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Abstract 

 A dominating set S of a graph 𝐺 = (𝑉, 𝐸) is called a certified dominating set of G. If 

every vertices in S has either zero or at least two neighbours in 𝑉(𝐺) − 𝑆. A certified 

dominating set S of G is said to be connected certified dominating set if the subgraph induced 

by S is connected. The minimum cardinality taken over  all the connected certified dominating 

set is called the connected certified domination number of G and is denoted by 𝛾𝑐𝑒𝑟
𝑐 (𝐺). in this 

paper, we investigate the connected certified domination number of degree splitting graphs of 

certain graphs. 

Keywords: Dominating set, certified dominating set, certified domination number, connected  

                   certified domination, Degree splitting graphs.  
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1. Introduction  

 Let 𝐺 = (𝑉, 𝐸) be a finite, undirected graph without loops and multiple edges. The 

graph G has 𝑛 = |𝑉| vertices and 𝑚 = |𝐸| edges. A path 𝑃𝑛 is a graph whose vertices can be 

listed in the order  𝑣1, 𝑣2, … , 𝑣𝑛 such that the edges are {𝑣𝑖𝑣𝑖+1}, where 𝑖 = 1,2, … , 𝑛 − 1. A 

cycle is a path from a vertex back to itself.(So the first and last vertices are not distinct). A 

complete graph 𝐾𝑛 is a graph in which any two distinct vertices are adjacent. A complete 

bipartite graph, denoted by 𝐾𝑚,𝑛 is a simple bipartite graph with bipartition (𝑋, 𝑌) in which 

each vertex of X is joined to each vertex of Y. A star is a complete bipartite graph 𝐾1,𝑛. The 

join 𝐺 + 𝐻 of graphs G and H is the graph with vertex set 𝑉(𝐺 + 𝐻) = 𝑉(𝐺) ∪ 𝑉(𝐻) and edge 

set 𝐸(𝐺 + 𝐻) = 𝐸(𝐺) ∪ 𝐸(𝐻) ∪ {𝑢𝑣; 𝑢 ∈ 𝑉(𝐺) 𝑎𝑛𝑑 𝑣 ∈ 𝑉(𝐻)}. The fan graph of order n is 

defined as 𝐾1 + 𝑃𝑛 and is denoted by 𝐹𝑛 or 𝐹1,𝑛. The wheel graph of order 𝑛 ≥ 3 is defined as 

𝐾1 + 𝐶𝑛 and is denoted by 𝑊𝑛 or 𝑊1,𝑛. 

 Domination in graphs is one of the interesting areas in graph theory which has wide 

applications in Engineering and Science. There are more than 300 domination parameters 

available in the literature. Around 1960 Berge and ore started the mathematical exploration of 
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domination theory in graphs. There is a plethora of material on domination theory; we 

recommend readers outstanding books [2,3] on domination-related parameters. 

 Suppose that we are given a group of X officials and a group of Y civilians. There 𝑥 ∈

𝑋 for each civil 𝑦 ∈ 𝑌 who can attend 𝑥, and every time any such 𝑦 is attending 𝑥, there must 

be also another civil 𝑧 ∈ 𝑌 that observes 𝑦. That is z must act as a kind of witness, to sidestep 

any mismanagement from 𝑦. In the case of a certain social network, what is the minimum 

number of connected officials necessary to ensure such a service? This aforementioned issue 

motivates us to propose the concept of connected certified domination. 

 The theory of certified domination was introduced by Dettlaff, Lemanska, Topp, 

Ziemann and Zylnski [9] and further studded in [8]. It has many applications in real life 

situations. The concept of connected certified domination was introduced by A. Ilyass and 

V.S.Goswami[10]. This motivated we to study the connected certified number in central graphs 

of certain standard graphs such as complete, complete bipartite graph, path graph, cycle graph, 

wheel graph, fan graph and double star graph. 

 In [9], authors studied certified domination number in graphs which is defined as 

follows: 

Definition 1.1 

 Let 𝐺 = (𝑉, 𝐸) be any graph of order n. A subset 𝑆 ⊆ 𝑉(𝐺) is said to be a certified 

dominating set of G if S is a dominating set of G and every vertex in S has either zero or at 

least two neighbours in 𝑉 − 𝑆.  The certified domination number denoted by 𝛾𝑐𝑒𝑟(𝐺) is the 

minimum cardinality of certified dominating sets in G. 

Definition 1.2. 

 Let 𝐺 = (𝑉, 𝐸) be any connected graph of order n. A certified dominating set 𝑆 ⊆ 𝑉(𝐺) 

is called a connected certified dominating set of G if its induced subgraph 𝐺[𝑆] is connected. 

The connected certified domination number is the minimum cardinality of a connected 

dominating set of G and we denoted it by 𝛾𝑐𝑒𝑟
𝑐 (𝐺). 

2. Preliminaries   

Theorem 2.1 [9] For any graph G of order 𝑛 ≥ 2, every certified dominating set of G contains 

its support vertices. 

Theorem 2.2 [9] For any graph G of order 𝑛, 𝑖1 ≤ 𝛾𝑐𝑒𝑟
𝑐 (𝐺) ≤ 𝑛. 

Observation 2.3 [10]  

1) Let 𝐾𝑚,𝑛 be a complete bipartite graph, then 𝛾𝑐𝑒𝑟
𝑐 (𝐾𝑚,𝑛) = 2 for 3 ≤ 𝑚 ≤ 𝑛. 

2) Let 𝐾1,𝑛−1 be a star graph, then 𝛾𝑐𝑒𝑟
𝑐 (𝐾1,𝑛) = 1 for 𝑛 ≥ 2. 

3) Let 𝑊𝑛 be a wheel graph, then 𝛾𝑐𝑒𝑟
𝑐 (𝑊𝑛) = 1. 

