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Abstract 

In this work, we combine measure non-compactness and generalized operators in the setting of 

partial order Banach spaces to provide some generalized Darbo-type fixed point theorems. We 

further demonstrate how our findings could potentially apply in reality by establishing that 

higher-order fractional delay differential equations have solutions. We back up our results with 

numerical estimations based on a realistic scenario. This work explores fixed point theory in the 

partial order Banach spaces and shows how it can be used in real-world situations through 

realistic examples and facts. 

Keywords: Darbo fixed point theorem, Fractional Dealy Differential Equation, Adomian 

Decomposition Method. 
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1 Introduction 
  

1.1 Partially Ordered Spaces 

 When we combine a complete normed vector space and a partial order relation, we get a 

sophisticated mathematical structure called a partially ordered Banach space. This framework, 

which visually conforms to the fundamental vector space operations, allows for the identifying 

comparison of designated items inside the space via a "greater than" or "less than" connection. 

More specifically, we have a field of scalars, which might be real or complex numbers, and a 

Banach space, X, built on top of it. Put X under a partial order . Certain criteria must be satisfied 

before this partial order   could possibly be considered compatible with the vector space 

structure and norm: If , , ,x y z w E and  are valid, the relation . on E is termed partial 

order. Let E represent any real linear vector space. 
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• (Addition to Preserve Order) For any element z in X, if x y , then x z y z+  +

holds true. 

• (Order-Preserving Scalar Multiplication) It follows that x y  given x y  and 

a positive scalar .  

• (Positive Cone) All x X for which 0x   make up the positive cone, represented 

by the symbol X + . This cone must have the characteristics of being pointed, 

closed, and convex. 

  This framework enables the detailed examination of ordered relationships by 

providing a structured approach to analyse ordered systems within normed vector spaces. The 

partial order relation . is defined on the real linear space E. For any two elements , ,x y E they 

are said to be comparable if either .x yor y x  A partially ordered normed space is a partially 

ordered set E equipped with a norm || || .   

 A normed linear space E is called complete if the metric d is induced by the norm || || is 

defined on all of E. If a nonincreasing (or nondecreasing) sequence {𝑥𝑛}satisfies 𝑥𝑛 ≤ 𝑥
∗(𝑜𝑟𝑥𝑛 ≥

𝑥∗)for every n  and converges to *x , the space E is termed regular. Banas and Goebel 

introduced the following concepts through their work in nonlinear analysis and its applications:  

If T(E) is a relatively compact subset of E, then an operator T mapping E onto itself is considered 

compact. Similarly, if T(S) is a relatively compact subset of E for every subset S of E, the operator 

T is considered totally bounded. An operator T is termed completely continuous if it is continuous 

and totally bounded on E. 

  The set of real numbers with the norm defined by the absolute value function 

and the usual order relation   clearly demonstrates this characteristic. Similar to this, every 

partially compact subset of the space ( , )C J  with the usual standard supremum norm || ||  

determined by ‖𝑥(𝑡)‖ = 𝑠𝑢𝑝
𝑡∈𝑗
|𝑥(𝑡)| is compatible with the conventional order relation known by 

x y  if and only if 𝑥(𝑡) ≤ 𝑦(𝑡)for all 𝑡 ∈ 𝐽. To get fresh conclusions, we substitute the cost of 

monotone and boundedness for the operator's bounds, closure, and convexity conditions. 

 The mathematical expression of  : 0 =  is provided by taking the Banach space 

with norm ||.|| with a positive cone. , . is a partially ordered Banach space; let  be the 

ordered relation induced by cone  . 

1.2 Delay Differential Equation 

 Integral and differential calculus play vital roles in applied sciences and engineering 

[1,8,7,14]. Among these, delay differential equations (DDEs) are significant as they incorporate 

delays in the dependent variable or its derivatives. Unlike ordinary differential equations, where 

the system's current state determines the derivative, DDEs include the influence of past states. 

This characteristic makes DDEs suitable for modelling memory-dependent or highly responsive 

systems. Dealy differential equations have diverse applications across disciplines like chemistry, 
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biology, engineering, economics, and physics. For example, they describe neural communication 

in the brain, where signal transmission experiences temporal delays [7]. In ecology, DDEs model 

species growth influenced by reproductive and migratory delays. In chemistry, they analyse 

reactions where transit times between reaction sites affect outcomes [9]. Engineering 

applications include modelling feedback loops and delays in signal processing [21, 16]. 

   To address higher-order DDEs, we apply generalized fixed-point theorems. For 

example, the fractional delay differential equation: 

𝐷𝛼𝒴(𝑡) = 𝐺(𝑡, 𝒴(𝑡), 𝒴(𝛽(𝑡))),        (1.1) 

 where [0,1], 1t n n −   , with initial conditions (0) 0,1, , 1r

rd for r n= =  − . 

Here, ( )t  is the dependent variable,  represents the governing function, and ( )t denotes the 

delayed argument. 

 These generalizations demonstrate the existence of solutions for complex DDEs. By 

leveraging advanced fixed point theorems in partially ordered Banach spaces, this framework 

expands the utility of fixed point theory in solving intricate mathematical problems associated 

with delay equations. 

1.3 Some concepts of fractional derivative and integral 

  First, we review the basic concepts of fractional integrals and derivatives and their 

properties. Caputo's definition, extensively applied in various branches of applied mathematics, 

is also incorporated here [22, 23]. A real-valued function ( ), 0y for y  , is said to belong to the 

space 𝒟𝛼𝑖𝑓𝛼 ∈ ℝ, and there exists a real number   , such that ℛ(𝑦) = 𝑦𝜅ℛ1(𝑦),where 

ℛ1(𝑦) ∈ 𝒟[0,∞]. Furthermore, it is in the space 𝒟𝛼
𝑚 if ℛ𝑚 ∈ 𝒟𝛼 for 𝑚 ∈ ℕ ∪ {0}. 

