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Abstract 

Graph products are a mathematical concept used to derive information about large 

graphs based on the properties and characteristics of smaller, simpler graphs. By understanding 

the smaller graphs and how they combine, insights about the larger, more complex graphs can 

be obtained efficiently. In this research, a new method for analyzing the neutrosophic 

dominating path-coloring number and the dominant path-coloring number in neutrosophic 

graphs is presented. Additionally, it computes their multivalued star chromatic number and 

suggests a novel technique for multivalued star coloring on the corona product of two 

neutrosophic graphs. Within neutrosophic graphs, the neutrosophic dominant path-coloring 

number is a measure of connectedness. A neutrosophic graph's multivalued star chromatic 

number also shows how few colors are needed to color the vertices so that no two neighboring 

vertices have the same color. This trait is retained in the edge corona product of a star graph 

with several kinds of graphs, such as path graphs, cycle graphs, complete graphs, or any other 

simple graphs. The edge corona product of a star graph with various types of graphs, including 

path graphs, cycle graphs, complete graphs, or any other simple graphs, retains this property. 

Keywords: Domination in neutrosophic graph, Neutrosophic graph, Vertices, Edges, Multi–

Valued Neutrosophic Graph and Graph coloring 

1. Introduction 

Introduced by Azriel Rosenfeld in 1975, fuzzy graph theory is still a relatively new 

science, but it has grown quickly and has important applications in many other fields. The fuzzy 

set was first proposed by Garrett [1] and is essentially described by a membership function. 

Hamidi [2] eventually developed this idea into the intuitionistic fuzzy set, which has a 

membership function as well as a non-membership function. The total of the degrees of 

membership and non-membership, in Atanassov's opinion, does not equal one. Broumi 

discussed several features and went on to examine ideas like independent and connected 

dominance inside fuzzy and intuitionistic fuzzy graphs[3,4]. Further investigations have 
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explored the concepts of chromatic numbers, super-closing numbers, closing numbers, and 

neutrosophic chromatic numbers in connection with (dual)coloring, (dual)resolving, and 

(dual)dominating in (neutrosophic) n-SuperHyperGraphs[5-7]. Research has also looked into 

independent sets in neutrosophic graphs, the neutrosophic chromatic number based on 

connectedness, and the many kinds of neutrosophic chromatic numbers, dimensions, and 

coloring alongside dominance in neutrosophic hypergraphs [8-12]. In this study, three forms 

of neutrosophic alliances based on connectedness and edges are examined, polynomials linked 

to numbers in classes of neutrosophic graphs are explored, and the characteristics of 

SuperHyperGraphs and neutrosophic SuperHyperGraphs are investigated [13-15]. 

With an emphasis on shared edges and the neutrosophic cardinality of these edges, 

Garrett et al. [16] established the idea of path coloring numbers in neutrosophic graphs, with a 

variety of useful applications. Think of the following neutrosophic graph: (V, E, σ, µ). Any two 

vertices, x and y, can be connected by more than one path. Two pathways from x to y are given 

different colors if they share an edge. The path-coloring set from x to y is the name given to 

the set of colors utilized in this procedure. The path-coloring number, L(NTG), is the least 

cardinality ( )e
se i

i
 =1

  among all path-coloring sets between two vertices. Furthermore, the 

neutrosophic path-coloring number, Ln(NTG), is the minimal neutrosophic cardinality of all 

path-coloring sets, indicated by Ss. 

The idea of neutrosophic path-coloring numbers in respect to endpoints inside 

neutrosophic graphs has been investigated by Garrett et al. [17]. Think of the following 

neutrosophic graph: (V, E, σ, µ). There are several pathways that can link any two specified 

vertices, x and y. Two pathways from x to y that share an endpoint need to have distinct colors 

assigned to them. The path-coloring set from x to y is the collection of unique colors employed 

in this procedure. The path-coloring number, V(NTG), is the least cardinality between all path-

coloring sets for two vertices. Furthermore, the neutrosophic path-coloring number, denoted 

by Vn(NTG), is the lowest neutrosophic cardinality ( )
 =Zx i

i x
3

1

 among all sets Zs, which 

comprise the endpoints corresponding to the path-coloring set Ss. 

