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Abstract
The present papers deal with fixed point results related to soft metric spaces. Specially the results

are proved for soft parametric space for random operator. The established results are generalized
form of many known results in fixed point theory.
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2. Introduction and Preliminaries:
The fixed-point theory is very useful tool to solve the real-life problems. [1-2] but many real-life

problems cannot be explained through crisp set. The uncertainty can be explained by theory of
probability, fuzzy set [21]. Molodstov [12] initiated a novel concept of soft set theory as new
mathematical tool for dealing with uncertainty. The detail about soft set theory, can be studied in
[10,11] and brief for soft metric space [6, 13-14, 16-17, 9-20]. The detail about fixed point theorem
for random operator and Convergence of an iteration leading to a solution of a random operator
equation can be viewed in [3-5, 18]. The definition can be modified for random operator easily
Throughout this paper (Q, %) denotes a measurable space consisting of a set Q and sigma algebra
¥ of subset of Q . X stands for a Banach space, and C is non empty subset of X.
Definition 2.1: A mapping p: SP(X) x SP(X) x (0, ) - R(E)*, is said to be a soft parametric
metric for random operator on the soft set X if p satisfies the following conditions:

(ML) p(éx,,,&9e,,t) = 0ifand only if &x, = &y,, forallt > 0,

(M2) ﬁ(azel,fyez,t) = ﬁ(fyez,fiel,t) for alljxel,ijZ EX&t>0,

(M3)  p(&xe,§Zey ) < P(§%e, EVeys t) + (e, Zey )

for all £%,,,¢7,,,€z,, EX,t > 0.
and the pair ()? p,E,Q, 2) is called soft parametric metric space for random operator.

Definition 2.2: Let {f}fn};‘le be a sequence in a Soft parametric metric space (X D, E),
0] {Efj{n ®_, is said to be convergent to £x, € X, if

lim,,_, o, ﬁ(fxﬁ‘n,fxl, t) =0.
written as limn_,oogza?/{ln = &x,, forallt > 0,
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(i) {Efj‘n};‘;l is said to be a Cauchy sequence in X, if
My, im0 P(ERL, EXT ,8) = 0, forallt >0,
(iiiy X,p,E, QX is said to be complete if every Cauchy sequence is a convergent sequence
for random operator.

Definition 2.3: Let ( X, §, E, Q,% )be a Soft parametric metric space for random operator and a
function  (f,9): (X,5,E) > (X,p,E) is continuous at &%, € X, if for any sequence
{Ex] 3y in X such that lim,,_o&x} = &xz, then lim,_.o,(f, 9)XL = (f, )&%,

Lemma 2.4: Let {{X} };-, be asequence in a Soft parametric metric space ( X,p,E,Q, %) for

random operator such that
P&, il 0) < R B(EGT 8, t)
Where h € [0,1) and n = 1,2, ....

Then {Ef}fn ®_, is a Cauchy sequence in ( X, p, E,Q, %) for random operator.

3 MAIN RESULTS

Theorem 3.1: Let (X, 5, E, Q, %) be a complete soft parametric metric space for random operator
and let (f, @) be a continuous mapping. Let mapping (f,¢) : (X,5,E,Q,%) - (X,5,E,Q,2)
is defined such that

for all £x;, &y, € X,&x; # &5, and forall ¢ > 0, where k € [O,%).Then (f, @) has a unique

random fixed point in X, if satisfies the following condition:

ﬁ(ab 5’[1' t)' ﬁ(ff/b (f' go)ff)b t):

ﬁ((f: @)X, (f, )Ty, t) < k max ﬁ(fy“’ f, (p)g}”' 0. w)glw )
_ — = PExLF9)Ex00 B (87 (F9)ETut)
5 ((f. 0) %y, fyw t)’p@ F.0)Ex,0).0(Eyy u

14+5(( )&% (F.0)EVput)
[3.1.1]
Proof: Let X9 be any soft point in SP(X) for : (X,5,E,Q,%)
Taking iteration &y, = (f,9)(Ex3) = (f(E‘FcE))
1 (1)
~2 o1 +0

£%, = (L o)(&) = (268D) ,

Tn+1 _ S~ n 70 - —

&l = o) = (7 EH)), g

Now
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plexy, &t 6) = 5 ((F, @) (E7572), (f, @) (632, ), )

pexl 2 &, 0). xS (F @& t),
P(EXL . (f, p)ERL , t),
< kemax| 5(& L, (F, 008, ). 5 ((F 0)E 2 7 t),
pexr o8t t)p(§5 (.07}, t)

