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Abstract

The aim of this paper is to study the existence of asymptotically
almost automorphic mild solution to some classes of second order semi-
linear evolution equation via the techniques of measure of noncompact-
ness. The investigation is based on a new fixed point result which is a
generalization of the well known Darbo’s fixed point theorem. Finally
examples are given to illustrate the analytical findings.
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1 Introduction

This work is mainly concerned with the existence of asymptotically al-
most automorphic mild solution for second differential equations. More
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precisely, we will consider the following problem

y′′(t)−A(t)y(t) = f(t, y(t)), t ∈ R+ := [0,+∞), (1)

y(0) = y0, y
′(0) = y1, (2)

where {A(t)}t∈R+ is a family of linear closed operators from E into E that
generate an evolution system of linear bounded operators {U(t, s)}(t,s)∈R+×R+

for 0 ≤ s ≤ t < +∞, f : R+×E → E is a Carathéodory function, and (E, |·|)
is a real Banach space.

Evolution equations arise in many areas of applied mathematics [2, 37].
This type of equations has received much attention in recent years [1]. There
are many results concerning the second-order differential equations, see for
example [8, 11, 12, 20, 28, 35]. In recent years there has been an increasing
interest in studying the abstract non-autonomous second order initial value
problem

y′′(t)−A(t)y(t) = f(t, y(t)), t ∈ [0, T ], (3)

y(0) = y0, y
′(0) = y1. (4)

The reader is referred to [10, 19, 22, 36] and the references therein. In the
above mentioned works, the existence of solutions to the problem (3)-(4) is
related to the existence of an evolution operator U(t; s) for the homogeneous
equation

y′′(t) = A(t)y(t), for t ≥ 0.

For this purpose there are many techniques to show the existence of U(t, s)
which has been developed by Kozak [25].
On the other hand, since Bochner [13] introduced the concept of almost
automorphy, the automorphic functions have been applied to many areas
including ordinary as well as partial differential equations, abstract differ-
ential equations, functional differential equations, integral equations, etc.;
see [16, 21, 18, 27, 7]. We also refer the reader to the monographs by
N’Guérékata [30, 31] for the basic theory of almost automorphic functions
and applications. The concept of asymptotically almost automorphy was
introduced by N’Guérékata [29]. Since then, these functions have generated
lot of developments and applications, see [39, 14, 24, 17] and the references
therein. In the previous works, people have established the existence of
asymptotically almost automorphic mild solution of differential equations
under the conditions that f satisfies or not the Lipschitz condition.
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Asymptotically almost automorphic mild solutions 3

In this paper we use the technique of measures of noncompactness. It
is well known that this method provides an excellent tool for obtaining ex-
istence of solutions of nonlinear differential equation. This technique works
fruitfully for both integral and differential equations. More details are found
in Aissani and Benchohra [3], Akhmerov et al. [4], Alv́ares [5], Banaś and
Goebel [9], Olszowy and Wȩdrychowicz [33], Olszowy [34], and the refer-
ences therein.

Inspired by the above works,, in this work, using the properties of the
analytic semigroups, Kuratowski measure of noncompactness, fixed point
theorem, we obtain an existence result without assuming that the nonlin-
earity f satisfies a Lipschitz type condition.

This work is organized of as follows. In Section 2, we recall some fun-
damental properties of asymptotically almost automorphic and facts about
evolution systems. Section 3 is devoted to establishing some criteria the
existence of asymptotically almost automorphic mild solutions to the prob-
lem (1)-(2). Furthermore, appropriate examples are provided in section 4 to
show the feasibility of our results.

2 Preliminaries and basic results

In this section we recall certain definitions and lemmas to be used subse-
quently in this paper.
Throughout this paper, we denote by E a Banach space with the norm | · |.
Let BC(R+,E) be the Banach space of all bounded and continuous functions
y mapping R+ into E endowed with the usual supremum norm

‖y‖∞ = sup
t∈R+

|y(t)|.

In what follows, let {A(t), t ∈ R+} be a family of closed linear operators
on the Banach space E with domain D(A(t)) which is dense in E and inde-
pendent of t.

In this work the existence of solution the problem (1)-(2) is related to
the existence of an evolution operator U(t, s) for the following homogeneous
problem

y′′(t) = A(t)y(t) t ∈ R+. (5)
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This concept of evolution operator has been developed by Kozak [25] and
recently used by Henŕıquez et al. [22].

Definition 2.1 A family U of bounded operators U(t, s) : E → E, (t, s) ∈
∆ := {(t, s) ∈ R+ × R+ : s ≤ t}, is called an evolution operator of the
equation (5) if de following conditions hold:

(e1) For any x ∈ E the map (t, s) 7−→ U(t, s)x is continuously differentiable
and

(a) for each t ∈ R, U(t, t)x = 0,∀x ∈ E,

(b) for all (t, s) ∈ ∆ and for any x ∈ E,
∂

∂t
U(t, s)x|t=s = x and

∂

∂s
U(t, s)x|t=s = −x.