The notion of a worldwide offensive coalition in strong neutrosophic graphs was first 

presented by Garrett et al. [18]. In addition, they looked at sets, minimum sets, numbers, and 

neutrosophic numbers for a variety of classes of neutrosophic graphs, including full, empty, 

route, cycle, star, and wheel. This allowed them to define the neutrosophic number in a new 

way. The minimum-global-offensive-alliance number and the minimal-global-offensive-

alliance-neutrosophic number are formed by the minimal set and the optimum set, respectively, 

and this new description helps to identify them. The global-offensive alliance and the minimal-

global-offensive alliance are two sorts of sets that are specified. The minimal-global-offensive 

alliance concentrates on sets where eliminating any vertex is not feasible, whereas the global-

offensive alliance identifies sets more generally. The smallest cardinality among all minimal 

global offensive alliances in a particular neutrosophic graph is represented by the minimal-

global-offensive-alliance number. The m-family of odd complete graphs with a common 

neutrosophic vertex set, the m-family of neutrosophic stars with a common neutrosophic vertex 

set, and an additional m-family of odd complete graphs with a common neutrosophic vertex 

set were also studied. 

A technique for determining the longest weakest pathways in specific kinds of neutrosophic 

graphs has been presented by Garrett et al. [19]. Consider of the following neutrosophic graph: 
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(V, E, σ, µ). If a path from vertex x to vertex y has the highest length, it is said to be the weakest 

path; this length is known as the weakest number between x and y. The weakest number of 

NTG is (V, E, σ, µ), which is the maximum value among all vertices and is represented by 

W(NTG). Furthermore, if a road from x to y has a strength, µ(uv), that is smaller than the 

strengths of all other pathways from x to y, it is called the neutrosophic weakest path. Between 

x and y, this strength is known as the neutrosophic weakest number. Between x and y, this 

strength is known as the neutrosophic weakest number. The neutrosophic weakest number of 

NTG in this case is the largest value among all vertices (V, E, σ, µ), denoted by Wn(NTG). 

Neutronosophic graphs provide significant paths for defining connectivities investigated by 

Garrett and others [20]. If a path has the least length, or the strongest number between x and y, 

it is considered the strongest path from vertex x to vertex y in the neutrosophic graph NTG: (V, 

E, σ, µ). S(NTG) is a representation of the strongest number of NTG (V, E, σ, µ), which is the 

highest value among all vertices. Furthermore, if the strength of a road from x to y, µ(uv), is 

greater than the strengths of all other paths from x to y, then that path is called the neutron 

sophic strongest path.  

A discovery of Hamiltonian neutrosophic cycles in classes of neutrosophic graphs has been 

reported by Garrett et al. [21]. Suppose we have a neutrosophic graph NT G:(V, E, σ, µ). Then, 

for a neutrosophic graph NTG:(V, E, σ, µ), the n-hamiltonian neutrosophic cycle N(HNC) is 

the number of sequences of consecutive vertices x1, x2, · · ·, xO(NTG), x1 which are 

neutrosophic cycles. Additionally, the hamiltonian neutrosophic cycle M(NTG) for a 

neutrosophic graph NTG:(V, E, σ, µ) is a sequence of consecutive vertices x1, x2, · · · ·, 

xO(NTG), x1 which is a neutrosophic cycle. The final findings include some assertions, 

comments, illustrations, and explanations regarding a few classes of strong neutrosophic 

graphs: (strong-)path-, (strong-)cycle-, complete-, and (strong-)star-, (strong-)complete-

bipartite-, (strong-)complete-t-partite-, and (strong-)wheel-neutrosophic graphs among other 

classes.  

The notions of minimum dense sets and dense numbers in neutrosophic graphs were first 

presented by Garrett et al. [22]. In a neutrosophic graph NTG:(V, E, σ, µ), a collection of 

vertices is referred to as a dense set if, for any vertex y outside the set, there is at least one 

vertex x inside the set such that x and y are endpoints of an edge xy∈E and x has more neighbors 

than y does. The dense number of NTG, represented by D(NTG), is the lowest cardinality of all 

dense sets. 

The aim of this work is to discover new ideas that are applicable to any class of hypergraphs 

that are neutrosophic. This study also serves as motivation for practical timetabling and 

scheduling applications. Colors, dominant sets, and domination are determined in large part by 

the links between two elements. As a result, they are employed in the definition of novel 

concepts that result in the coloring, dominating sets, and dominance structures. Everyone was 

motivated to investigate the behavior of general neutrosophic hyperedges in three different 

sorts of coloring numbers: dominating numbers, resolving sets, and individuals and families. 

This was due to the notion of having a general neutrosophic hyperedge. Thus, it is possible to 

compute the multivalued star chromatic number of a neutrosophic graphs (MVSCNGs) by 

taking into consideration valid edges and applying the idea of dominance, as inspired by [12–

15]. The following is a summary of the study's main contributions: 

❖ This paper introduces a new conceptualization of domination on multivalued star 

chromatic neutrosophic graphs (MVSCNGs) based on valid edges and vertices. 

❖ Along with examples, this paper also covers the ideas of valid edges, cardinality, and 

nearby vertices in MVSCNGs. 
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❖ This study demonstrates how to compute the corona product of two neutrosophic graphs 

using MVSCNGs. 