4) Let 𝑆1,𝑛,𝑛 be a double star graph, then 𝛾𝑐𝑒𝑟
𝑐 (𝑆1,𝑛,𝑛) = 2, 𝑖where 𝑛 ≥ 2. 



Journal of Computational Analysis and Applications                                                                              VOL. 33, NO. 7, 2024 

 

                                                                                 1480                                              Dr. M. Deva Saroja et al 1478-1499 

Observation 2.4 [10] 

1) If 𝐾𝑛 is a complete graph, then 𝛾𝑐𝑒𝑟
𝑐 (𝐾𝑛) = 1 for 𝑛 ≥ 3. 

2) If 𝑃𝑛 is a path graph, then 𝛾𝑐𝑒𝑟
𝑐 (𝑃𝑛) = 𝑛 for 𝑛 ≥ 4. 

3) If 𝐶𝑛 is a cycle graph, then 𝛾𝑐𝑒𝑟
𝑐 (𝐶𝑛) = 𝑛 for 𝑛 ≥ 4. 

4) If 𝐹𝑛 is a fan graph, then 𝛾𝑐𝑒𝑟
𝑐 (𝐹𝑛) = 1 for 𝑛 ≥ 3. 

Observation 2.5 [10] 

 For any connected graph G, 𝛾𝑐𝑒𝑟(𝐺) ≤ 𝛾𝑐𝑒𝑟
𝑐 (𝐺). 

3. Degree Splitting Graphs 

Definition: 3.1 [5] 

 Let 𝐺 = (𝑉, 𝐸) be any graph with 𝑉(𝐺) = 𝑆1 ∪ 𝑆2 ∪, … ,∪ 𝑆𝑙 ∪ 𝐿, where 𝑆𝑖 is the set 

having at least two vertices of G of the same degree and 𝐿 = 𝑉(𝐺) −∪ 𝑆𝑖, where 1 ≤ 𝑖 ≤ 𝑙, 

then the degree splitting 𝐷𝑆(𝐺) of 𝐺 is defined as a graph obtained from G by adding vertices 

𝑦1, 𝑦2, … , 𝑦𝑙  and joining 𝑦𝑖 to each vertices of 𝑆𝑖 for 1 ≤ 𝑖 ≤ 𝑙. 

 If 𝑉(𝐺) = ⋃ 𝑆𝑖
𝑙
𝑖=1  then 𝐿 must be empty. 

Example 3.2: 

 Consider the graph G and their corresponding degree splitting graph 𝐷𝑆(𝐺) is given in 

Figure 3.1. Here 𝑆1 = {𝑥1, 𝑥7, 𝑥8}, 𝑆2 = {𝑥2, 𝑥6}, 𝑆3 = {𝑥4, 𝑥5} and 𝐿 = {𝑥3}. 

                         

                                

Example 3.3 

 Consider the graph G and its degree splitting graph 𝐷𝑆(𝐺) given in Figure 3.2 

𝐺 

𝐷𝑆(𝐺) 

 

Figure. 3.1 
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 Here 𝑆 = {𝑥1, 𝑦1} is the unique minimum certified dominating set of 𝐷𝑆(𝐺) and so, 

𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐺)) = 2. But < 𝑆 > is not connected so that S is not a connected certified dominating 

set of 𝐷𝑆(𝐺). 

 Since 𝑥1 − 𝑦1 is a connected path of distance 2 through 𝑥2, 𝑥3, 𝑥4 and 𝑥5 respectively. 

Therefore, either 𝑥2 or 𝑥3 or 𝑥4 must be in every connected certified dominating set of 𝐷𝑆(𝐺). 

If 𝑆′ = 𝑆 ∪ {𝑥2}, the every vertex in S has exactly three neighbours in 𝑉(𝐷𝑆(𝐺))\𝑆′ and {𝑥2 } 

has zero neighbours in 𝑉(𝐷𝑆(𝐺))\𝑆′. Also, < 𝑆′ >  is connected. Therefore that 𝑆′ is a 

minimum connected certified dominating set of 𝐷𝑆(𝐺) and so 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐺)) = |𝑆′| = 3. 

 Furthermore, in Figure 3.2, 𝛾𝑐𝑒𝑟
𝑐 (𝐺) = 1. Thus the connected certified dominating set 

of G and 𝐷𝑆(𝐺) are different.  

Observation 3.4 

 For any connected graph G, there is no obvious relation connecting 𝛾𝑐𝑒𝑟
𝑐 (𝐺) and 

𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐺)). 

 Example for 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐺)) < 𝛾𝑐𝑒𝑟

𝑐 (𝐺). 

 Consider the connected graph G given in Figure 3.3 

𝐷𝑆(𝐺) 

Figure. 3.2 

 

 

𝐺 
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 Here 𝑆 = 𝑉(𝐺) is the unique minimum connected certified dominating set of G and 

hence 𝛾𝑐𝑒𝑟
𝑐 (𝐺) = |𝑆| = 4. 

 Now we degree split every edge of G. A new connected graph 𝐷𝑆(𝐺) obtained and is 

given in Figure 3.4 

                            

 

 

 Here 𝑆′ = {𝑦1} is the unique minimum connected certified dominating set of 𝐷𝑆(𝐺) 

and hence, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐺)) = |𝑆′| = 1.  

 Thus, in this case 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐺)) < 𝛾𝑐𝑒𝑟

𝑐 (𝐺). 

Example for, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐺)) = 𝛾𝑐𝑒𝑟

𝑐 (𝐺) 

 Consider the graph G given in Figure 3.5 

𝐺 

Figure. 3.3 

 

𝐷𝑆(𝐺) Figure. 3.4 

 

 

𝐷𝑆(𝐺) 
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Here 𝑆 = {𝑥2, 𝑥4, 𝑥5, 𝑥6, 𝑥7} is a minimum connected certified dominating set of G and 

hence, 𝛾𝑐𝑒𝑟
𝑐 (𝐺) = |𝑆| = 5. 

