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Abstract 

The present paper deals with the interesting results for the double Laplacian operator involving a 

product of generalized polynomial and the multivariable I – functions. The established results are 

motivated by well-known authors in the field of special functions. 
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1 Introduction 

Author of this paper is establishing Integral formula involving a product of generalized 

polynomials and multivariable I – Function with the help of double Laplacian operator the 

new generalized polynomials itself indicate the importance of the results. He is deriving the 

number of formulae which are known as in term of orthogonal polynomial. 

There are some results which will be use to latter on. Debnath and Bhatta [1] was defined 

by double Laplacian operator in (2015) as failures.   

𝐿(𝛼,𝛽)
(𝜆,𝜇)

{  } = [𝐵(𝛼, 𝛽) 𝛤(𝛼 + 𝛽 + 𝜇) 𝜆−𝜇
−𝛽−𝜇−1] 

∫ ∫ 𝑒−𝜆(𝜇+𝑣)𝑢(𝛼−1)𝑣(𝛽−1)(𝑢 + 𝑣)𝜇 

∞

0

𝑑𝑢𝑑𝑣;

∞

0

 

𝑅e(𝜆) > 0,    𝑅e(𝛼 + 𝛽 + 𝜇) > 0,            (1.1) 

The generalized polynomials: 

𝑆𝑛1... 𝑛𝑟
𝑚1... 𝑚𝑟 [ 

𝑐1
⋮
𝑐𝑟
 ]      
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Defined Gupta and Agrawal [3] will be as following form. 

𝑆𝑛1⋯ 𝑛𝑟
𝑚1⋯ 𝑚𝑟 [ 

𝑐1
⋮
𝑐𝑟
 ]  = ∑ ∑ ⋯∑  𝐴 [𝑛1𝑘1;⋯𝑛𝑟𝑘𝑟1,𝑛1]

(𝑛𝑟/𝑚𝑟) ⋯ (𝑛𝑖/𝑚𝑖𝑘𝑖)
𝑘𝑟=0 ⋯ 𝑘𝑖!

(𝑛1/𝑚1)
𝑘1=0

∞
𝑚=0 𝑐1

𝑘1⋯𝑐𝑟
𝑘𝑟       (1.2)      

Where 𝑛𝑖 =  0,1,2. . . . . . . . .. 

𝑚𝑖 ≠  0(1,2, 𝑟) 

That is 𝑚𝑖 is an arbitrary positive integer and the coefficient. 

𝐴(𝑛1𝑘1, ⋯ 𝑛𝑟𝑘𝑟)   are arbitrary real or complex. 

The multivariable I – functions defined by Sharma and Ahmad [4, 5] also see Sharma and Tiwari 

[6] given as follows. Subsequently, Chandel and Gupta in 2012, the fractional Laplace transform 

was formulated and is applied to solve various multivariable distribution [1]. 

We will take 

𝐼(𝑥1, … , 𝑥𝑟) = 𝐼𝑅𝑖:𝑅𝑖′;…;𝑅𝑖(𝑟)
𝑚,𝑛:𝑚1,𝑛1;…;𝑚𝑟,𝑛𝑟

(

 
 

𝑥1
⋅
⋅
⋅
𝑥𝑟

|
|
𝐴(𝑟): 𝐶(1); … ; 𝐶(𝑟)

𝐵(𝑟): 𝐷(1); … ; 𝐷(𝑟)

)

 
 

 

             =
1

(2𝜋𝜔)𝑟
∫
𝐿1
 ⋯ ∫

𝐿𝑟
 𝜓(𝑠1,⋯ , 𝑠𝑟)∏𝑗=1

𝑟  𝜃(𝑠𝑗)𝑥𝑗
𝑠𝑗

 d𝑠1⋯  d𝑠𝑟                                    (1.3) 

 

where 

𝜓(𝑠1, … , 𝑠𝑟) =
∏  𝑚
𝑗=1  Γ(𝑏𝑗 − ∑  𝑟

𝑘=1  𝛽𝑗
(𝑘)
𝑠𝑘)∏  𝑛

𝑗=1  Γ(1 − 𝑎𝑗 + ∑  𝑟
𝑘=1  𝛼𝑗

(𝑘)
𝑠𝑘)

∑  𝑟
𝑖=1   [∏  

𝑝𝑖
𝑗=𝑛+1  Γ (𝑎𝑗𝑖 − ∑  𝑟

𝑘=1  𝛼𝑗𝑖
(𝑘)
𝑠𝑘)∏  

𝑞𝑖
𝑗=𝑚+1  Γ (1 − 𝑏𝑗𝑖 + ∑  𝑟

𝑘=1  𝛽𝑗𝑖
(𝑘)
𝑠𝑘)]

(1.4) 

and 

𝜙𝑗(𝑠𝑗) =
∏  
𝑚𝑗

𝑙=1  Γ(𝑑𝑙
(𝑗)
− 𝛿𝑙

(𝑗)
𝑠𝑗)∏  

𝑛𝑗
𝑙=1  Γ(1 − 𝑐𝑙

(𝑗)
+ 𝛾𝑙

(𝑗)
𝑠𝑗)

∑  𝑟
𝑖=1   [∏  

𝑞𝑖
𝑙=𝑚𝑗+1

 Γ (1 − 𝑑𝑙𝑗
(𝑗)
+ 𝛿𝑙𝑗

(𝑗)
𝑠𝑗)∏  

𝑝𝑖
𝑙=𝑛𝑗+1

 Γ (𝑐𝑙𝑗
(𝑗)
− 𝛾𝑙𝑖

(𝑗)
𝑠𝑗)]

(1.5) 

where 𝑗 = 1 to r and k = 1 to r . 