❖ The practical applications of the idea of dominance in multivalued neutrosophic 

incidence graphs (MVNIGs) are also covered in this study. 

The remainder of this essay is structured as follows: 

The concepts of dominance in fuzzy graphs, fuzzy incidence graphs, and neutrosophic graphs 

are presented in this introduction along with the history of incidence and domination graphs 

and a brief overview of pertinent literature on incidence graphs in fuzzy and neutrosophic 

settings. Graphs and neutrosophic sets as they are utilized in this study are introduced in Section 

2. Section 3 formulates the concept of neutrosophic dominating path-coloring number in 

multivalued star chromatic neutrosophic graphs (MVSCNGs) and derives key properties. 

Section 4 summarizes the findings and discusses the limitations and suggested avenues for 

further research. 

2. Preliminaries 

The foundational information from the previous section is presented in this subsection along 

with some updated concepts and explanations. 

Definition 2.1 A Neutrosophic set X  is contained in another neutrosophic set Y , (i.e) ZX 

if  ( ) ( )BTMATMA YXA  , , ( ) ( )AIMAIM BX  and ( ) ( )AFMAFM BX  . 

Definition 2.2 A pair ( )EVG ,* =  is neutrosophic graph defind as, 

 (i)  xvvvV ,.....,, 21= denotes the degree of the truth-membership function, indeterminacy 

function, and falsity-membership function, respectively  1,01 →=VTM ,  1,01 →=VIM and 

 1,01 →=VFM , is called a neutrosophic graph. 

( ) ( ) ( ) 30 ++ AFMAIMATM XXX
 

(ii) VVE  when,  1,02 →= ETM  ,  1,02 →= EIM  and  1,02 →= EFM  and are 

situated so as to 

( ) ( ) ( ) qTMpTMMinpqTM 112 ,  , 

( ) ( ) ( ) qIMpIMMinpqIM 112 ,  , 

( ) ( ) ( ) qFMpFMMinpqFM 112 ,  , 

and ( ) ( ) ( ) EpqpqFMpqIMpqTM ++ ,30 222
 . 

Definition 2.3 A vertex Vp of a neutrosophic graphs (NG) ( )EVG ,=  is said to be an isolated 

vertex if ( ) 0,2 =qp and  ( ) 0,2 =qp  for everyone Vq . That is ( ) =pN ;. As a result, no 

vertex in G is dominated by an isolated vertex [23]. 
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Definition 2.4 If no appropriate subset  of  is a dominating set, then a dominating set 

of NG is referred to as a minimum dominating set. The inituitionistic fuzzy dominating number, 

represented by ( )Gnt , is the minimum cardinality among all minimal dominating sets. 

Definition 2.5 If the induced neutrosophic subgraph  ( )EVV −= ,,  is unconnected, then 

a dominant set  of a neutrosophic graph ( )EVG ,=  is divided. A split domination number is 

the minimal fuzzy cardinality of a split dominating set, and it is represented as ( )Gsd . 

Definition 2.6 Lower split domination number of neutrosophic graphs of G is the minimum 

cardinality among all minimal split dominating set and is represented by ( )L

sd G . 

Definition 2.7 The term "highest split domination number of neutrosophic graphs of G" refers 

to the maximum cardinality among all maximum split dominating sets and is represented by

( )H

sd G . 

Definition 2.8 Let ( )XXX FMIMTMX ,,=  and ( )YYY FMIMTMY ,,=  be single valued 

neutrosophic sets on a set A . If ( )XXX FMIMTMX ,,= is a single valued neutrosophic 

relation on a set X, then ( )XXX FMIMTMX ,,=  is called a single valued neutrosophic 

relation on ( )YYY FMIMTMY ,,=  if  

( ) ( ) ( )( ) ( ) ( )( )bIMaIMMaxbTMaTMMinbaTM XXXXY ,,, 

( ) ( ) ( )( )bFMaFMMaxbaFM XXY ,,  for all ba, in A. 

The term "symmetric" refers to a single-valued neutrosophic relation X on A if, 

( ) ( ) ( ) ( ) ( ) ( )ybFMbaFMybIMbaIMybTMbaTM XXXXXX ,,,,,,,, ===  and 

( ) ( ) ( ) ( ) ( ) ( )ybFMbaFMybIMbaIMybTMbaTM YYYYYY ,,,,,,,, === , for all a,b in A. 

Definition 2.9 Let G be a graph that is neutrosophic. If there is no suitable subset of that 

dominating set S of G, then that dominating set of G is called a minimum dominating set

S . 