 Now we degree split every edge of G. A new connected graph 𝐷𝑆(𝐺) is obtained and 

is given in Figure 3.6. 

                       

                  

  

Here 𝑆′ = {𝑥2, 𝑥3, 𝑥7, 𝑥8, 𝑦1} is a minimum connected certified dominating set of 𝐷𝑆(𝐺) and 

hence 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐺)) = |𝑆′| = 5. 

 Thus in this case 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐺)) = 𝛾𝑐𝑒𝑟

𝑐 (𝐺). 

Example for 𝛾𝑐𝑒𝑟
𝑐 (𝐺) < 𝛾𝑐𝑒𝑟

𝑐 (𝐷𝑆(𝐺)), we consider the graph G given in Figure 3.2. 

 Here 𝛾𝑐𝑒𝑟
𝑐 (𝐺) = 1 and 𝛾𝑐𝑒𝑟

𝑐 (𝐷𝑆(𝐺)) = 3. 

 Thus 𝛾𝑐𝑒𝑟
𝑐 (𝐺) < 𝛾𝑐𝑒𝑟

𝑐 (𝐷𝑆(𝐺)). 

 

𝐺 

Figure. 3.5 

 

 

 

𝐷𝑆(𝐺) 

Figure. 3.6 
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   𝐷𝑆(𝐾1,𝑛−1) 

   Figure. 3.7 

 

 

Theorem 3.5 

 For any integer 𝑛 ≥ 3, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐾1,𝑛−1)) = 3. 

Proof  

 Let 𝑥1, 𝑥2, … , 𝑥𝑛−1 be the end vertices and x be the full degree vertex of the star 𝐾1,𝑛−1 

and y be the corresponding degree splited vertex which is added to obtain the graph 

𝐷𝑆(𝐾1,𝑛−1). Then 𝑉 (𝐷𝑆(𝐾1,𝑛−1)) = {𝑥, 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛−1, 𝑦} and so |𝑉 (𝐷𝑆(𝐾1,𝑛−1))| =

𝑛 + 1. 

 

  

 

 

    

 

 

 

 

 

 

 

Since 𝐷𝑆(𝐾1,𝑛−1) is connected and Δ (𝐷𝑆(𝐾1,𝑛−1)) ≠ 𝑉 (𝐷𝑆(𝐾1,𝑛−1)) − 1, then 

𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐾1,𝑛−1)) ≥ 2. Consider 𝑆 = {𝑥, 𝑦}. Clearly 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1 is dominated by x 

and y so that S dominates 𝑉 (𝐷𝑆(𝐾1,𝑛−1)). Since 𝑛 ≥ 3 every vertices in S has at least two 

neighbours in 𝑉 (𝐷𝑆(𝐾1,𝑛−1)) \𝑆. Therefore that S is a certified dominating set of 𝐷𝑆(𝐾1,𝑛−1). 

But < 𝑆 > is not connected. Also there does not exists a connected certified dominating set of 

cardinality two. Thus 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐾1,𝑛−1)) ≥ 3. Now consider 𝑆′ = 𝑆 ∪ {𝑥𝑖} for 1 ≤ 𝑖 ≤ 𝑛 − 1. 

Clearly 𝑥𝑖 incident with x and y only. So that 𝑆′is a connected certified dominating set of 

𝐷𝑆(𝐾1,𝑛−1) and so 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐾1,𝑛−1)) ≤ |𝑆′| = 3.  Hence 𝛾𝑐𝑒𝑟

𝑐 (𝐷𝑆(𝐾1,𝑛−1)) = 3. 

 

𝑥2 

  

.  .  .  . 

  

𝑥 

  

𝑥1 

  

𝑥3 

  

𝑥𝑛−1 

  𝐾1,𝑛−1 

  

 

𝑥2 .  .  .  . 

𝑥 

𝑥1 𝑥3 𝑥𝑛−1 

𝑦 
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Example 3.6 

 Consider 𝐷𝑆(𝐾1,6) given in Figure 3.8,  by theorem 3.5, 𝑆 = {𝑥, 𝑦, 𝑥1} is a minimum 

connected certified dominating set of 𝐷𝑆(𝐾1,6) and hence, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐾1,6) = |𝑆| = 3. 

 

Theorem 3.7 

 For the bistar graph 𝐵𝑚,𝑛, (𝑚, 𝑛 ≥ 1),  

                𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐵𝑚,𝑛)) = { 

3 𝑖𝑓 𝑛 = 1 𝑎𝑛𝑑 𝑚 > 1 𝑜𝑟 𝑛 ≥ 2
6 𝑖𝑓 𝑚 = 𝑛 = 1

. 

Proof  

Consider the bistar graph 𝐵𝑚,𝑛 with 𝑉(𝐵𝑚,𝑛) = {𝑥, 𝑦, 𝑥𝑖 , 𝑦𝑗; 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}. 

Here 𝑥𝑖  and 𝑦𝑗 are the vertices adjacent with x and y respectively. To obtain 𝐷𝑆(𝐵𝑚,𝑛), three 

cases where arise: 

Case(i)  𝑛 ≥ 2. Then 𝑚 ≥ 2. Two subcases arise. 

Subcase(a) 𝑚 = 𝑛. Let 𝑤1 and 𝑤2 be the corresponding vertices which are added to obtain 

𝐷𝑆(𝐵𝑚,𝑛). Then, 𝑉 (𝐷𝑆(𝐵𝑚,𝑛)) = {𝑥, 𝑦, 𝑥𝑖, 𝑦𝑖 , 𝑤1, 𝑤2; 1 ≤ 𝑖 ≤ 𝑚} and so |𝑉 (𝐷𝑆(𝐵𝑚,𝑛))| =

𝑚 + 𝑛 + 4. The graph is given in Figure 3.9 

  

 

 

 

 

 

Figure. 3.8 

𝐷𝑆(𝐾1,6) 
𝑦 

  

𝑥2 

  

𝑥3 𝑥5 

  

𝑥4 

  

𝑥1 

  

𝑥6 

  

𝑥 

𝑤2 

𝑦2 

𝑦 𝑥 

𝑥𝑚 𝑥2 𝑥1 𝑦1 𝑦𝑛 .  .  .  . .  .  .  . 

