44 74.19 85.01 88.98 87.91 88.32 89.11 89.99 0.74 0.79 0.76 0.71 0.80 0.78 0.76 0.86 0.86 0.86

Synapse 75.02 79.67 81.67 74.11 83.07 87.31 85.44 84.21 87.92 88.31 0.72 0.76 0.79 0.72 0.82 0.84 0.84 0.83 0.85 0.86

Tomcat 75.82 78.81 80.24 72.68 80.56 85.02 84.67 85.27 86.44 86.91 0.73 0.75 0.78 0.70 0.78 0.83 0.83 0.84 0.84 0.85

Velocity 73.45 79.01 81.45 73.31 83.26 81.78 82.01 82.78 83.55 83.12 0.72 0.74 0.79 0.71 0.80 0.80 0.80 0.80 0.81 0.81

Poi 73.89 82.33 80.67 74.67 84.05 82.37 80.47 81.09 82.47 83.88 0.72 0.80 0.78 0.72 0.83 0.81 0.79 0.79 0.80 0.81

Xalan 76.02 83.71 85.03 74.69 85.44 87.55 85.67 86.21 87.45 88.09 0.71 0.80 0.83 0.72 0.83 0.85 0.84 0.84 0.85 0.85

Average 74.17 82.93 81.55 74.04 83.15 85.59 83.67 84.24 85.09 86.13 0.73 0.79 0.8 0.72 0.79 0.81 0.78 0.82 0.82 0.83

Table 6: Friedman Test results

Call Graph-based SDP models

 MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN

Accuracy 10.04 8.78 7.31 9.64 8.71 6.68 6.15 5.01 4.67 3.31

AUC 9.78 6.21 5.29 8.02 7.54 4.58 4.27 3.99 3.15 2.91

Class Dependency Network-based SDP models

Accuracy 9.41 8.33 6.34 9.11 7.34 5.68 5.65 5.18 4.88 4.11

AUC 8.12 6.01 5.78 7.02 4.98 4.58 4.17 4.11 3.96 3.21

Table 7 : Performance metrics for software metrics-based SDP models

Projects Accuracy AUC

MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN MNB LR RF KNN GB BAGD MLP LSTM LightGBM GAN

Ant 70.89 79.69 84.05 73.12 79.98 80.03 82.72 83.65 84.91 86.02 0.70 0.77 0.83 0.72 0.79 0.79 0.80 0.82 0.83 0.82

Camel 70.01 72.91 75.7 69.58 78.68 70.13 82.18 84.22 83.98 85.97 0.74 0.82 0.81 0.70 0.72 0.77 0.79 0.83 0.82 0.82

Ivy 71.34 84.11 80.87 75.11 75.49 80.3 86.08 85.26 87.07 88.87 0.74 0.80 0.84 0.75 0.80 0.80 0.85 0.83 0.85 0.85

jEdit 74.33 80.11 75.72 76.62 80.96 76.73 80.12 81.84 82.15 84.02 0.73 0.80 0.78 0.73 0.77 0.79 0.80 0.80 0.80 0.83

Lucene 74.85 82.02 82.44 74.19 79.01 77.98 80.91 81.68 81.88 83.41 0.74 0.81 0.80 0.73 0.77 0.78 0.77 080 0.79 0.81

Synapse 72.87 71.54 72.21 73.67 76.78 75.45 80.56 81.93 83.14 84.22 0.70 0.70 0.72 0.71 0.74 0.74 0.79 0.80 0.82 0.80

Tomcat 73.22 72.34 74.56 74.87 78.13 78.23 81.45 81.79 82.49 85.31 0.71 0.71 0.72 0.72 0.76 0.76 0.80 0.80 0.81 0.80

Velocity 72.98 72.33 74.89 75.12 78.76 77.14 84.96 83.82 85.33 87.68 0.70 0.71 0.73 0.72 0.76 0.75 0.82 0.82 0.84 0.82

Poi 74.61 73.11 75.46 75.51 76.32 77.36 83.21 83.05 84.51 86.43 0.72 0.72 0.72 0.72 0.74 0.75 0.81 0.82 0.83 0.82