Definition 2.10 In a neutrosophic graph G, a vertex A is considered isolated if and only if 

( ) ( ) ( ) 

( ) ( ) ( ) 

, ,

, ,

Y Y Y

Y Y Y

TM a b Min TM a TM b

IM a b Max IM a IM b




 and 

( ) ( ) ( ) , ,Y Y YFM a b Max FM a FM b ,for all  b V a − . 

i.e ( )N a = . 

Definition 2.11 An isolated edge of a neutrosophic graph G is defined as follows: 
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( ) ( ) ( ) 

( ) ( ) ( ) 

, ,

, ,

Y Y Y

Y Y Y

TM a b Max TM a TM b

IM a b Min IM a IM b




 and 

( ) ( ) ( ) , ,Y Y YFM a b Min FM a FM b ,for all  b V a − . 

i.e ( )N a NULL= . 

Definition 2.12 A set of vertices S of a neutrosophic graph G is said to be independent [24] 

if, 

( ) ( ) ( ) 

( ) ( ) ( ) qIMpIMMaxqpIM

qTMpTMMinqpTM

XXX

XXX

,,

,,




 and 

( ) ( ) ( ) qFMpFMMaxqpFM XXX ,,  , for all sqp , . 

Definition 2.13 Then Let's say that neutrosophic graphs ( )EVG ,= . 

(i) A route is a set of successive vertices ( )NGOaaaI ,....,,: 10 where

( ) 1,....1,0,1 −=+ NGOxEaa xx    

(ii) Path's strength ( )NGOaaaI ,....,,: 10 is  ( ) ( )11,....,0 +−= xxNGOx aa
 

(iii) Interconnectivity between vertices 0a and ka is 

( ) ( )1
1,...0,...,,: 10

, +
==

 = xx
kxaaaI

kx aaaa
k

  

 

(iv) A cycle is a series of successive vertices ( )NGOaaaI ,....,,: 10 where, 

( ) 1,....1,0,1 −=+ NGOxEaa xx , ( ) Eaa NGO 0 there exist two edges ab and pq such that  

( ) ( ) ( )11,....1,0 +−=== xxix qqpqab   

(v) The edge ab indicates yx   where, xd

xVa and bd

bVb it is t-partite where

,,......., 2

2

1

1

dt

t

dd VVV  is divided into t pieces. In the event that it is complete xVx  , it 

is indicated by 
t ,...,, 21

 where x  is on  on xd

xV rather than induces ( ) 0=ax . 

Furthermore,  x

d

x dV x =  

(vi) If t = 3, then t-partite is [25] full bipartite, and it is represented by
321 ,,   

(vii) Full bipartite is represented by 3,1SR the symbol if 2=V .   

(viii) If a vertex in V links to every other vertex in a cycle, then that vertex is a center. 

Next, it is a wheel, indicated by 3,1 WH  

(ix) When it's finished, where ( ) ( ) ( )qppqVpq  = ,  

(x) Its strong where ( ) ( ) ( )qppqEpq  = , . 
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3. Proposed Neutrosophic Dominating Path-Coloring Number  

The neutrosophic dominating path-coloring number of a neutrosophic graph is the minimum 

number of colors needed to color the paths in the graph in such a way that every vertex is 

dominated by at least one path of each color. 

Definition 3.1. (Dominating path-coloring numbers) 

Let ( ),,,: EVGNG  be a graph that is neutrosophic. Next 

(i) There exist certain pathways from a to b for any two vertices, a and b. Two pathways from 

a to b are given different colors if they share an edge. In this method, the collection of colors 
 is referred to as the dominant path-coloring set from a to b if, for each edge outside, there are 

at least two edges inside that share a vertex. The term "dominating path-coloring number" 

refers to the minimal relationship across all domineering path-coloring sets between two given 

vertices, and it is represented by ( )NGDPC  ; 

(ii) There exist certain pathways that connect x and y given a pair of vertices, a and b. Two 

pathways from a and b are given different colors  if they share an edge. In this method, the 

collection of colors is referred to as the dominating path-coloring set from a and b if, for each 

edge outside, there are at least two edges inside that share a vertex. The term "neurosophic 

dominating path-coloring number" refers to the lowest neutrosophic cardinality ( )e
e x

x
 =


3

1

, 

between any dominating path-coloring set ( )e
e x

x
 =


3

1

and is represented by ( )NGN

NDPC . 

The term "neutronosophic," which was used in the prior definition, would typically not be 

utilized for practical purposes. 