(e2) For all (t, s) ∈ ∆, if x ∈ D(A(t)), then
∂

∂s
U(t, s)x ∈ D(A(t)), the map

(t, s) 7−→ U(t, s)x is of class C2 and

(a)
∂2

∂t2
U(t, s)x = A(t)U(t, s)x,

(b)
∂2

∂s2
U(t, s)x = U(t, s)A(s)x,

(c)
∂2

∂s∂t
U(t, s)x|t=s = 0.

(e3) For all (t, s) ∈ ∆, then
∂

∂s
U(t, s)x ∈ D(A(t)), there exist

∂3

∂t2∂s
U(t, s)x,

∂3

∂s2∂t
U(t, s)x and

(a)
∂3

∂t2∂s
U(t, s)x = A(t)

∂

∂s
(t)U(t, s)x.

Moreover, the map (t, s) 7−→ A(t)
∂

∂s
(t)U(t, s)x is continuous,

(b)
∂3

∂s2∂t
U(t, s)x =

∂

∂t
U(t, s)A(s)x.

Throughout this paper, we will use the following definition of the concept
of Kuratowski measure of noncompactness [9].
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Definition 2.2 The Kuratowski measure of noncompactness α is defined by

α(D) = inf{r > 0 : D has a finite cover by sets of diameter ≤ r},

for a bounded set D in any Banach space E.

Let us recall the basic properties of Kuratowski measure of noncompactness.

Lemma 2.3 [9] Let E be a Banach space and C,D ⊂ E be bounded, then
the following properties hold:

(i1) α(D) = 0 if only if D is relatively compact,

(i2) α(D) = α(D) ; D the closure of D,

(i3) α(C) ≤ α(D) when C ⊂ D,

(i4) α(C+D) ≤ α(C)+α(D) where C+D = {x | x = y + z; y ∈ C; z ∈ D},

(i5) α(aD) = |a|α(D) for any a ∈ R,

(i6) α(ConvD) = α(D), where ConvD is the convex hull of D,

(i7) µ(C ∪D) = max(α(C), α(D)),

(i8) α(C ∪ {x}) = α(C) for any x ∈ E.

Denote by ωT (y, ε) the modulus of continuity of y on the interval [0, T ]
i.e.

ωT (y, ε) = sup {|y(t)− y(s)| ; t, s ∈ [0, T ], |t− s| ≤ ε} .

Moreover, let us put

ωT (D, ε) = sup
{
ωT (y, ε); y ∈ D

}
,

ωT0 (D) = lim
ε→0

ωT (D, ε).

Lemma 2.4 [15] Let E be a Banach space, D ⊂ E be bounded. Then there
exists a countable set D0 ⊂ D, such that

α(D) ≤ 2α(D0).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.3, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

472 Benchohra 468-493



6 M. Benchohra, G.M. N’Guérékata and N. Rezoug

Lemma 2.5 [23] Let D = {yn}+∞n=0 ⊂ C(R+, E) be a bounded and countable
set. Then α(D(t)) is Lebesgue integrable on R+, and

α

{∫ t

0
yn(s))ds

}∞
n=0

≤ 2

∫ t

0
α(D(s))ds, t ∈ R+.

Now, we recall some basic definitions and results on almost automor-
phic functions and asymptotically almost automorphic functions (for more
details, see [13, 31, 38]).

Definition 2.6 A continuous function f : R→ E is said to be almost auto-
morphic if for every sequence of real numbers {τ ′n}, there exists a subsequence
{τn} such that

g(t) = lim
n→∞

f(t+ τn)

is well defined for each t ∈ R and

lim
n→∞

g(t− τn) = f(t) for each t ∈ R.

Denote by AA(R, E) the set of all such functions.

Lemma 2.7 [30] AA(R, E) is a Banach space with the supremum norm

‖f‖∞ = sup
t∈R
|f(t)|.

Definition 2.8 A continuous function f : R× E → E is said to be almost
automorphic in t ∈ R for each y ∈ E if for every sequence of real numbers
{τ ′n}, there exists a subsequence {τn} such that

lim
n→∞

f(t+ τn, y) = g(t, y)

is well defined for each t ∈ R and

lim
n→∞

g(t− τn, y) = f(t, y)

for each t ∈ R and each y ∈ E. The collection of those functions is denoted
by AA(R× E,E).

Example 2.9 [40] The function f : R× E → E given by

f(t, y) = sin

(
1

2 + cos t+ cos
√

2t

)
cos y

is almost automorphic in t ∈ R for each y ∈ E, where E = L2([0, 1]).
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The space of all continuous functions h : R+ → E such that lim
t→∞

h(t) = 0

is denoted by C0(R+, E). Moreover, we denote C0(R+×E,E); the space of
all continuous functions from R×E to E satisfying lim

t→∞
h(t, y) = 0 in t and

uniformly in y ∈ E.