Xalan 72.34 72.87 73.57 76.23 78.46 79.98 82.44 82.62 83.77 85.33 0.70 0.70 0.71 0.74 0.77 0.76 0.80 0.81 0.81 0.80

Average 72.74 76.1 76.95 74.4 78.26 77.33 82.46 82.99 83.92 85.73 0.72 0.75 0.77 0.72 0.76 0.77 0.8 0.81 0.82 0.82

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 132 Sweta Mehta et al 122-136

The performance of various classifiers across the Call Graph-based and Class Dependency Network-based SDP

models is statistically compared by the Friedman test results, which are displayed in Table 6. According to the

test results, the Generative Adversarial Network classifier obtains the lowest rank for both AUC and accuracy

and also for the two graphical representations call graph and class dependency network, indicating that it

consistently performs better than other models in all categories, obtaining the lowest mean rank for both the

evaluation parameters AUC and accuracy levels. According to this, the Generative Adversarial Network is the

best classifier for identifying software defects in all of these graphical representations. The performance of the

top-performing classifier is followed by LightGBM, which obtains the second lowest mean rank in the

Friedman test results, demonstrating that it is also an effective model for defect prediction. Defects can be

accurately predicted by both classifiers, while the Generative Adversarial Network classifier performs

somewhat better overall owing to its ability to handle imbalanced defect datasets by generating realistic random

samples of synthetic data to handle the class imbalance. The SDP model's performance is contrasted with

models that employ software metrics in Figure 2. Based on network metrics obtained from the call graph, the

analysis demonstrates an overall improvement in performance for models.

Furthermore, the findings are examined and the overall cost for every dataset is computed. Figure 3 shows the

cost analysis (medium testing efficiency) for models created with Software Metrics (SOFM), Call Graph (CG),

and Class Dependency Network (CDN). Across all datasets, a similar pattern shows that NEcost values increase

with the percentage of defective classes (POFC). Reducing the cost of defect removal compared to conventional

testing techniques is essential for accurate and cost-effective defect prediction. Thus, any method of defect

removal works best for projects in which the proportion of faulty classes stays below the NCOSTM=1.0 level.

Fig. 2: Comparison of mean prediction accuracy (SOFM: Software Metrics, CDN: Class Dependency Network, CG: Call Graph)

Utilising network metrics obtained from call graphs to forecast software flaws and evaluate related expenses

according to testing effectiveness is the main contribution of this study. The majority of approaches have

historically concentrated on class dependency networks, which highlight high-level relationships across classes

but frequently ignore the specific dependencies within the system. SDP models' performance was assessed in a

variety of situations, including within-project, followed by cross-version, and cross-project scenarios, in earlier

studies, such as the research conducted by Gong et al. [8]. These research looked at the costs of employing these

SDP models and evaluated their efficacy using network measures from class dependency networks, but they did

not take testing efficiency across phases into consideration. Although Biçer et al. [20] recommended using

network metrics derived from developer connection networks, these studies did not fully analyse the effects of

applying various classifiers to classify models as either defect-prone or non-defect-prone. A comparative

65

70

75

80

85

90

A
cc

u
ra

cy

Projects

SOFM CDN CG

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 133 Sweta Mehta et al 122-136

analysis of these studies across a number of parameters is provided in Table 8. The cross-validation accuracy

and AUC findings, as well as the comparative analysis, highlight how well network metrics derived from call

graphs function for defect prediction.

Table 8: Comparative analysis with previous research works

Parameters Gong [8] Biçer [20] Present Work

Network used Class Dependency Network Developer Communication

Network

Call Graph,

Class Dependency Network

Dataset Groovy, HBase, ActiveMQ, Camel, Hive, JRuby,

Derby, Wicket and Lucene

IBM Rational Team Concert,

Drupal

Ant, Camel, Ivy, jEdit, Lucene

ML

Algorithms

RF, Naive Bayes Naive Bayes MNB, LR, RF, KNN, GB, BAGD, MLP, LightGBM, LSTM,

GAN

Model

Evaluation

Friedman Test, Wilcoxon-signed rank Test,

Nemenyi Test

Probability of false alarms

and detection

Prediction accuracy and AUC,

Friedman Test

Cost
Evaluaton

Cost-effectiveness curve and Effort reduction
measures

Cost-effectiveness curve Cost evaluation model comprising testing efficiency in Unit,
Integration, System, and Field testing.