Example 3.1. Figure 1 illustrates a complete neutrosophic graph.  
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( )7.0,8.0,2.02f

( )2.0,7.0,5.01f

( )1.0,2.0,5.04f

( )1.0,2.0,8.03f

(0.2,0.7,0.1) (0.5,0.1,0.2)

(0.2,0.1,0.4)

(0.5,0.2,0.3)

(0.3,0.2,0.4) (0.5,0.1,0.2)

 

Figure 1. A Neutrosophic Graph in the Viewpoint of its dominating path-coloring number 

and its neutrosophic dominating path-coloring number 

(i) Consider two vertices 
1f  and 

4f . All paths are as follow: 

blueffW →411 ,: . 

bluefffW →4212 ,,: . 

bluefffW →4313 ,,: . 

redffffW →43214 ,,,: . 

greenffffW →42315 ,,,: . 

The paths 
21,WW and 

3W  has no shared edge so they have been colored the same as red. The 

path 
4W has shared edge 

21 ff  with 
2W and shared edge 43 ff  with 3W thus it is been colored the 

different color as blue in comparison to them. The path 5W  has shared edge 31 ff with 3W  and 

shared edge 43 ff  with 
4W thus it is been colored the different color as yellow in comparison to 

different paths in the terms of different colors. Thus  greenredblue ,,=  is dominating path-

coloring set and its cardinality 3 is dominating path-coloring number. In summary, given two 

vertices, a and b, there are certain pathways that connect a and b. Two pathways from a to b 

are given different colors if they share an edge. In this method, the color set

 greenredblue ,,=  is referred to as the prevailing path-coloring set from a to b. A dominant 

path-coloring number is the least cardinality between all sets of dominating path-colorings 

from two vertices. It is represented by ( ) 3= NGDPC  ; 
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(ii) All vertices have the same positions in the matter of creating paths. So, for every two 

given vertices, the number and the behaviors of paths are the same 

(iii) There are three different paths which have no shared edges. So, they have been assigned 

to same color 

(iv) Shared edges form a set of representatives of colors. Each color is corresponded to an edge 

which has minimum neutrosophic cardinality 

(v) The minimum neutrosophic cardinality of a graph can be obtained by assigning each color 

to an edge with the smallest possible neutrosophic cardinality is   , or by using all shared edges 

to form a set S and then finding the minimum neutrosophic cardinality of S 

(vi) Two edges 
21 ff  and 43 ff  are shared with 

4W by 3W  and 
4W . The minimum neutrosophic 

cardinality is 0.5 corresponded to 34 ff . Other corresponded color has only one shared edge 32 ff  

and minimum neutrosophic cardinality is 0.7. Thus minimum neutrosophic cardinality is 1.2. 

And corresponded set is  3423 , ffff= . In summary, given two vertices, a and b, there are 

certain pathways that connect a and b. Two pathways from a to b are given different colors if 

they share an edge. In this approach, the collection of common edges is referred to as the 

dominant path-coloring set  3423 , ffff= from x to y. Neutronosophic dominating path-coloring 

number N

NDPC is the minimal neutrosophic cardinality ( )e
e x

x
 =


3

1

, between all dominating 

path-coloring sets and is represented by ( ) 2.1= NGN

NDPC . 

Theorem 3.1. 

Let Exbe an extra arc in 
best

ExG and let G  be an NG. In the event that nodes Exare present, an 

NDPC is ExG created when vu − the strongest neutrosophic route ExG between Ex  two nodes

u  and v   is discovered. 

Evidence. Let uvEx = there be an NDPC there ExG . Next, 

( ) ( ) ( ) ( ) ( ) ( )uvFMuvFMuvIMuvIMuvTMuvTM PoPoPoPoPoPo

  ,, . 

If we let au =  and bv = , then the proof is clear. 

Conversely, if there exist nodes u, v where u − v neutrosophic path ExW of ExG that includes 

uvEx =  is the unique strongest neutrosophic path between two nodes u and v, then for each 

ba −  neutrosophic path W without arc uvEx =  in G, we have, 

( ) ( ) ( ) ( ) ( ) ( )uvFMuvFMuvIMuvIMuvTMuvTM WPoWPoWPo  ,, . 

Hence, 

( ) ( ) ( ) ( ) ( ) ( )uvFMuvFMuvIMuvIMuvTMuvTM PoPoPoPoPoPo

  ,, . 
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Therefore, uvEx =  be a NDPC in ExG . 

Theorem 3.2. Let ( ),,,: EVGNG ) be a path-neutrosophic graph. Then, 

( ) ( )
 =








=

=



e x

x
Y

Path

N

NDPC eMinNG
Path

3

1
3

,

. 

Evidence. 

Let ( ),,,: EVGNGPath  be a graph that is path-neutrosophic. There is just one path 

connecting any two vertices, a and b. Two pathways from a and b that share an edge are given 

different colors, but there is only one path with a defined beginning and ending. In this 

procedure, the set of common edges is referred to as the dominant path-coloring set from x 

to y. Neutronosophic dominating path-coloring number   is the minimal neutrosophic 

cardinality ( )e
e x

x
 =


3

1

 between all dominating path-coloring sets and is represented by

( )Path

N

NDPC NG . Consequently, 

( ) ( )
 =








=

=



e x

x
Y

Path

N

NDPC eMinNG
Path

3

1
3

,

. 