Remark 2.10 Note that if ν(t) ∈ C0(R+, E), then∫ t

0
e−(t−s)ν(s)ds ∈ C0(R+, E).

Definition 2.11 A continuous function f : R+ → E is said to be asymp-
totically almost automorphic if it can be decomposed as

f(t) = g(t) + h(t),

where
g(t) ∈ AA(R, E), h(t) ∈ C0(R+, E).

Denote by AAA(R+, E) the set of all such functions.

Example 2.12 The function f : R→ R defined by

f(t) = sin

(
1

2 + cos t+ cos
√

2t

)
+ e−t

is an asymptotically almost automorphic function with

g(t) = sin

(
1

2 + cos t+ cos
√

2t

)
∈ AA(R,R), h(t) = e−t ∈ C0(R+,R).

Lemma 2.13 [31],[32]. AAA(R+, E) is also a Banach space with the norm

‖f‖∞ = sup
t∈R+

|f(t)|.

Definition 2.14 A continuous function f : R+ × E → E is said to be
asymptotically almost automorphic if it can be decomposed as

f(t, y) = g(t, y) + h(t, y),

where
g(t, y) ∈ AA(R× E,E), h(t, y) ∈ C0(R+ × E,E).

Denote by AAA(R+ × E,E) the set of all such functions.
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Example 2.15 The function f : R+ × E → E given by

f(t, x) = sin

(
1

2 + cos t+ cos
√

2t

)
cos y + e−t|y|

is asymptotically almost automorphic in t ∈ R+ for each y ∈ E, where
E = L2([0, 1]).

g(t, y) = sin

(
1

2 + cos t+ cos
√

2t

)
cos y ∈ AA(R× E,E),

h(t, y) = e−t|y| ∈ C0(R+ × E,E).

.

Lemma 2.16 [26] f : R×E → E is almost automorphic, and assume that
f(t, ·) is uniformly continuous on each bounded subset K ⊂ E uniformly
for t ∈ R, that is for any ε > 0, there exists % > 0 such that y, z ∈ K
and |y(t)− z(t)| < % imply that |f(t, y)− f(t, z)| < ε for all t ∈ R. Let
ϕ : R→ E be almost automorphic. Then the function F : R→ E defined by
F (t) = f(t, ϕ(t)) is almost automorphic.

Theorem 2.17 [6] Let Ω be a nonempty, bounded, closed and convex subset
of a Banach space E, and let Γ : Ω→ Ω be a continuous operator satisfying
the inequality

α(Γ(D)) ≤ Ψ(α(D))

for any nonempty subset D of Ω, where Ψ : R+ → R+is a nondecreasing
function such that

lim
n→+∞

Ψn(t) = 0 for each t ≥ 0.

Then Γ has at least one fixed point in the set Ω.

3 Main results

Definition 3.1 A function y ∈ BC(R+, E) is said to be a mild solution to
the problem (1)-(2) if y satisfies the integral equation

y(t) = − ∂

∂s
U(t, 0)y0 + U(t, 0)y1 +

∫ t

0
U(t, s)f(s, y(s))ds.
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For the proof of our main theorem, we need the following hypotheses:

(H1) (a) There exists a constant M ≥ 1 and δ > 0, such that

‖U(t, s)‖B(E) ≤Me−δ(t−s) for any (t, s) ∈ ∆

and for any sequence of real numbers {τ ′n}, we can extract a
subsequence {τn} and for any ε > 0, there exists N ∈ N such
that

‖U(t+ τn, s+ τn)− U(t, s)‖B(E) ≤ εe−δ(t−s),

‖U(t− τn, s− τn)− U(t, s)‖B(E) ≤ εe−δ(t−s)

for each t, s ∈ R. for all n > N, for each t, s ∈ R, t ≥ s.

(H2) There exist a constant M̃ ≥ 0 and δ > 0, such that:∥∥∥∥ ∂∂sU(t, s)

∥∥∥∥
B(E)

≤ M̃e−δ(t−s), (t, s) ∈ ∆.

(H3) The function f : R+ × E → E is Carathéodory and asymptotically
almost automorphic i.e., f(t, y) = g(t, y) + h(t, y) with

g(t, y) ∈ AA(R× E,E), h(t, y) ∈ C0(R+ × E,E),

and g(t, y) is uniformly continuous on any bounded subset K ⊂ E
uniformly for t ∈ R.
Moreover,

(a) There exist p ∈ Lq(R,R+), q ∈ [1,∞) and a continuous nonde-
creasing function ψ : [0,∞) → (0,∞) such that for all t ∈ R+

and y ∈ E,

|g(t, y)| ≤ p(t)ψ(|y|) and lim
|y|→+∞

inf
ψ(|y|)
|y|

= ρ1.