(B F0EEL )

P(fxzn &R, t), PSR ExEt),]

P(fxan fx;rlltll )'
< Rmax| p(Egt, G40, 0), (67, E ),
p(sant Sxn t) (555, fx’i,jil t)

1+ﬁ(§x1n’§x§:{i1 t)

p(fxln 1’ fx)tn t) p(fxln f n7:—+11 )’l

Ton+l )

plexy L, exptl,
p(Ex) T, &x] t) p(&xy, fx2;+11,t),l
Ton+1 )

plog 2 et

( xln 1 Exln t)

p(Ex} €%, t) < kmax I

Case (I): If max[

p(exr, xnil ) < kp(§%] 2, 8x7,,t)
p(Exg, &gl t) < k"p(ex] &5 ,t)

= sequence {¢X; } is a Cauchy sequence in X .

X is a complete soft parametric metric space for random operator, hence {E},?n} is converges.
here is £ X} € X:
§xp - &xj, n— .
Using continuity of (f, ¢) ,
(f, 9)éx; = (f, ¢)(lim n §xj) = lim (f, @)Ex;, = lim n &t = 8.

e (f,p)ix; = &%)
Thus, (f, @) is a fixed point in X.
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Case (I1): If max[p(§x7 %, &x ), p(&xz, Exarl ), p(&xi 2 €550 1)]
= P(fxzn )Tll:fl't)
= p(Ex}, sxnrl.0) < kp(§xy &t 1)
Since 0 < k < % which gives contradiction.
Case (I1): If max[p(&x7 %, €27 ,t), p(E% , &xitt 0), p(Exp L €33t 1)
= p(expt, Exprl,t)
= P, &Gl 0) < kp(§x L &L )
< k[p(&x7 2, 6x7,,t) + A(8xT, Exir t)]
< (£5)p(erpt €55, 0)

< sp(&x . 8%, t)

where s = (1%)

P(fx/ln /711;11 t)<s P(fxa fxal t)

Sequence {€x} } is a Cauchy sequence in X.

Given that X is a complete soft parametric metric space, hence {f f}n} IS converges.

Here is £%; € X such that &x; — &x, n — .
Using continuity of (f, ¢) ,
(f. @)&x; = (f, @) (lim &) = lim (f, )§x7,

— lin ZntL Tk
= ,P_r,?ofxlnﬂ = &x;.

i.e.(f,p)&x; = &x;. Thus, (f, @) is a fixed point in X.

Uniqueness: Let &y;; is another fixed point of (f, ¢) in X such that &x; # &y,
5 (U 0%, (F, ) t) <
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p(Ex5, &y 1), P(ERS, (F, @) x5, 1),
rmaxl  PET (F,0)8y 6), 5(8xs, (f, @)EWin t),
- = 7 ,\ PELF0)E56).5(Ev0(F.0)EV}t)
p ((f' (p)fx/b fyu; t) ) 1+ﬁ((f,<p)a;.(f,<p)51;,t)
p(&x3, v t), B(Ex), Ex3, 1),
< k max p(&vi §vint), B (833, EVr t),
~(ear T=x .\ PEXLEXE)P(EVEVt)
p(fxl, SzyM' t)' 1+ﬁ(§fj1,g§,;t) :

5 (U8, (F, )8y t) < ap(£%3, 8 t)
This is true only when  p(¢%;, &y, ¢) = 0.

= &x; =&y,
So, it is unique.

. Lemma: Let (X, 5, E, Q, X )be a complete soft parametric metric space for random operator

and let (f, ¢) a continuous mapping.

Let mapping (f,¢) : (X,p,E) = (X, 5, E) satisfies the following condition:
,5 ((f! <P)5C;L' (fl 40)5’”: t) < 7&[.5(551: (fl (P)Eib t) + ﬁ(gl;u (f' 90)5;11' t)]
+Z [ﬁ(g{)b (fl (p)gl;u t) + ﬁ ((fl QD)ffA, g’w t)]

For all {3?,1,?37# € X, &%, + 5@

and for all t > 0, where k +Z<%, k1€ [0%)

Then (f, ) has a unique fixed point in X.
Proof; This can be proved easily using the concept of above theorem.

Future Scope; These results can be proved using the concept of integral type mappings and also
results can be established for n dimensional soft metric spaces.
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