𝑤1 

𝐷𝑆(𝐵𝑚,𝑛) 

  

 

Figure. 3.9 
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In this case we consider 𝑆 = {𝑥, 𝑤2}. Clearly S is a certified dominating set of 𝐷𝑆(𝐵 𝑚,𝑛). But 

< 𝑆 > is not connected. Since 𝑥1 is adjacent with only 𝑥 and 𝑤2. 𝑆 ∪ {𝑥1} is a minimum 

connected certified dominating set of 𝐷𝑆(𝐵 𝑚,𝑛) and hence, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐵 𝑚,𝑛)) = |𝑆| = 3. 

Subcase (b)  𝑚 ≠ 𝑛. Then 𝑚 > 𝑛 . Let 𝑤1  be the corresponding vertex which is added to 

obtain 𝐷𝑆(𝐵 𝑚,𝑛). Then 𝑉 (𝐷𝑆(𝐵 𝑚,𝑛)) = {𝑥, 𝑦, 𝑥𝑖 , 𝑦𝑗 , 𝑤1; 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} and so 

|𝑉 (𝐷𝑆(𝐵 𝑚,𝑛))| = 𝑚 + 𝑛 + 3. This graph is given in Figure 3.10 

 

 

  

 

 

 

 

As similar in Subcase (a) here also 𝑆 = {𝑥, 𝑥1, 𝑤1} is a minimum connected certified 

dominating set of 𝐷𝑆(𝐵 𝑚,𝑛) and hence 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐵 𝑚,𝑛)) = |𝑆| = 3. 

Case (ii) 𝑛 = 1 and 𝑚 > 1 

 In this case in 𝐵 𝑚,𝑛, 𝑦 is adjacent with exactly one end verted 𝑦1 and x is adjacent with 

more that two end vertices. Let 𝑤1 be the corresponding degree splitted vertex which is added 

to obtain 𝐷𝑆(𝐵 𝑚,𝑛). Then 𝑉 (𝐷𝑆(𝐵 𝑚,1)) = {𝑥, 𝑦, 𝑥𝑖 , 𝑦1, 𝑤1; 1 ≤ 𝑖 ≤ 𝑚} and so 

|𝑉 (𝐷𝑆(𝐵 𝑚,1)) | = 𝑚 + 4. This graph is given in Figure 3.11. 

  

 

 

 

 

 

 

 

𝐷𝑆(𝐵𝑚,𝑛) 

 

𝐷𝑆(𝐵𝑚,1) 

 Figure. 3.11 

 

Figure. 3.10 
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Since 𝑥 dominates 𝑦, 𝑥1, 𝑥2, … , 𝑥𝑚 and 𝑤1 dominates 𝑥1, 𝑥2, … , 𝑥𝑚 and 𝑦1, 𝑆 = {𝑥, 𝑤1} 

is a dominating set of 𝐷𝑆(𝐵 𝑚,1). Since 𝑚 > 1, every vertices in S has at least two neighbours 

in 𝑉 (𝐷𝑆(𝐵 𝑚,1)) \𝑆. So that S is a certified dominating set of𝐷𝑆(𝐾𝑚,1). But < 𝑆 >  is not 

connected. Since 𝑥1, 𝑥2, … , 𝑥𝑚 dominated by both x and 𝑤1, that 𝑆 ∪ {𝑥𝑖} is a minimum 

connected certified dominating set of 𝐷𝑆(𝐵𝑚,1) and hence, 𝛾𝑐𝑒𝑟
𝑐 (𝐵𝑚,1) = 3. 

Case (iii) 𝑚 = 𝑛 = 1.     

 In this case in 𝐵𝑚,𝑛, 𝑥 and 𝑦 are adjacent to exactly one end vertex 𝑥1 and 𝑦1 

respectively. So in 𝐷𝑆(𝐵𝑚,𝑛), let 𝑤1, 𝑤2 be the corresponding vertex adjacent to both 𝑥1, 𝑦1 

and 𝑥, 𝑦 respectively and is given in Figure 3.12 

 

  

 

 

 

 

 

 

 

 

Here 𝑆 = {𝑥, 𝑤2} be a certified dominating set of 𝐷𝑆(𝐵1,1). But < 𝑆 > is not connected. 

Since x and 𝑤2 are both adjacent to 𝑥1 in the shortest 𝑥 − 𝑤2 path, that 𝑥1 must be in every 

connected certified dominating set of 𝐷𝑆(𝐵1,1). Let 𝑆′ be a minimum connected certified 

dominating set of 𝐷𝑆(𝐵1,1). Clearly 𝑆 ∪ {𝑥1} ⊆ 𝑆′. But in 𝑆 ∪ {𝑥1}, 𝑤2 has exactly one 

neighbor in 𝑉 (𝐷𝑆(𝐵1,1)) \𝑆 ∪ {𝑥1}. So that 𝑆 ∪ {𝑥1} itself is not a connected certified 

dominating set of 𝐷𝑆(𝐵1,1). So 𝑦1  must be in 𝑆′. As similar, that y also has exactly one 

neighbor 𝑤1 in 𝑉 (𝐷𝑆(𝐵1,1)) \𝑆 ∪ {𝑥1, 𝑦1, 𝑦}. Therefore 𝑤2 must be in 𝑆′. Thus every 

connected certified dominating set must contains at least 6 vertices. So, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐵1,1)) ≥ 6. 

Since |𝑉 (𝐷𝑆(𝐵1,1))| = 6, we conclude that 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐵1,1)) = 6. 