(b) There exist a function β(t) ∈ C0(R,R+) and a nondecreasing func-
tion Φ : R+ → R+ such that for all t ∈ R+ and y ∈ E with
|y| ≤ R,

|h(t, y)| ≤ β(t)φ(|y|) and lim
R→+∞

inf
φ(R)

R
= ρ2.
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(H4) There exist a locally integrable function η : R→ R+ and a continuous
nondecreasing function ϕ : R+ → R+ such that for any nonempty
bounded set D ⊂ E we have :

α(f(t,D)) ≤ η(t)ϕ(α(D)) for a.e t ∈ R+.

Additionally we assume that lim
n→+∞

(ψ+φ)n(t) = 0 for a.e t ∈ R+. Let

β(t) be the function involved in the assumption (H3), then∫ t

0
e−(t−s)β(s)ds ∈ C0(R+,R+).

Put

ρ = sup
t∈R+

∫ t

0
e−(t−s)β(s)ds.

We need the following technical lemma.

Lemma 3.2 Assume that (H1) hold. If ϕ(t) ∈ AA(R, E), then

Λ(t) :=

∫ t

−∞
U(t, s)ϕ(s)ds, t ∈ R,

belongs to AA(R,E).

Proof. From (H1) it is clear that Λ(t) is well-defined and continuous on R.
Since ϕ(t) ∈ AA(R, E), it follows that for every sequence of real numbers
{τ ′n}, we can extract a subsequence {τn} such that

(c1) lim
n→∞

ϕ(t+ τn)− ϕ̃(t) = 0 for each t ∈ R and,

(c2) lim
n→∞

ϕ̃(t− τn)− ϕ(t) = 0 for each t ∈ R.

Notes that ϕ̃ is also bounded on R, and measurable. Define

Λ̃(t) =

∫ t

−∞
U(t, s)ϕ̃(s)ds, t ∈ R.
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For t ∈ R, Since ϕ̃ is measurable, Λ̃ is well-defined.
For t ∈ R, we have∣∣∣Λy)(t+ τn)− (Λ̃y)(t)

∣∣∣
=

∣∣∣∣∫ t+τn

−∞
U(t+ τn, s)ϕ(s)ds−

∫ t

−∞
U(t, s)ϕ̃(s)ds

∣∣∣∣
=

∣∣∣∣∫ t

−∞
U(t+ τn, s+ τn)ϕ(s+ τn)ds−

∫ t

−∞
U(t, s)ϕ̃(s)ds

∣∣∣∣
≤
∫ t

−∞
‖U(t+ τn, s+ τn)‖B(E) |ϕ(s+ τn)− ϕ̃(s))| ds

+

∫ t

−∞
‖U(t+ τn, s+ τn)− U(t, s))‖B(E)ϕ̃(s)ds

≤
∫ t

−∞
Me−δ(t−s) |ϕ(s+ τn)− ϕ̃(s))| ds

+

∫ t

−∞
εe−δ(t−s) |ϕ̃(s)| ds

≤M
∫ t

−∞
e−δ(t−s)ds sup

s∈R
|ϕ(s+ τn)− ϕ̃(s))|

+ε

∫ t

−∞
e−δ(t−s)ds sup

s∈R
|ϕ̃(s)|

≤ M

δ
sup
s∈R
|ϕ(s+ τn)− ϕ̃(s))|+ ε

δ
sup
s∈R
|ϕ̃(s)| .

Using (c1), we obtain that for n→∞,

Λ(t+ τn)→ Λ̃(t).

Analogously, one can prove that,

Λ̃(t− τn)→ Λ(t) for each t ∈ R as n→∞.

This we show that
Λ ∈ AA(R, E).

Theorem 3.3 Assume that the hypotheses (H1)− (H4) are satisfied. If

Mρ1‖p‖Lq +Mδ−1ρρ2 < 1, (6)

and

M max(4‖η‖L1 , ‖p‖Lqδ−1+
1
q ) < 1, (7)

then the problem (1)-(2) has a asymptotically almost automorphic mild so-
lution.
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Proof. Consider the operator N : AAA(R+, E)→ AAA(R+, E) defined by

(Ny)(t) = − ∂

∂s
U(t, 0)y0 + U(t, 0)y1 +

∫ t

0
U(t, s)f(s, y(s))ds, (8)

where y ∈ AAA(R+, E) with y = γ + ζ, γ is the principal term and ζ
the corrective term of y. We need to prove that N is weel- defined, that is
N(AAA(R+, E)) ⊂ AAA(R+, E). Let

σ(t) = − ∂

∂s
U(t, 0)y0 + U(t, 0)y1,

then

|σ(t)| = | − ∂
∂sU(t, 0)y0 + U(t, 0)y1|

≤ | ∂∂sU(t, 0)y0|+ |U(t, 0)y1|
≤ M̃e−δt|y0|+Me−δt|y1|.