SDP context Within-project, Cross-version, Cross-project Within-project Within-project

Fig. 3: Cost analysis of the developed models

5. Threats to Validity

This section covers the three main categories of internal, external, and construct validity, which are potential

challenges to the validity of our study. Risks for internal validity include the possibility of errors in the defect

datasets obtained from the PROMISE repository, variations in survey-derived cost parameters, and the effect of

dataset imbalance on prediction results. Using methods like undersampling and oversampling as well as

adjusting parameter settings may be necessary to resolve these problems. Though our work focusses on Java

projects, further research should confirm that our SDP model is applicable to other programming paradigms and

cross-project situations in terms of external validity. The model's emphasis on defect existence without

addressing defect quantity or localisation, as well as the impact of network embedding dimensions on

performance, are the final threats to construct validity. The efficacy of the model might be improved by

investigating different embedding techniques and dimensions.

6. Conclusion and Future Work

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 134 Sweta Mehta et al 122-136

This study offers a defect prediction technique that uses software networks—more especially, call graphs—and

takes cost into account when predicting software system defects. The proposed model performs better than

conventional SDP models that just use software metrics, as well as models that use network metrics from class

dependency networks. Through the training of ten classifiers and the generation of network metrics from call

graphs, we thoroughly analyse SDP performance and compare it with models based on class dependency

networks. The study also assesses how much cost effective the SDP model is in practical usage. This study

highlights that the call graph is an excellent graphical representation of software, we evaluate the performance

of the suggested model on ten different Java projects. The proposed SDP models improves the AUC ranging

from 2.9% to 8.94% for majority of the datasets owing to their ability to better capture the intricate software

component relationships which is a critical aspect in SDP. Generative Adversarial Network proved to be the

most successful classifier, with the AUC of 0.91 and an accuracy of 92.5% due to its ability to handle

imbalanced dataset. The ability of the call graph to depict intricate relationships and dependencies is responsible

for the improved defect prediction, which leads to more precise predictions and lowers the cost of software

development. The cost-effectiveness of using the proposed SDP framework, is well established through this

study as the Figure 3 indicates lowest cost for call graph representation compared to class dependency network

and software metrics.

Future work could build on this work by adding data balancing and feature selection techniques, which could

improve the SDP model's efficiency by eliminating redundant or irrelevant information from the dataset,

resulting in more accurate predictions; furthermore, extending the model's evaluation to include a greater

variety of defect datasets across different projects could provide a more thorough understanding of the model's

effectiveness and generalisability, which would help validate the model's performance in diverse software

environments and ensure its robustness across various contexts.

References

[1] Li, Z., Niu, J., & Jing, X. Y. (2024). Software defect prediction: future directions and challenges. Automated

Software Engineering, 31(1), 19, https://doi.org/10.1007/s10515-024-00424-1

[2] Wu, W., Wang, S., Liu, B., Shao, Y., & Xie, W. (2024). A novel software defect prediction approach via

weighted classification based on association rule mining. Engineering Applications of Artificial Intelligence,

129, 107622, https://doi.org/10.1016/j.engappai.2023.107622

[3] Boucher, A., & Badri, M. (2018). Software metrics thresholds calculation techniques to predict fault-

proneness: An empirical comparison. Information and Software Technology, 96, 38-67,

https://doi.org/10.1016/j.infsof.2017.11.005

[4] Khleel, N. A. A., & Nehéz, K. (2024). Software defect prediction using a bidirectional LSTM network

combined with oversampling techniques. Cluster Computing, 27(3), 3615-3638, https://doi.org/10.1007/s10586-