 Hence 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐵𝑚,𝑛)) = {

3 𝑖𝑓 𝑛 = 1 𝑎𝑛𝑑 𝑚 > 1 𝑜𝑟 𝑛 ≥ 2
6 𝑖𝑓 𝑚 = 𝑛 = 1

. 

 

𝐷𝑆(𝐵1,1) 

 
Figure. 3.12 
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Example 3.8 

 Consider 𝐷𝑆(𝐵4,4) given in Figure 3.13 

 

 By Theorem 3.7 𝑆 = {𝑥, 𝑥1, 𝑤2} is a minimum connected certified dominating set of 

𝐷𝑆(𝐵4,4) and hence 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐵4,4)) = |𝑆| = 3. 

Theorem 3.9 

 For integers 𝑚, 𝑛 ≥ 2, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐾𝑚,𝑛)) = {

1 𝑖𝑓 𝑚 = 𝑛
2 𝑖𝑓 𝑚 ≠ 𝑛

. 

Proof  

 Consider 𝐾𝑚,𝑛 with 𝑉(𝐾𝑚,𝑛) = {𝑥𝑖, 𝑥𝑗; 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} for 𝑚, 𝑛 ≥ 2 with 

partition 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚} and 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛}. To obtain 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐾𝑚,𝑛)), we consider 

two cases. 

Case (i) 𝑚 = 𝑛.  

 In this case every vertex is of some degree and let w be the added vertex which is 

adjacent to every 𝑥𝑖 and 𝑦𝑗 , 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛. Thus we obtained 𝐷𝑆(𝐾𝑚,𝑛) and is 

given in Figure 3.14. Then 𝑉 (𝐷𝑆(𝐾𝑚,𝑛)) = {𝑥𝑖 , 𝑦𝑗 , 𝑤; 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} and so 

|𝑉 (𝐷𝑆(𝐾𝑚,𝑛))| = 𝑚 + 𝑛 + 1. 

𝑤2 

  

𝑦2 

  

𝑦 𝑥 

  

𝑥4 

  

𝑥2 

  

𝑥1 

  

𝑦1 

  

𝑦4  

  

 

  

𝑤1 

  

𝑥3 

  

𝑦3 

  

𝐷𝑆(𝐵4,4) 

Figure. 3.13 
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Clearly 𝑤 is adjacent with 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑚 and 𝑦𝑗 , 1 ≤ 𝑗 ≤ 𝑛.  Therefore 𝑤 is a full degree vertex 

in 𝐷𝑆(𝐾𝑚,𝑛). So,  𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐾𝑚,𝑛)) = 1. 

Case (ii) 𝑚 ≠ 𝑛 

 In this case, every vertex 𝑥𝑖 is of same degree and every vertex 𝑦𝑗 is of same degree, 

where deg(𝑥𝑖) ≠ deg(𝑦𝑗) for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 in 𝐾𝑚,𝑛. So let 𝑤1and 𝑤2 be the added 

vertices, where 𝑤1is adjacent to every 𝑥𝑖 and 𝑤2 is adjacent to every 𝑦𝑗 . Then 𝑉 (𝐷𝑆(𝐾𝑚,𝑛)) =

{𝑥𝑖, 𝑦𝑗 , 𝑤1, 𝑤2; 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} and so |𝑉 (𝐷𝑆(𝐾𝑚,𝑛))| = 𝑚 + 𝑛 + 2. This graph is 

given in Figure 3.15 

 

 Consider the set 𝑆 = {𝑥𝑖 , 𝑦𝑗}, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛. Here 𝑥𝑖 is adjacent to every 𝑦𝑗 and 

𝑤1. Also 𝑦𝑗  is adjacent to every 𝑥𝑖  and 𝑤2.  Thus S dominates 𝑉 (𝐷𝑆(𝐾𝑚,𝑛)). Since 𝑚, 𝑛 ≥

2, every vertex in S has at least two neighbours in 𝑉 (𝐷𝑆(𝐾𝑚,𝑛)) \𝑆. Also < 𝑆 > is connected 

certified dominating set of 𝐷𝑆(𝐾𝑚,𝑛) and so 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐾𝑚,𝑛)) ≤ |𝑆| = 2. Since 

Δ(𝐷𝑆(𝐾𝑚.𝑛)) ≠ 𝑉 (𝐷𝑆(𝐾𝑚,𝑛 )) − 1, we conclude that 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐾𝑚,𝑛)) = 2. 

.  .  .  . 

.  .  .  . 

𝑥3 

  

𝑦1 

  

𝑦2 

  

𝑦3 

  

𝑦𝑛 

  

𝑥𝑚 

  

𝑥1 

  

𝑥2 

  

𝑤 

  

𝐷𝑆(𝐾𝑚,𝑛) 
Figure. 3.14 

𝑤2 

  

𝑤1 

  

.  .  .  . 

  

𝑥3 

  

𝑦1 

  

𝑦2 

  

𝑦3 

  

𝑦𝑛 

  

𝑥𝑚 

  

𝑥1 

  

𝑥2 

  

.  .  .  . 

𝐷𝑆(𝐾𝑚,𝑛) 

Figure. 3.15 
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  Hence, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐾𝑚,𝑛)) = {

1 𝑖𝑓 𝑚 = 𝑛
2 𝑖𝑓 𝑚 ≠ 𝑛

. 

Example 3.10 

 Consider 𝐷𝑆(𝐾3,4) given in Figure 3.16 by Theorem 3.9, 𝑆 = {𝑥1, 𝑦1} is a minimum 

connected certified dominating set of 𝐷𝑆(𝐾3,4) and hence, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐾3,4)) = |𝑆| = 2. 