Suppose, as usual, that the parameters 𝑎𝑖, 𝑗 = 1,… , 𝑛; 𝑎𝑗𝑖, 𝑗 = 𝑛 + 1, … , 𝑝𝑖; 𝑏𝑗𝑖, 𝑗 = 
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1, … , 𝑞𝑖; 𝑐𝑗
(𝑘)
, 𝑗 = 1,… , 𝑛𝑐𝑗𝑖(𝑘) , 𝑗 = 𝑛𝑘 + 1,… , 𝑞𝑖(𝑘); 𝑑𝑗

(𝑘)
, 𝑗 = 1,… ,𝑚𝑘; 𝑑𝑗𝑖(𝑘)

(𝑘)
, 𝑗 = 𝑚𝑘 +

1,… , 𝑞𝑖(𝑘); with k = 1 to r, i = 1 to R, 𝑖(𝑘) = 1 to R, are complex numbers. 

To established the results, detail can be seen in [1], [ 4-6]. More specific results can be seen in 

[7-10]   

2 Main Results 

𝐿(𝛼,𝛽)
(𝜆,𝜇)

 {𝑆𝑛1⋯ 𝑛𝑟
𝑚1⋯ 𝑚𝑟 [ 

𝑐1𝑢
𝛼1𝑣𝛽1(𝑢 + 𝑣)𝜇1

⋮
𝑐𝑟𝑢

𝛼𝑟𝑣𝛽𝑟(𝑢 + 𝑣)𝜇𝑟
 ]   𝐼 [ 

𝑍1𝑢
𝛼′1𝑣𝛽′1(𝑢 + 𝑣)𝜇′1

⋮
𝑍𝑟𝑢

𝛼′𝑟𝑣𝛽′𝑟(𝑢 + 𝑣)𝑣′𝑟
 ]}   

=   
𝛤(𝛼+𝛽)

𝛤(𝛼) 𝛤(𝛽)   𝛤(𝛼+𝛽+𝜇)
 

∑ ∑ ⋯ ∑
(−𝑛)𝑚1𝑘1

𝑘1!
⋯
(−𝑛)𝑚𝑟𝑘𝑟

𝑘𝑟!
    𝐴[𝑛1𝑘1;⋯𝑛𝑟𝑘𝑟]

(𝑛𝑟/𝑚𝑟) 

𝑘𝑟=0 

(𝑛1/𝑚1)

𝑘1=0

∞

𝑚=0

𝑐1
𝑘1⋯𝑐𝑟

𝑘𝑟 

𝐼
p+3,q+4; 𝑅′: (𝑝𝑖,q𝑖;  𝑅

′);⋯; (𝑝𝑖(𝑟),q𝑖(𝑟): 𝑅
𝑟)

o, n+3 : (m1,n1);⋯; 𝑚𝑟, 𝑛𝑟
 [ 
𝑍1 𝜆

(−𝛼′1−𝛽
′
1−𝜇

′
1)

⋮

𝑍𝑟 𝜆
(−𝛼′𝑟−𝛽

′
𝑟−𝜇

′
𝑟)

  ] 

(−𝜇 −∑ 𝜇𝑗𝑘𝑗;  𝜇′𝑖⋯𝜇′𝑟 
𝑟

𝑗=1
) , (1 − 𝛼 −𝑚 −∑ 𝛼𝑗𝑘𝑗;  𝛼′1⋯𝛼′𝑟 

𝑟

𝑗=1
),  

(1 − 𝛽 − 𝜇 +𝑚)∑(𝛽𝑗+𝜇𝑗)𝑘𝑗;  𝛽
′
1
+ 𝜇′1⋯𝛽

′
𝑟
+ 𝜇′𝑟  ⋯ ;⋯ ;⋯ ;

𝑟

𝑗=1

, 

(𝑚 − 𝜇) ∑(𝜇𝑗𝑘𝑗;  𝜇
′
1⋯𝜇

′
𝑟)

𝑟

𝑗=1

] 

                                        
𝜆∑ (𝛼𝑗+𝛽𝑗+𝜇𝑗)𝑘𝑗

𝑟
𝑗=1

𝑚!
                                                                                     (2.1) 

Where   𝑅e(𝜆) > 0,    𝑅e {𝛼 + 𝛽 + 𝜇 +∑(𝛼𝑖 + 𝛽𝑖+𝜇𝑖)𝑘𝑖

𝑟

𝑖=1

}  > 0, 

 

Again  
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𝐿(𝛼,𝛽)
(𝜆,𝜇)

 

{
 
 