Example 3.2.  

1. Figure 2(a) depicts an odd-path neutrosophic graph. The following path presents some new 

viewpoints that suggest a variety of more investigative and reasonable definitions: 

(i) All paths are as follows 

Blueff →41,  

dfff Re,, 341 →  

Greenffff →3241 ,,,  

yellowfffff →53241 ,,,,  

Blueff →34 ,  

Orangefff →234 ,,  

Blackffff →5234 ,,,  

Blueff →23 ,  
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redfff →523 ,,  

blueff →53 ,  

The number is 4; 

(ii) 1-paths have same color 

(iii) ( ) 4= Path

N

NDPC NG  

(iv) In order to create a route and control its behaviors, the positions of the provided vertices 

may differ. 

(v) every color is corresponded to some shared edges. Minimum neutrosophic cardinality of 

edges corresponded to specific color is a representative for that color. Thus every color is 

corresponded one neutrosophic cardinality of some edges since edges could have same 

neutrosophic cardinality with exception of initial color. So the summation of 4 numbers is 

neutrosophic dominating path-coloring number. Every color is compared with its previous 

color. The way is a consecutive procedure. 

(vi)  All paths are as follows. 

Blueff →41,  

6.0Re,, 41341 →→→ ffdfff  

1 4 2 3 1 4 1 3, , , , 1.1f f f f Green f f f f→ → →  

2,,,,,, 23344153241 →→→ ffffffyellowfffff  

Blueff →34 ,  

1.1,, 2334234 →→→→ ffffOrangefff  

1.1,,,, 52345234 →→→ ffffBlackffff  

Blueff →23 ,  

5.0,, 23523 →→→ ffredfff  

blueff →53 ,  

( )Path

N

NDPC NG is 5.4. 
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2. A graph with even paths and neutrosphic graphs is shown in Figure 2(b). Below are few 

points that are explained. This section applies a new meaning.  

(i) All paths are as follows. 

Blueff →41,  

Bluefff →341 ,,  

Blueffff →3241 ,,,  

Bluefffff →53241 ,,,,  

Blueffffff →653241 ,,,,,  

Blueff →34 ,  

Bluefff →234 ,,  

Blueffff →5234 ,,,  

Blueff →23 ,  

Bluefff →523 ,,  

blueff →53 ,  

The number is 1. 

(ii) 1- Paths are all the same color 

(iii) ( ) 1= Path

N

NDPC NG  

(iv) In terms of building a path and the behaviors inside it, the positions of the provided vertices 

may differ.  

(v) Only one way is available. It suggests there isn't a common edge.  

(vi) The following are all possible routes. 

Blueff →41,  

1 2 3, , 0f f f Blue no shared edge→ → →  

1 4 2 3, , , 0f f f f Blue no shared edge→ → →  
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1 4 2 3 5, , , , 0f f f f f Blue no shared edge→ → →  

Blueff →32 ,  

4 3 2, , 0f f f Blue no shared edge→ → →  

4 3 2 5, , , 0f f f f Blue no shared edge→ → →  

Blueff →23 ,  

3 2 5, , 0f f f red no shared edge→ → →  

blueff →53 ,  

( )Path

N

NDPC NG  is 0. 
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(b) 

Figure 2: From the perspective of (a) dominant path-coloring number and its neutrosophic 

dominating path, a neutrosophic graph-coloring number and (b) the neutrosophic dominant 

path-coloring number that results from it 

3.1. Multivalued Star Chromatic number of neutrosophic graph using corono product 

When a vertex's color is a multivalued collection of colors, the Multivalued Star Chromatic 

number of a neutrosophic network is the bare minimum of colors needed to color its vertices 

so that no two neighboring vertices have the same color. The Corono product is a way of 

constructing new graphs from existing graphs. It is a useful tool for studying the properties of 

graphs. The corono product of two graphs G and H is a new graph HG  that is constructed by 

taking one copy of G for each vertex of H and connecting the corresponding vertices of G and 

H by edges. In this research, we offer a new approach to use corono product to compute the 

Multivalued Star Chromatic number of neutrosophic graphs. The following steps form the 

foundation of the suggested method: 

❖ Construct the corono product of the neutrosophic graph G with the star graph  nH ,1 , 

where n is the number of colors in the multivalued set. 

❖ Using the fewest possible colors, ensure that no two neighboring vertices have the same 

color while coloring the vertices of the corono product graph  nHG ,1 . 