                               

 

 

Theorem 3.11 

For integer 𝑛 ≥ 2, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝑃𝑛)) = {

𝑛 + 1 𝑖𝑓 𝑛 = 3
𝑛 + 2 𝑖𝑓 𝑛 = 4

𝑛 𝑖𝑓 𝑛 = 5 
𝑛 − 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

Proof  

 Let 𝑛 ≥ 2. If 𝑛 = 2, then 𝐷𝑆(𝑃2) ≅ 𝐾3 and so by Observation 2.4 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝑃2)) = 1 =

𝑛 − 1. Now assume 𝑛 ≥ 3. 

 Let 𝑥1, 𝑥2, … , 𝑥𝑛 be the path graph 𝑃𝑛 with edge part partitions 𝑆1 = {𝑥2, 𝑥3, … , 𝑥𝑛−1} 

and 𝑆2 = {𝑥1, 𝑥𝑛}. To obtain 𝐷𝑆(𝑃3) from 𝑃3 we add 𝑤, which corresponds to 𝑆2. Therefore 

𝐷𝑆(𝑃3) ≅ 𝐶4 and so by Observation 2.4, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝑃3)) = 4 = 𝑛 + 1. 

 Now, assume 𝑛 ≥ 4. To obtain 𝐷𝑆(𝑃𝑛) we add 𝑤1 and 𝑤2 which corresponds to 𝑆1 and 

𝑆2 respectively. Then 𝑉(𝐷𝑆(𝑃𝑛)) = {𝑤1, 𝑤2, 𝑥1, 𝑥2, … , 𝑥𝑛}, where |𝑉(𝐷𝑆(𝑃𝑛))| = 𝑛 + 2. This 

graph is shown in Figure 3.17. 

  

𝐷𝑆(𝐾3,4) 

Figure. 3.16 
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For 𝑛 = 4, 𝑆 = {𝑤1, 𝑤2} or 𝑆 = {𝑤2, 𝑥2} or 𝑆 = {𝑤2, 𝑥3} are only minimum certified 

dominating set of 𝐷𝑆(𝑃4). But < 𝑆 > is not connected. Therefore, that S is not a connected 

certified dominating set of 𝐷𝑆(𝑃4). Now, we construct a connected certified dominating set 𝑆′ 

for 𝐷𝑆(𝑃4). Since 𝑤2 − 𝑥2 and 𝑤2 − 𝑥3 are connected by unique path, we fix S= {𝑤1, 𝑤2}. 

Assume 𝑆 ⊆ 𝑆′clearly path from 𝑤1to 𝑤2, has exactly two shortest path of length 3 through 𝑥1 

and 𝑥4, respectively. If we select 𝑥1 or 𝑥4 in 𝑆′, then 𝑤2 has exactly one neighbor in 

𝑉(𝐷𝑆(𝑃4))\𝑆′. So we must select 𝑥2 or 𝑥3 in 𝑆′. Then 𝑤1 has exactly one neighbor in 

𝑉(𝐷𝑆(𝑃4))\𝑆′. Therefore 𝑥1, 𝑥2, 𝑥3, 𝑥4 must be in 𝑆′.  Thus, 𝑆′ = {𝑤1, 𝑤2, 𝑥1, 𝑥2, 𝑥3, 𝑥4} in a 

unique connected certified dominating set of 𝐷𝑆(𝑃4) and so 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝑃4)) ≥ |𝑆′| = 6 = 𝑛 +

2. We conclude that 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝑃4)) = 6 = 𝑛 + 2. 

 For 𝑛 = 5, we construct a connected certified dominating set 𝑆′ of 𝐷𝑆(𝑃5). If we 

consider 𝑆 = {𝑤1, 𝑤2} then every vertices in𝑉(𝐷𝑆(𝑃5))\𝑆. In order to connectedness we must 

select all the vertices from 𝐷𝑆(𝑃4). So we select 𝑆 = {𝑤2, 𝑥2, 𝑥4}. Clearly S is a certified 

dominating set of 𝐷𝑆(𝑃5). But < 𝑆 > is not connected. Therefore S itself is not a connected 

certified dominating set of 𝐷𝑆(𝑃5). Thus 𝑆 ⊂ 𝑆′. If 𝑥1 ∈ 𝑆′, then 𝑤2 has exactly one neighbor 

𝑥5 in 𝑉(𝐷𝑆(𝑃5))\𝑆′. So 𝑥1, 𝑥5 must be in 𝑆′. If 𝑆 ∪ {𝑥1, 𝑥5} = 𝑆′, then 𝑆′ itself be a minimum 

connected certified dominating set of 𝐷𝑆(𝑃5) and hence 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝑃5)) = 5 = 𝑛. 

 Consider 𝑛 ≥ 6. As similar in the case 𝑛 = 5, we take 𝑆 = {𝑤1, 𝑤2}, then S is a 

minimum certified dominating set if 𝐷𝑆(𝑃𝑛). But, since < 𝑆 > is not connected, that 

𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝑃𝑛)) ≥ 𝑛 + 2. Therefore, we take 𝑆 as without 𝑤1. Let 𝑆′ =

{𝑥1, 𝑥2, … , 𝑥
⌈

𝑛

2
⌉+1

, 𝑥
⌈

𝑛

2
⌉+2

, 𝑥
⌈

𝑛

2
⌉+3

, … 𝑥𝑛−1, 𝑥𝑛, 𝑤2}. Clearly certified 𝑆′ is a minimum connected 

certified dominating set of cardinality |𝑉(𝐷𝑆(𝑃𝑛))| − 3. Therefore 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝑃𝑛)) = |𝑆′| =

|𝑉(𝐷𝑆(𝑃𝑛))| − 3 = 𝑛 + 2 − 3 = 𝑛 − 1. 

𝑤2 

  

𝑤1 

  

𝑥𝑛 𝑥𝑛−1 𝑥3 

  

𝑥1 𝑥2 

  

.  .  . 

  

𝑥𝑛 

  

𝑥𝑛−1 

  

𝑥3 

  

𝑥1 

  

𝑥2 

  

.  .  . 