Since δ > 0, we get lim
t→+∞

|(σ(t)| = 0. that is

σ ∈ C0(R+, E). (9)

By assumption f = g+ h where g is the principal term and h the corrective
term. So we can write

f(t, y(t)) = g(t, γ(t)) + f(t, y(t))− f(t, γ(t)) + h(t, γ(t))

= g(t, γ(t)) +H(t, y(t)), (10)

In view of (10), we have

W (t) =

∫ t

0
U(t, s)f(s, y(s))ds

=

∫ t

0
U(t, s)g(s, γ(s))ds+

∫ t

0
U(t, s)H(s, y(s))ds

=

∫ t

−∞
U(t, s)g(s, γ(s))ds−

∫ 0

−∞
U(t, s)g(s, γ(s))ds

+

∫ t

0
U(t, s)H(s, y(s))ds

= (I1y)(t) + (I2y)(t),
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Asymptotically almost automorphic mild solutions 13

where

(I1y)(t) =

∫ t

−∞
U(t, s)g(s, γ(s))ds,

(I2y)(t) =

∫ t

0
U(t, s)H(s, y(s))ds

−
∫ 0

−∞
U(t, s)g(s, y(s))ds

= (J1y)(t) + (J2y)(t),

where

(J1y)(t) =

∫ t

0
U(t, s)H(s, y(s))ds,

(J2y)(t) =

∫ t

−∞
U(t, s)g(s, γ(s))ds.

Using (H3) and Lemma 2.16 , we deduce that s → g(s, γ(s)) is in
AA(R, E). Thus, by Lemma 3.2 we obtain

(I1y)(t) ∈ AA(R, E). (11)

Let’s prove that J1 ∈ C0(R+, E), J2 ∈ C0(R+, E).
Ideed by definition H ∈ C0(R+, E), that means given ε > 0, there exists
T > 0 such that if t ≥ T, we have |H(t, y)| ≤ ε. Therefore if t ≥ T, we get

∫ t

T
‖U(t, s)‖B(E)|H(s, y(s))|ds ≤ Mε

∫ t

T
e−δ(t−s)ds

≤ M

δ
ε,

then

|(J1y)(t)| ≤ M

δ
ε if t ≥ T.

So,

J1 ∈ C0(R+, E). (12)
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14 M. Benchohra, G.M. N’Guérékata and N. Rezoug

Next, let us show that J2 ∈ C0(R+, E).

|(J2y)(t)| ≤
∫ 0

−∞
‖U(t, s)‖B(E)|g(s, y(s))|ds

≤ M sup
t∈R
|g(t, y(t))|

∫ T

0
e−δ(t−s)ds

+ M‖g‖∞
e−δ(t

δ
→ 0 as →∞.

So,

J2 ∈ C0(R+, E). (13)

Finaly combining (9),(11), (12) and (13) proves our claim thatN ∈ AAA(R+, E).
Next, we will prove that the operator N satisfies all the assumptions of The-
orem 2.17. We will break the proof into several steps.
Let

BR =
{
y ∈ AAA(R+, E) : ‖y‖∞ ≤ R

}
,

where R be any positive constant. Then BR is a bounded, closed and convex
subset of AAA(R+, E).
Step 1: N(y) ∈ BR for any y ∈ BR.
In fact, if we assume that the assertion is false, then R < |(Ny)(t)|. This
yields that

R < |(Ny)(t)| ≤
∫ t

0
‖U(t, s)‖B(E) |g(s, y(s)|ds

+

∫ t

0
‖U(t, s)‖B(E)|h(s, y(s)|ds

≤
∫ t

0
‖U(t, s)‖B(E) p(s)ψ(|y(s)|)ds

+

∫ t

0
‖U(t, s)‖B(E)β(s)φ(|y(s)|)ds

≤ Mψ(R)

∫ t

0
e−δ(t−s)p(s)ds

+ M φ(R)

∫ t

0
e−δ(t−s)β(s)ds.
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Asymptotically almost automorphic mild solutions 15

For t ≥ 0, it follows from the Hölder inequality that

R < |(Ny)(t)| ≤ Mψ(R)‖p‖Lq +Mρ2φ(R).

Dividing both sides by R and taking the lim inf as R→ +∞, we have

Mρ1‖p‖Lq +Mδ−1ρρ2 > 1,

which contradicts (6). Hence, the operator N transforms the set BR into
itself.
Step 2. N is continuous.
Let (yn)n∈N be a sequence in BR such that yn → y in BR.

Case 1. If t ∈ [0, T ]; T > 0, then, we have

|(Nyn)(t)− (Ny)(t)| ≤M
∫ t

0
|f(s, yn(s))− f(s, y(s))| ds.

Since the functions f is Carathéodory, the Lebesgue dominated convergence
theorem implies that

‖Nyn −Ny‖∞ → 0 as n→ +∞.