023-04170-z

[5] Palomba, F., Zanoni, M., Fontana, F. A., De Lucia, A., & Oliveto, R. (2017). Toward a smell-aware bug

prediction model. IEEE Transactions on Software Engineering, 45(2), 194-218,

https://doi.org/10.1109/TSE.2017.2770122

[6] Chi, J., Qu, Y., Zheng, Q., Yang, Z., Jin, W., Cui, D., & Liu, T. (2018, July). Test case prioritization based

on method call sequences. In 2018 IEEE 42nd Annual Computer Software and Applications Conference

(COMPSAC) (Vol. 1, pp. 251-256). IEEE.

https://doi.org/10.1016/j.engappai.2023.107622
https://doi.org/10.1016/j.infsof.2017.11.005
https://doi.org/10.1109/TSE.2017.2770122

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 135 Sweta Mehta et al 122-136

[7] Setia, S., Ravulakollu, K. K., Verma, K., Garg, S., Mishra, S. K., & Sharan, B. (2024, February). Software

Defect Prediction using Machine Learning. In 2024 11th International Conference on Computing for

Sustainable Global Development (INDIACom) (pp. 560-566). IEEE.

 [8] Gong, L., Rajbahadur, G. K., Hassan, A. E., & Jiang, S. (2021). Revisiting the impact of dependency

network metrics on software defect prediction. IEEE Transactions on Software Engineering, 48(12), 5030-

5049, https://doi.org/10.1109/TSE.2021.3131950

[9] Kumar, L., Misra, S., & Rath, S. K. (2017). An empirical analysis of the effectiveness of software metrics

and fault prediction model for identifying faulty classes. Computer standards & interfaces, 53, 1-32,

https://doi.org/10.1016/j.csi.2017.02.003

[10] Halstead, M. H. (1977). Elements of Software Science (Operating and programming systems series).

Elsevier Science Inc..

[11] Jureczko, M., & Madeyski, L. (2010, September). Towards identifying software project clusters with

regard to defect prediction. In Proceedings of the 6th international conference on predictive models in software

engineering (pp. 1-10).

[12] Kumar, P. S., & Venkatesan, R. (2020). Improving Software Defect Prediction using Generative

Adversarial Networks. Int. J. Sci. Eng. Appl, 9, 117-120.

[13] Arar, Ö. F., & Ayan, K. (2017). A feature dependent Naive Bayes approach and its application to the

software defect prediction problem. Applied Soft Computing, 59, 197-209,

https://doi.org/10.1016/j.asoc.2017.05.043

[14] Alqarni, A., & Aljamaan, H. (2023). Leveraging Ensemble Learning with Generative Adversarial

Networks for Imbalanced Software Defects Prediction. Applied Sciences, 13(24), 13319.

[15] Rebro, D. A., Chren, S., & Rossi, B. (2023, March). Source Code Metrics for Software Defects Prediction.

In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing (pp. 1469-1472).

[16] Gupta, S., & Gupta, A. (2017). A set of measures designed to identify overlapped instances in software

defect prediction. Computing, 99, 889-914, https://doi.org/10.1007/s00607-016-0538-1

[17] Raamesh, L., Jothi, S., & Radhika, S. (2023). Enhancing software reliability and fault detection using

hybrid brainstorm optimization-based LSTM model. IETE Journal of Research, 69(12), 8789-8803,

https://doi.org/10.1080/03772063.2022.2069603

[18] Singh, Y., Kaur, A., & Malhotra, R. (2010). Prediction of fault-prone software modules using statistical

and machine learning methods. International Journal of Computer Applications, 1(22), 8-15.

[19] Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Transactions

on software engineering, 20(6), 476-493.

[20] Biçer, S., Bener, A. B., & Çağlayan, B. (2011, May). Defect prediction using social network analysis on

issue repositories. In Proceedings of the 2011 International Conference on Software and Systems Process (pp.

63-71).