❖ The number of colors utilized to color the vertices of the corono product graph 

 nHG ,1 is known as the Multivalued Star Chromatic number of the neutrosophic 

graph G. 

Theorem 3.3 For any 𝑛 ≥ 1, 

( ) ( )13+= nHG nnSr   

Proof: Let ( )  nn pppGV ,.....,, 21=  and ( )  nn qqqHV ,.....,, 21= . Let

( )    nknjqnipHGV jkxnn −= 1;111   . Similar to how the edge corona 

product graph is created, end vertices ( )nii GVpp +1, are next to each vertex in

 nknjq jk − 1;11 . 

The following is the multivalued star chromatic number of the vertices nn HG   of using 3+n  

colors: 

1. For every  ni ,.....,2,1  , assign the color ii pCr + to. 

2. For 11 − nj and nk 1 . 

❖ If 31 +++ nkj , then assign the color 1++kjCr  to jkq . 

❖ If 31 +++ nkj  so, designate the coloring using the multivalued star chromatic 

number as follows: 



Journal of Computational Analysis and Applications                                                                              VOL. 33, NO. 8, 2024 

 

                                                                                 1506                                              J. Muthuerulappanet al 1492-1511 

( )

( )

( )

1

21

1

0 mod 3

1 mod 3

mod 3

jk

jk

n jk

Cr to p when j k n

Cr to p when j k n

Cr to p when j k n n+

+  +

+  +

+  +

M
  

Therefore ( ) 3+ nHG nnSr  . 

To prove ( ) 3+ nHG nnSr  , let us, on the contrary, assume that ( )nnSr HG  is less than

3+n , say ( ) 2+= nHG nnSr  . For accurate star coloring nkqpp jk 1:,, 21 , 2+n  now 

provide the vertices colors. Due to the fact that causes nkqpp jk 1:,, 21  a clique of order 

2+n  (say 2+n ), star color the order 𝑛 clique that is caused by the second copy nH , 

 nkq jk 1:  using preexisting colors in such a way ( ) ( )
jkqCrpCr 2 . One of the order four 

pathways connecting these cliques is bicolored, which is contradicted by giving the same colors 

2+n to the verties of another clique created by the third copy of nH ,  nkqpp k 1:,, 343 . 

As a result, coloring 2+n  a star with colors is not feasible. Consequently ( ) 3+ nHG nnSr 

. thus ( ) 3+ nHG nnSr  . 

Example 3.3 By Theorem 3.3, n=6 we have ( ) 936 =+=nnSr HG   shown in figure 3. 

Now assign the multivalued star coloring as follows: 

( ) ( ) ( ) 221361 ; CrqCrCrpCrqCr ===   

( ) ( ) ( ) ( ) 4211243113 ; CrpCrCrqCrCrpCrqCr =====   

( ) ( ) ( ) ( ) 531221513 CrqCrpCrqCrqCr ====   

( ) ( ) ( ) ( ) ( ) 63223161514 CrqCrpCrqCrqCrqCr =====   

( ) ( ) ( ) 7332624 CrpCrqCrqCr ===   
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p13

q1 q2
q3 q4 q5

Cr8

p11

p24 p23 p34 p33 p44

p12
p21

p22 p31 p32 p41 p42

p43P14

Cr1 Cr2 Cr3 Cr4 Cr5

Cr7 Cr6 Cr1 Cr8 Cr3 Cr6 Cr5

 

Fig.3: ( )nnSr HG   

Theorem 3.4 For any 6n , 

( ) ( ) 3+= HHG SrnnSr    

Proof: Let ( )  nn pppGV ,.....,, 21= and ( )  =HSr .  

The vertex colors of HGn  should be 3+ colored in the following manner, as indicated by

 . 

❖ Apply color kCr to the vertex ip such that ( )3mod + mi  it matches each 

 ni ,....,2,1 and 30 + m . 

❖ Assign the star coloring using the color set 

( ) / 1 mod 3 ; 1 ;0 3kCr j k m j n k + +  +     + to every copy HGn  of G. 

That is clearly a proper  coloration. We now need to demonstrate that  the coloring is 

starry. 

Let 4p  be any order four route in HGn  . It is clear that 4p  is not bicolored if 

( ) ( ) 64 =nGVpV  or 0. Any three consecutive vertices of in have three different colors if

( ) ( ) 54 =nGVpV   and only if
4p  is not bicolored. Then ( ) ( ) 44 =nGVpV  either has 4p two 

vertices on every copy of G of or it has two vertices on two nG in HGn   distinct copies of G , 

let's say, xg and yg  of HGn  . 