Case 2. Since the functions f is Carathéodory, we can see that

|f(s, yn(s))− f(s, y(s))| ≤ δε

M
for t ≥ T. (14)

If t ∈ (T,∞), T > 0, then (14) and the hypotheses give us that

|Nyn(t)−Ny(t)| ≤
∫ t

0
‖U(t, s)‖B(E)

∣∣∣f(s, yn(s))− f(s, y(s))
∣∣∣ds

≤M δε

M

∫ t

0
e−δ(t−s)ds

≤ M

δ

δε

M
≤ ε.

(15)

Then the inequality (15) reduces to

‖N(yn)−N(y)‖∞ → 0 as n→∞.

Now, we conclude that N is continuous from BR to BR.
Step 3: N(BR) is equicontinuous.
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16 M. Benchohra, G.M. N’Guérékata and N. Rezoug

Let t1, t2 ∈ [0, T ] with t2 > t1 and y ∈ BR. Then, we have

|(N1y)(t2)− (N1y(t1)|

=

∣∣∣∣∫ t1

0
(U(t2, s)− U(t1, s))g(s, y(s))

+

∫ t2

t1

U(t2, s)g(s, y(s))ds

∣∣∣∣
+

∣∣∣∣∫ t1

0
(U(t2, s)− U(t1, s))h(s, y(s))

+

∫ t2

t1

U(t2, s)h(s, y(s))ds

∣∣∣∣
≤
∫ t1

0
‖U(t2, s)− U(t1, s)‖B(E) p(s)ψ(|y(s)|)ds

+M

∫ t2

t1

e−δ(t−s)p(s)ψ(|y(s)|)ds.

+

∫ t1

0
‖U(t2, s)− U(t1, s)‖B(E) β(s)φ(|y(s)|)ds

+M

∫ t2

t1

e−δ(t−s)β(s)φ(|y(s)|)ds.

It follows from the Hölder inequality that

|(N1y)(t2)− (N1y(t1)|

≤
∫ t1

0
‖U(t2, s)− U(t1, s)‖B(E) p(s)ψ(|y(s)|)ds

+
M‖p‖Lqψ(R)

δ
1− 1

q

(
e
− qδ
q−1

(t−t2) − e−
qδ
q−1

(t−t2)
)1− 1

q

+

∫ t1

0
‖U(t2, s)− U(t1, s)‖B(E) β(s)φ(|y(s)|)ds

+

Mφ(R) sup
t∈R

β(t)

δ
(e−δ(t−t2) − e−δ(t−t1)).

The right-hand side of the above inequality tends to zero as t2 − t1 → 0,
which implies that N(BR) is equicontinuous.
Consider the measure of noncompacteness µ(B) defined on the family of
bounded subsets of the space AAA(R+, E) (see [33]) by

µ(B) = ωT0 (B) + sup
t∈J

α(B(t)) + lim
T→+∞

sup{|y(t)| : t ≥ T, y ∈ E}.
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Asymptotically almost automorphic mild solutions 17

Step 4: µ(N(B)) ≤M max(4‖η‖L1 , ‖p‖Lqδ−1+
1
q )(ϕ+ψ)(µ(B)) for all B ⊂

BR. For all B ⊂ BR, N(B) is bounded. Hence, by Lemma 2.4, there exists
a countable set B1 = {y}∞n=1 ⊂ B, such that

(N(B)) ≤ 2α(N(B1)). (16)

Using the properties of α, Lemma 2.4, Lemma 2.5 and assumptions (H1)
and (H4), we get

α(NB1(t)) ≤ α

({∫ t

0
U(t, s)f(s, yn(s))ds

}∞
n=0

)
≤ 2M

∫ t

0
{α (f(s, yn(s))ds))}∞n=0 ds

≤ 2M

∫ t

0
η(s)ϕ ({(α(yn(s))}∞n=0))) ds

≤ 2M

∫ t

0
η(s)ϕ(α(B(s)))ds.

Form inequality (16), it follows that

α(NB(t)) ≤ 4M

∫ t

0
η(s)ϕ(α(B(s)))ds,

then

α(N(B(t)) ≤ 4M‖η‖L1ϕ( sup
t∈R+

α(B(t))).

Since

sup
t∈R+

α(B(t)) ≤ sup
t∈R+

α(B(t)) + lim
t→+∞

sup{|y(t)| : t ≥ T, y ∈ E}),

then

α(N(B(t)) ≤ 4M‖η‖L1ϕ( sup
t∈R+

α(B(t)) + lim
t→+∞

sup{|y(t)| : t ≥ T, y ∈ E}).(17)
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18 M. Benchohra, G.M. N’Guérékata and N. Rezoug

On the other hand, we have

|(Ny)(t)| ≤ M̃e−δt |y1|+Me−δt |y0|

+ M

∫ t

−∞
e−δ(t−s)p(s)ψ(|γ(s)|)ds+ |(I2y)(t)|

+ M

∫ T

−∞
e−δ(t−s)p(s)ψ(|γ(s)|)ds.