𝐷𝑆(𝑃𝑛) 

Figure. 3.17 

𝑃𝑛 
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 Hence 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝑃𝑛)) = {

𝑛 + 1 𝑖𝑓 𝑛 = 3
𝑛 + 2 𝑖𝑓 𝑛 = 4

𝑛 𝑖𝑓 𝑛 = 5 
𝑛 − 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

Example 3.12 

 Consider 𝐷𝑆(𝑃10) given in Figure 3.18.  By Theorem 3.11, 𝑆 =

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥6, 𝑥7, 𝑥8, 𝑥10, 𝑤2} is a minimum connected certified dominating set of 𝐷𝑆(𝑃10) 

and hence 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝑃𝑛)) = |𝑆| = 9. 

 

Theorem 3.13 

 For integer 𝑛 ≥ 3, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐶𝑛)) = 1. 

Proof  

 Let 𝑥1, 𝑥2, … , 𝑥𝑛be the cycle graph 𝐶𝑛. To obtain 𝐷𝑆(𝐶𝑛), we add a vertex w to which 

is adjacent to every vertex in 𝐶𝑛. Then 𝑉(𝐷𝑆(𝐶𝑛)) = {𝑤, 𝑥1𝑥2, … , 𝑥𝑛} and so |𝑉(𝐷𝑆(𝐶𝑛))| =

𝑛 + 1. This graph given in Figure 3.19. 
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Figure. 3.18 
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Clearly 𝐷𝑆(𝐶𝑛) is isomorphic to the wheel 𝑊𝑛+1. Therefore by observation 2.3, 

𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐶𝑛)) = 1. 

Example 3.14 

Consider 𝐷𝑆(𝐶12) given in figure 3.20.  By Theorem 3.13, 𝑆 = {𝑤} is a minimum connected 

certified dominating set of 𝐷𝑆(𝐶12) and hence 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐶12)) = 1.  

 

 

 

 

 

 

 

 

 

Theorem 3.15 

 For integer 𝑛 ≥ 5, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝑊𝑛)) = 2. 

Proof 

𝑥3 𝑥4 

𝑥5 

𝑥6 

𝑥2 

𝑥1 
            . 

    . 

. 

𝑥𝑛 

𝑤 

𝐷𝑆(𝐶𝑛) 

  Figure. 3.19 

𝐷𝑆(𝐶12) 

 Figure. 3.20 
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 Let𝑥1, 𝑥2, … , 𝑥𝑛 be the rim vertices of 𝑊𝑛 and 𝑥 be the apex vertex of 𝑊𝑛. Let w be the 

corresponding degree splitted vertex which is added to every vertices 𝑥1, 𝑥2, … , 𝑥𝑛−1 to obtain 

the graph 𝐷𝑆(𝑊𝑛). Then 𝑉(𝐷𝑆(𝑊𝑛)) = {𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑤} and so |𝑉(𝐷𝑆(𝑊𝑛)| = 𝑛 + 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Clearly 𝐷𝑆(𝑊𝑛) has no full degree vertex. Also here w is adjacent with every vertices 

in 𝐷𝑆(𝑊𝑛) other than x. To dominate x we select any 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1. Consider 𝑆 =

{𝑤, 𝑥𝑖} for 1 ≤ 𝑖 ≤ 𝑛 − 1. Clearly, S is a connected certified dominating set of 𝐷𝑆(𝑊𝑛) and so 

𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝑊𝑛)) ≤ |𝑆| = 2. Hence, 𝛾𝑐𝑒𝑟

𝑐 (𝐷𝑆(𝑊𝑛)) = |𝑆| = 2. 

Example 3.16 

 Consider 𝐷𝑆(𝑊6)given in Figure 3.22, by Theorem 3.15,  𝑆 = {𝑤, 𝑥1} is a minimum 

connected certified dominating set of 𝐷𝑆(𝑊6)  and hence, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝑊6)) = 2. 
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  Figure. 3.21 
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Theorem 3.17 

 For integer 𝑛 ≥ 4, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐹𝑛)) = {

2 𝑖𝑓 𝑛 = 4
3 𝑖𝑓 𝑛 ≥ 5

. 

Proof  

 Let 𝑥1, 𝑥2, … , 𝑥𝑛−1 be the n-vertices of 𝐹𝑛, where x is the apex vertex of 𝐹𝑛. For 𝑛 =

4, to obtain 𝐷𝑆(𝐹4) form 𝐹4 we add 𝑤1 and 𝑤2 corresponds to 𝑆1 = {𝑥, 𝑥2} and 𝑆2 = {𝑥1, 𝑥3} 

respectively. Then 𝑉(𝐷𝑆(𝐹4)) = {𝑥, 𝑥1, 𝑥2, 𝑥3, 𝑤1, 𝑤2} and so |𝑉(𝐷𝑆(𝐹4))| = 6.  This graph is 

given in Figure 3.23. 

                        

If we select a vertex from 𝑆1 and a vertex from 𝑆2 which forms a certified dominating 

set of 𝐷𝑆(𝐹4). Let 𝑆 = {𝑥, 𝑥3} clearly, < 𝑆 > is connected Therefore S itself form a connected 

certified dominating set of 𝐷𝑆(𝐹4) and so 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐹4)) ≤ |𝑆| = 2.  Since Δ(𝑉(𝐷𝑆(𝐹4)) ≠

𝑉(𝐷𝑆(𝐹4)) − 1, we conclude that 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐹4)) = 2. 

 Now assume 𝑛 ≥ 5. Let 𝑆 = {𝑥2, 𝑥3 … , 𝑥𝑛−2} and 𝑆2 = {𝑥1, 𝑥𝑛−1} be the degree 

partition of 𝐹𝑛. To obtain 𝐷𝑆(𝐹𝑛) we add 𝑤1 and 𝑤2 corresponds to 𝑆1 and 𝑆2 respectively. 