 

In the first scenario, let ( ) mi Crp =  ; ( )3mod + mi , ( ) ai Crp =+1 ; 

( )3mod1 ++ ai and bam CrCrCr  , where ( )3mod ++ bji  then 
4p has a 
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minimum of three colored vertices. Consequently
4p , it is not bicolored. In the latter instance

( ) ai Crp =+1  , ( )3mod1 ++ ai , ( ) bi Crp =+2 ; ( )3mod2 ++ bi , since every 

vertex of yg has color 1++ jig , it follows that three consecutive vertices have different colors, i.e., 

4p are not bicolored. It is not bicolored if ( ) ( ) 24 =nGVpV  there are at least two different 

colors on each of the three consecutive vertices
4p , and ( )ip  if those colors are distinct from 

one another. Consequently ( ) ( ) 3+ HHG SrnSr   . 

In order to ( ) ( ) 3+ HHG SrnSr    demonstrate the opposite, let us suppose that ( )HGnSr 

is fewer than, 3+ , approximately ( ) 2+=  HGnSr  . For 2+  accurate star coloring, 

assign colors to the vertices 11:,, 21 − njqpp jk , starting at k and going up to s} ( jkp see 

the label of vertices of copies of H  ) has a star chromatic number 2+ , hence the subsequent 

duplicate with colors is star colored. One of the order four paths connecting these vertex sets 

is bicolored, which is contradicted by giving H  the same 2+ colors to another copy of. As 

a result, coloring a star with colors 2+  is not feasible. Consequently ( ) 3+  HGnSr  . thus

( ) ( ) 3+= HHG SrnSr   . 

Theorem 3.5 For any 4n ,  

( ) 4,1 += nHG nnSr  . 

Proof. 

Let ( )  121 ,....., += nn pppGV  and ( )  nn qqqHV ,....., 21,1 = . Let 

( )    nknjqnipHGV jkinn ++= 11:11:,1  . Every end vertex ( )nii HVpp ,11, +  

in is next to every other vertex in nknjq jk + 11: , just like in the definition of an edge 

corona graph. Assign the following 2+n chromatic coloring nn HH ,1  to be used as a star: 

• Assign color 2+nCr to the vertex 1p . 

• For every  1,...,3,2 + ni , assign the color 1+nCr to 1p . 

• For every  nj ,...,3,2  and  nk ,...,3,2,1 , color the vertices jkq  with color kCr . 

Assuming such ( ) 2,1 + nHH nnSr  is the case, we can demonstrate that the multivalued star 

chromatic number of the edge corona product of a route graph with a complete graph is

( ) 2,1 + nHH nnSr  . Then, there exists a star coloring of this graph with 

( ) 1,1 += nHH nnSr  colors.  This is not feasible, though, as each vertex in the whole subgraph

 nkqpp k 1:,, 121  creates an order group 2+n  (say 2+nH ). Consequently, the multivalued 
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star chromatic number is ( ) 2,1 + nHH nnSr  proven to be since a colored 1+n  star coloring 

is not conceivable ( ) 2,1 += nHH nnSr  . 

Example 3.4 According to Theorem 3.5, we can notice that 𝑛 = 4 is the multivalued star 

chromatic number of the edge corona product of a route graph with a complete graph

( ) 84444,1 =+=HHSr  . This is shown in Figure 4, where the colors are assigned in the 

following way, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) 71211

41314516

243171514

11163281

,

,

,,

CrpCrpCr

CrqCrqCrCrpCr

CrpCrCrqCrqCrqCr

CrqCrCpCrpCrCrpCr

==

===

====

====

 

p2 q13 p3

p1

q14 q17

q15

q11

Cr2 Cr2

Cr1

p11

p12

Cr4

Cr3

Cr7Cr8

Cr3

Cr6

Cr5

 

Fig 5. ( )44,1 HHSr   

4. Conclusion and Future Research 

                           The idea of dominance is fundamental to graph theory from both a theoretical 

and practical standpoint. Neutrosophic models are more flexible and compatible with real-

world applications than fuzzy and intuitionistic fuzzy models. In this work, certain theorems 

about the dominant path-coloring number in neutrosophic graphs are developed and a 

description of multivalued star coloring on the corona product in a neutrosophic scenario is 

proposed. Additionally, the notions of cardinality in multivalued star chromatic neutrosophic 

graphs (MVSCNGs) and single-valued neutrosophic incidence valid edges are introduced by 

the authors. The multivalued star chromatic number of the edge corona product of a route graph 

with a full graph, a complete bipartite graph, and any simple graph is finally found by the 

authors. They also do the same actions for any simple graph, a full graph, and the edge corona 

product of a star graph with a route graph. 
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Other graph types, such intuitionistic fuzzy graphs and fuzzy graphs, will be covered by our 

method's extension. We also plan to investigate the relationship between the Multivalued Star 

Chromatic number of a neutrosophic graph and other graph properties. 
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