+ M

∫ t

T
e−δ(t−s)p(s)ψ(|γ(s)|)ds+ |I2(t)|.

≤ M̃e−δt |y1|+Me−δt |y0|

+ M

∫ T

−∞
e−δ(t−s)p(s)dsψ(sup

s∈R
|γ(s)|)

+ M

∫ t

T
e−δ(t−s)p(s)dsψ(sup{|γ(t)| : t ≥ T, y ∈ E})

+ sup{|(I2y)(t)| : t ≥ T, y ∈ E}).

Next, applying the Hölder inequality we derive

|(Ny)(t)| ≤ M̃e−δt |y1|+Me−δt |y0|

+
M‖p‖Lq

δ
1− 1

q

e−δ(t−T )ψ(‖y‖∞).

+
M‖p‖Lq

δ
1− 1

q

(1− e−
qδ
q−1

t
)
1− 1

qψ(sup{|y(t)| : t ≥ T, y ∈ E})

+ sup{|(I2y)(t)| : t ≥ T, y ∈ E}).

Then

|(Ny)(t)| ≤ M̃e−δt |y1|+Me−δt |y0|

+
M‖p‖Lq

δ
1− 1

q

e−δTψ(‖y‖∞).

+
M‖p‖Lq

δ
1− 1

q

ψ(sup{|y(t)| : t ≥ T, y ∈ E})

+ sup{|(I2y)(t)| : t ≥ T, y ∈ E}).
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Asymptotically almost automorphic mild solutions 19

Since δ ≥ 0, I2 ∈ C0(R+, E) and

lim
T→+∞

sup{|y(t)| : t ≥ T, y ∈ E} ≤ sup
t∈R

α(B(t))+ lim
T→+∞

sup{|y(t)| : t ≥ T, y ∈ E},

then

lim
T→+∞

sup{|(Ny)(t) : t ≥ T, y ∈ E})

≤ M‖p‖Lq

δ
1− 1

q
ψ(sup

t∈J
α(B(t)) + lim

T→+∞
sup{|y(t)| : t ≥ T, y ∈ E}). (18)

Further, combining (17) and (18), we get

sup
t∈J

α((NB)(t)) + lim
T→+∞

sup{|(Ny)(t) : t ≥ T, y ∈ E})

≤ 4M‖η‖L1ϕ(sup
t∈J

α(B(t)) + lim
T→+∞

sup{|y(t)| : t ≥ T, y ∈ E})

+M‖p‖Lq

δ
1− 1

q
ψ(sup

t∈J
α(B(t)) + lim

T→+∞
sup{|y(t)| : t ≥ T, y ∈ E}

≤M max(4‖η‖L1 ,
‖p‖Lq

δ
1− 1

q
)(ϕ+ ψ)(sup

t∈J
α(B(t)) + lim

T→+∞
sup{|y(t)| : t ≥ T, y ∈ E}).

(19)

From Step 3 and inequality (19), we conclude that

µ(N(B)) ≤M max

(
4‖η‖L1 ,

‖p‖Lq

δ
1− 1

q

)
(ϕ+ ψ)(µ(B)).

It follows from Lemma 2.17 that N has at least one fixed point y ∈ BR,
which is just a asymptotically almost automorphic mild solution of problem
(1)-(2) on R+.

4 An Example

Consider the second order differential equation of the form;



∂2

∂t2
z(t, τ) =

∂2

∂τ2
z(t, τ) + 2 sin

( 1

2 + cos t+ cos
√

2t

) ∂
∂t
z(t, τ)

+
sin2 t

12
√

1 + t2
sin
( 1

2 + cos t+ cos
√

2t

)
(|z(t, τ)|+ ln (1 + |z(t, τ)|))

+
sin2 t sinπz(t, τ)

15
√

1 + t2(1 + |z(t, τ)|)
, t ∈ R+, τ ∈ [0, π],

z(t, 0) = z(t, π) = 0, t ∈ R+,
∂

∂t
z(0, τ) = ψ(τ), τ ∈ [0, π].

(20)
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20 M. Benchohra, G.M. N’Guérékata and N. Rezoug

Let E = L2([0, π],R+) be the space of 2-integrable functions from [0, π] into
R+, and let H2([0, π],R+) be the Sobolev space of functions x : [0, π]→ R+,
such that x′′ ∈ L2([0, π],R+). We consider the operator A1z(τ) = z′′(τ)
with domain D(A1) = H2(R+,C), which is the infinitesimal generator of
strongly continuous cosine function C(t) on E. Moreover, A1 has discrete
spectrum, the spectrum of A1 consists of eigenvalues n2 for n ∈ Z, with
associated eigenvector

ωn(ξ) =
1√
2π
einξ, n ∈ Z,

the set {ωn ∈ Z} is an orthonormal basis of E. In particular,

A1x = −
∞∑
n=1

n2〈x,wn〉wn for x ∈ D(A).