Then 𝑉(𝐷𝑆(𝐹𝑛)) = {𝑥, 𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑤1, 𝑤2} and |𝑉(𝐷𝑆(𝐹𝑛))| = 𝑛 + 2. This graph is given 

in Figure 3.24. 
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  Figure. 3.22 

𝑥 

𝑥6 

  

𝑥4 

  

𝑥2 

  

𝑥1 

  

𝑥5 

  

𝑥3 

  

𝑤 

  



Journal of Computational Analysis and Applications                                                                              VOL. 33, NO. 7, 2024 

 

                                                                                 1496                                              Dr. M. Deva Saroja et al 1478-1499 

 

 

 

 

 

 

  

 

 

Clearly x dominates 𝑥1, 𝑥2, … , 𝑥𝑛−1 and 𝑤2 dominated by 𝑥1 and 𝑥𝑛−1 and 𝑤1 

dominated by 𝑥2, 𝑥3, … 𝑥𝑛−2. Consider 𝑆 = {𝑥, 𝑥1, 𝑥3}.  Since 𝑛 ≥ 5, every vertices in S has 

more that two neighbor in 𝑉(𝐷𝑆(𝐹𝑛))\𝑆. Therefore, that S is a certified dominating set of 

𝐷𝑆(𝐹𝑛). Also x is adjacent with 𝑥1 and 𝑥3, that the subgraph induced by S is connected. Also 

if we remove any vertex from S, then S is not a connected certified dominating set of 𝐷𝑆(𝐹𝑛). 

Thus S is a minimal connected certified dominating set of 𝐷𝑆(𝐹𝑛). Moreover, there does not 

exists a connected certified dominating set of cardinality less than 3. Therefore S is a minimum 

connected certified dominating set of 𝐷𝑆(𝐹𝑛) and hence, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐹𝑛)) = |𝑆| = 3. 

 Thus, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐹𝑛)) = {

2 𝑖𝑓 𝑛 = 4
3 𝑖𝑓 𝑛 ≥ 5

. 

Example 3.18 

 Consider 𝐷𝑆(𝐹7) given in Figure 3.25. By Theorem 3.17, 𝑆 = {𝑥, 𝑥1, 𝑥3} is a minimum 

connected certified dominating set of 𝐷𝑆(𝐹7) and hence, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐹𝑛)) = |𝑆| = 3. 
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Theorem 3.19 

 For integer 𝑛 ≥ 5, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐻𝑛)) = 4. 

Proof 

 Let 𝐻𝑛 be the helm graph obtained from the wheel 𝑊1,𝑛−1 by attaching pendent edge 

for each rim vertices 𝑥1, 𝑥2, … , 𝑥𝑛−1. Let the pendent vertices of 𝐻𝑛 be 𝑦1, 𝑦2, … , 𝑦𝑛−1 and x 

be the apex vertex of 𝑊1,𝑛−1. To obtain 𝐷𝑆(𝐻𝑛) we add 𝑤1 and 𝑤2 corresponding to the set of 

vertices 𝑆1 = {𝑥1, 𝑥2, … , 𝑥𝑛−1} and 𝑆2 = {𝑦1, 𝑦2, … , 𝑦𝑛−1} respectively. Then 𝑉(𝐷𝑆(𝐻𝑛)) =

{𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑦1, 𝑦2, … , 𝑦𝑛−1, 𝑥, 𝑤1, 𝑤2} and so |𝑉(𝐷𝑆(𝐻𝑛)| = 2𝑛 + 1.  

 This graph is given in Figure 3.26 
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Consider 𝑆 = {𝑤1, 𝑥𝑖, 𝑤2}, 1 ≤ 𝑖 ≤ 𝑛 − 1. Clearly 𝑤1dominates 𝑥1, 𝑥2, … , 𝑥𝑛−1 and 𝑤2 

dominates 𝑦1, 𝑦2, … , 𝑦𝑛−1. Also 𝑥𝑖 dominates x. Since 𝑛 ≥ 5 every vertices in S has more that 

two neighbours in 𝑉(𝐷𝑆(𝐻𝑛))\𝑆. Therefore, that S is a certified dominating set of 𝐷𝑆(𝐻𝑛). 

But 𝑤2 is not adjacent with 𝑤1 and 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1. Therefore the subgraph induced by S 

is not connected. So that S is not a connected certified dominating set of 𝐷𝑆(𝐻𝑛). Now consider 

𝑆′ = 𝑆 ∪ {𝑦𝑖}, 1 ≤ 𝑖 ≤ 𝑛 − 1. Clearly 𝑦𝑖 is adjacent with 𝑥𝑖 and 𝑤2. Also 𝑥𝑖 and 𝑤2 are adjacent 

in 𝐷𝑆(𝐻𝑛). Moreover 𝑦𝑖 has zero neighbours in 𝑉(𝐷𝑆(𝐻𝑛))\𝑆 ∪ {𝑦𝑖}. Therefore that 𝑆 ∪ {𝑦𝑖} 

forms a minimum connected certified dominating set of 𝐷𝑆(𝐻𝑛) and hence 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐻𝑛)) =

|𝑆 ∪ {𝑦𝑖}| = 4. 

Example 3.20 

 Consider 𝐷𝑆(𝐻6) given in Figure 3.27.  By Theorem 3.19, 𝑆 = {𝑤1, 𝑤2, 𝑥1, 𝑦1} is a 

minimum connected certified dominating set of 𝐷𝑆(𝐻6) and hence 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐻6)) = |𝑆| = 4. 

 

 

 

 

 

 

 

 

Theorem 3.21 

 If G be a regular graph of order 𝑛 ≥ 2, then 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐺)) = 1. 

Proof  

 Let G be any regular graph of order 𝑛 ≥ 2. Then 𝐷𝑆(𝐺) ≅ 𝐺 + 𝐾1 and Δ(𝐷𝑆(𝐺)) =

𝑉(𝐷𝑆(𝐺)) − 1. Therefore, 𝛾𝑐𝑒𝑟
𝑐 (𝐷𝑆(𝐺)) = 1. 
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