[21] Wolf, T., Schroter, A., Damian, D., & Nguyen, T. (2009, May). Predicting build failures using social

network analysis on developer communication. In 2009 IEEE 31st International Conference on Software

Engineering (pp. 1-11). IEEE.

https://doi.org/10.1109/TSE.2021.3131950
https://doi.org/10.1016/j.csi.2017.02.003
https://doi.org/10.1016/j.asoc.2017.05.043
https://doi.org/10.1080/03772063.2022.2069603

 Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 136 Sweta Mehta et al 122-136

[22] Nguyen, T. H., Adams, B., & Hassan, A. E. (2010, September). Studying the impact of dependency

network measures on software quality. In 2010 IEEE International Conference on Software Maintenance (pp.

1-10). IEEE.

[23] Zimmermann, T., & Nagappan, N. (2008, May). Predicting defects using network analysis on dependency

graphs. In Proceedings of the 30th international conference on Software engineering (pp. 531-540).

[24] Ulan, M., Löwe, W., Ericsson, M., & Wingkvist, A. (2021). Weighted software metrics aggregation and its

application to defect prediction. Empirical Software Engineering, 26(5), 86, https://doi.org/10.1007/s10664-

021-09984-2

[25] Ma, W., Chen, L., Yang, Y., Zhou, Y., & Xu, B. (2016). Empirical analysis of network measures for effort-

aware fault-proneness prediction. Information and Software Technology, 69, 50-70,

https://doi.org/10.1016/j.infsof.2015.09.001

[26] Ponnala, R., & Reddy, C. R. K. (2023). Ensemble model for software defect prediction using method level

features of spring framework open source Java Project for E-Commerce. Journal of Data Acquisition and

Processing, 38(1), 1645.

[27] Sawadpong, P., & Allen, E. B. (2016, January). Software defect prediction using exception handling call

graphs: A case study. In 2016 IEEE 17th International Symposium on High Assurance Systems Engineering

(HASE) (pp. 55-62). IEEE.

[28] Xu, J., Ai, J., & Shi, T. (2021). Software Defect Prediction for Specific Defect Types based on Augmented

Code Graph Representation. In 2021 8th International Conference on Dependable Systems and Their

Applications (DSA) (pp. 669-678). IEEE.

[29] Gong, L., Rajbahadur, G. K., Hassan, A. E., & Jiang, S. (2021). Revisiting the impact of dependency

network metrics on software defect prediction. IEEE Transactions on Software Engineering, 48(12), 5030-

5049, https://doi.org/10.1109/TSE.2021.3131950

[30] Qu, Y., Zheng, Q., Chi, J., Jin, Y., He, A., Cui, D., Zhang, H. & Liu, T. (2019). Using k-core

decomposition on class dependency networks to improve bug prediction model's practical performance. IEEE

Transactions on Software Engineering, 47(2), 348-366, https://doi.org/10.1109/TSE.2019.2892959

[31] Zhou, C., He, P., Zeng, C., & Ma, J. (2022). Software defect prediction with semantic and structural

information of codes based on graph neural networks. Information and Software Technology, 152, 107057,

https://doi.org/10.1016/j.infsof.2022.107057

[32] Antal, G., Tóth, Z., Hegedűs, P., & Ferenc, R. (2020). Enhanced bug prediction in JavaScript programs

with hybrid call-graph based invocation metrics. Technologies, 9(1), 3,

https://doi.org/10.3390/technologies9010003

[33] Sharma, D., & Chandra, P. (2024). An empirical analysis of software fault proneness using factor analysis

with regression. Multimedia Tools and Applications, 83(17), 52535-52591.

[34] McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software Engineering, (4), 308-320.

[35] Deng, J., Lu, L., & Qiu, S. (2020). Software defect prediction via LSTM. IET software, 14(4), 443-450,

https://doi.org/10.1049/iet-sen.2019.0149

https://doi.org/10.1007/s10664-021-09984-2
https://doi.org/10.1007/s10664-021-09984-2
https://doi.org/10.1016/j.infsof.2015.09.001
https://doi.org/10.1109/TSE.2021.3131950
https://doi.org/10.1109/TSE.2019.2892959