The cosine function C(t) is given by

C(t)x =
∞∑
n=1

cos(nt)〈x,wn〉wn for x ∈ D(A), t ∈ R+,

form a cosine function on H, with associated sine function

S(t)x =
∞∑
n=1

sin(nt)

n
〈x,wn〉wn for x ∈ D(A), t ∈ R+.

From [35], for all x ∈ H2([0, π],R+), t ∈ R+, ‖C(t)‖B(E) ≤ e−t
and ‖S(t)‖B(E) ≤ e−t.
Now, we define an operator A(t) : D(A) ⊂ H → H by{

D(A(t)) = D(A)
A(t) = A1 + b(t, τ).

where b(t, τ) = 2 sin

(
1

2 + cos t+ cos
√

2t

)
Note that A(t) generates an evolutionary process U(t, s) of the form

U(t, s) = S(t− s)e
∫ t
s b(t,s)ds

Since b(t, τ) = 2 sin

(
1

2 + cos t+ cos
√

2t

)
≤ 2, we have

U(t, s) = S(t− s)e−2(t−s) (21)
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Asymptotically almost automorphic mild solutions 21

and
‖U‖B(E) ≤ ‖S‖B(E)e

−2(t−s) ≤ e−3(t−s)

We conclude that U(t, s) is a evolutionary process exponentially stable with
M = 1 and δ = 3.
It follows from the estimate (21) that U(t, s) : E → E is well defined and
satisfies the conditions of Definition 2.1.
Hence conditions (H1) and (H2) are satisfied.
Now, let

z(t)(τ) = w(t)(τ), t ≥ 0, τ ∈ [0, π],

g(t, z)(τ) =
sin2 t

12
√

1 + t2
sin
( 1

2 + cos t+ cos
√

2t

)
(|z(t, τ)|+ ln (1 + |z(t, τ)|)),

h(t, z)(τ) =
sin2 t sinπz(t, τ)

15
√

1 + t2(1 + |z(t, τ)|)
.

Then it is easy to verify that g : R× E × E is continuous and

g ∈ AA(R× E;E).

We can estimate for the functions g:

g(t, z)(τ) ≤ sin2 t

12
√

1 + t2
(|z(t, τ)|+ ln (1 + |z(t, τ)|)).

Hence conditions (H3)(a) is satisfied with

p(t) =
sin2 t

3
√

1 + t2
, ψ(t) =

1

4
(t+ ln(1 + t)).

Then it is easy to verify that p ∈ L2(R) and ρ1 =
1

4
.

On the other hand, it is clear that h : R+ × E × E is continuous and

h ∈ C0(R+ × E;E).

We can also estimate for the functions h:

h(t, z)(τ) ≤ π

15
√

1 + t2
|z(t, τ)|.
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22 M. Benchohra, G.M. N’Guérékata and N. Rezoug

Hence conditions (H3)(b) is satisfied with

β(t) =
π

15
√

1 + t2
, φ(R) = R.

Then it is easy to verify that β ∈ C0(R+,R), ρ2 = 1 and ρ ≤ π

15
.

Furthermore:

f(t; z) = g(t; z) + h(t; z) ∈ AA(R+ × E;E).

We can also estimate for the functions f :

f(t, z)(τ) ≤ 2 sin2 t√
1 + t2

|z(t, τ)|. (22)

By (22), for every t ∈ J , and B ∈ D ⊂ E, we have

α(f(t,D) ≤ sin2 t

12
√

1 + t2
α(D),

Hence conditions (H4) is satisfied with

η(t) =
1

6
√

1 + t2
, ϕ(t) =

sin2 t

2
.

Moreover, we have

(ψ + ϕ)(t) =
sin2 t

2
+

1

4
(t+ ln(1 + t)) ≤ t.

We conclude that (see Lemma 2.1. [6])

lim
n→+∞

(ψ + φ)n(t) = 0 for a.e t ∈ R+.

Consequently, can be written in the abstract form (1)-(2) with A(t) and
f as defined above. Thus, Theorem 3.3 yields that equation (20) has a
asymptotically almost automorphic mild solution.
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[18] K. Ezzinbi, and G. M. N’Guérékata, Almost automorphic solutions for
some partial functional differential equations. J. Math. Anal. Appl. 328
(1) (2007), 344-358.

[19] F. Faraci, A. Iannizzotto, A multiplicity theorem for a perturbed
second-order non-autonomous system, Proc. Edinb. Math. Soc. 49
(2006), 267-275.

[20] H. O. Fattorini, Second Order Linear Differential Equations in Banach
Spaces, North-Holland Mathematics Studies, Vol. 108, North-Holland,
Amsterdam, 1985.
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