 
 

𝑆𝑛1⋯ 𝑛𝑟
𝑚1⋯ 𝑚𝑟 [ 

𝑐1𝑢
𝛼1𝑣𝛽1(𝑢 + 𝑣)𝜇1

⋮
𝑐𝑟𝑢

𝛼𝑟𝑣𝛽𝑟(𝑢 + 𝑣)𝜇𝑟
 ]   𝐼

[
 
 
 
 

 

𝑍1 𝑢
𝛼′1 𝑣𝛽

′
1(𝑢 + 𝑣)𝜇

′
1

𝑍2 𝑢
𝛼′2𝑣𝛽

′
2

⋮

𝑍𝑟 𝑢
𝛼′𝑟𝑣𝛽

′
𝑟

 

]
 
 
 
 

}
 
 

 
 

   

=   
𝛤(𝛼+𝛽)

𝛤(𝛼) 𝛤(𝛽)   𝛤(𝛼+𝛽+𝜇)
 

∑ ∑ ⋯ ∑
(−𝑛)𝑚1𝑘1⋯(−𝑛)𝑚𝑟𝑘𝑟

𝑘1!⋯𝑘𝑟!
    𝐴[𝑛1𝑘1;⋯𝑛𝑟𝑘𝑟]

(𝑛𝑟/𝑚𝑟) 

𝑘𝑟=0 

(𝑛1/𝑚1)

𝑘1=0

∞

𝑚=0

𝑐1
𝑘1⋯𝑐𝑟

𝑘𝑟 

𝐼
p+2,q+1 , ' 𝑅′: (𝑝𝑖′,q𝑖′+1∶𝑅

′);⋯; (𝑝𝑖(𝑟),q𝑖(𝑟): 𝑅
𝑟)

0',n+2 : (m1+1,n1);⋯; 𝑚𝑟, 𝑛𝑟
 

[

𝑍1 𝜆
(−𝛼′1−𝛽

′
1−𝜇

′
1)

𝑍2 𝜆
(−𝛼′2−𝛽

′
2)

𝑍𝑟 𝜆
(−𝛼′𝑟−𝛽

′
𝑟)

  | (1 − 𝛼 −𝑚 −∑𝛼𝑗𝑘𝑗;  𝛼′1⋯𝛼′𝑟  

𝑟

𝑗=1

)  

 

 (1 − 𝛽 − 𝜇 +𝑚 −∑(𝛽𝑗+𝜇𝑗)𝑘𝑗;  𝛽
′
1
+ 𝜇′1; 𝛽

′
2
  ⋯𝛽′

𝑟

𝑟

𝑗=1

)   

(𝑚 − 𝜇 −∑ 𝜇𝑗𝑘𝑗;  𝜇
′
1⋯𝜇

′
𝑟 

𝑟

𝑗=1
) ⋯ ;⋯ ;⋯ ; −𝜇 − ∑ (𝜇𝑗𝑘𝑗;  𝜇

′
1⋯⋯ ;⋯ ;⋯ ; )

𝑟

𝑗=1
] 

 

                                        
𝜆∑ (𝛼𝑗+𝛽𝑗+𝜇𝑗)𝑘𝑗

𝑟
𝑗=1

𝑚!
                                                                                     (2.2) 

Where   𝑅e(𝜆) > 0,    𝑅e {𝛼 + 𝛽 + 𝜇 + (𝛼1 + 𝛽1+𝜇1)𝑘1∑(𝛼𝑖 + 𝛽𝑖+𝜇𝑖)𝑘𝑖

𝑟

𝑖=1

}  > 0, 

Lemma:  If   𝑅e(𝜆) > 0,    𝑅e(𝛼 + 𝛽 + 𝜇) > 0, 

              then   

∫ ∫ 𝑒−𝜆(𝜇+𝑣)𝑢(𝜆−1)𝑣(𝛽−1)(𝑢 + 𝑣)𝜇 {  }

∞

0

𝑑𝜇𝑑𝑣;

∞

0
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          =          ∑ (
𝜇
𝑚
)  𝛤(𝛼 + 𝑚) 𝛤(𝛽 + 𝜇 −𝑚) 𝜆𝛼

−𝛽−𝜇                                                    

∞

𝑚=0

(2.3) 

Proof:  Using binomial expression for (𝑢 + 𝑣)𝜇  collecting the power of  𝑢 and 𝑣  and changing 

the order of the integration and solving the inner integral with the help of Erdely al. [2] we obtain 

supposed to be new results. 

3 Conclusion: This paper aims to establish some simple examples and applications of the 

double Laplace transform are discussed. The nature of convergence of Laplace Transform 

and hypergeometric function is observed in (2.1) and (2.2). Laplace transforms are tested 

and evaluated according to the criteria and application of the problems to various types of 

functions for numerical accuracy, computational efficiency, and ease of programming 

implementation. In future partial differential equations will be discussed in a subsequent 

paper. 

Acknowledgement: The author is thankful to Professor M.A. Pathan Ex. head department 

of Mathematics, Aligarh Muslim University Aligarh (U.P) India, for his help in the 

preparation of this paper. 
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