Definition:1.2 The Riemann-Liouville fractional integral operator of order 0  , for a function 

, 1   − , is defined as: 

𝒥𝑦
𝜅ℛ(𝑦) =

1

𝛤(𝜅)
∫ (𝑦 − 𝜉)𝜅−1
𝑦

0
ℛ(𝜉)𝑑𝜉,  𝜅 > 0, 𝑦 > 0, and  𝒥𝑦

0ℛ(𝑦) = ℛ(𝑦).     (1.2) 

 The following properties of the operator y


are established in [20]. For ( )y  , 

1, , 0   −  , and 1  − , we have: 

i. 𝒥𝑦
𝜅𝒥𝑦

𝜆ℛ(𝑦) = 𝒥𝑦
𝜅+𝜆ℛ(𝑦). 

ii. 𝒥𝑦
𝜅𝒥𝑦

𝜆ℛ(𝑦) = 𝒥𝑦
𝜆𝒥𝑦

𝜅ℛ(𝑦).   

iii. 𝒥𝑦
𝜅𝑦𝜇 =

𝛤(𝜇+1)

𝛤(𝜅+𝜇+1)
𝑦𝜅+𝜇 .  

  

 To address certain limitations of the Riemann-Liouville derivative, a modified fractional 

derivative, known as Caputo's derivative, is introduced [22].  

Dfinition:1.3  In the sense of Caputo's derivative, the fractional derivative of ( )y is defined as: 

𝒟𝑦
𝜅ℛ(𝑦) = 𝒥𝑦

𝑚−𝜅𝒟𝑦
𝑚ℛ(𝑦) =

1

𝛤(𝑚−𝜅)
∫ (𝑦 − 𝜉)𝑚−𝜅−1
𝑦

0
ℛ𝑚(𝜉)𝑑𝜉    (1.3) 

  for 1 ,m m m−    , 10, my −  , and 0y

 = . 
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Defintion:1.4  The Caputo time-fractional derivative operator of order 0   is defined for any 

smallest integer m   as: 

𝒟𝑡
𝜅𝒱(𝑦, 𝑡) =

𝜕𝜅𝒱(𝑦,𝑡)

𝜕𝑡𝜅
= {

1

𝛤(𝑚−𝜅)
∫ (𝑡 − 𝑠)𝑚−𝜅−1
𝑡

0

𝜕𝑚𝒱(𝑦,𝑠)

𝜕𝑠𝑚
𝑑𝑠, 𝑚 − 1 < 𝜅 < 𝑚,

𝜕𝑚𝒱(𝑦,𝑡)

𝜕𝑡𝑚
, 𝜅 = 𝑚.

  (1.4) 

  

 The following lemma is helpful for solving problems involving these operators. 

Lemma:1.1 If 𝑚− 1 < 𝜅 < 𝑚, 𝑚 ∈ ℕ, and ℛ ∈ 𝒟𝛼
𝑚, 𝛼 ≥ −1, then: 

  𝒟𝑦
𝜅𝒥𝑦

𝜅ℛ(𝑦) = ℛ(𝑦), and  𝒥𝑦
𝜅𝒟𝑦

𝜅ℛ(𝑦) = ℛ(𝑦) − ∑ ℛ𝑝𝑚−1
𝑝=0 (0+)

𝑦𝑝

𝑝!
,  𝑦 > 0. 

Definition:1.5 The Mittag-Leffler function, denoted by 𝕄𝜅(𝑥), is defined as: 

  𝕄𝜅(𝑥) = ∑
𝑥𝑗

𝛤(1+𝜅𝑗)
∞
𝑗=0 ,  𝜅 ∈ ℂ,Re(𝜅) > 0, 𝑥 ∈ ℂ. If 𝜅 = 1, the Mittag-Leffler 

function reduces to the exponential function:  ∑
𝑥𝑗

𝛤(1+𝑗)
∞
𝑗=0 = ∑

𝑥𝑗

𝑗!
∞
𝑗=0 .   

Lemma 1.2 For 0  , the general solution to the homogeneous equation 
0

( ) 0y+ =  is given 

by: 

  𝜓(𝑦) = 𝑐0 + 𝑐1𝑦 + 𝑐2𝑦
2 + 𝑐3𝑦

3 +⋯+ 𝑐𝑚−1𝑦
𝑚−1,   (1.5)  

where 𝑐𝑖 ∈ ℝ, 𝑖 = 0,1,2,… ,𝑚 − 1, and 𝑚 = ⌊𝜅⌋ + 1. 

Lemma: 1.3  For 𝜅 > 0, we have: 

  𝒥0+
𝜅 𝒟0+

𝜅 𝜓(𝑦) = 𝜓(𝑦) + 𝑐0 + 𝑐1𝑦 + 𝑐2𝑦
2 + 𝑐3𝑦

3 +⋯+ 𝑐𝑚−1𝑦
𝑚−1, (1.6) 

where 𝑐𝑖 ∈ ℝ, 𝑖 = 0,1,2,… ,𝑚 − 1, and 𝑚 = ⌊𝜅⌋ + 1. 

2.  Fixed Point Theorem 

The term "measure of non-compactness" is a popular mathematical approach for describing how 

much a set, operator, or bounded set lacks compactness. This idea is especially relevant to fixed-

point theorems, stability studies and partially ordered Banach spaces for nonlinear equations [1, 

8, 13,17, 18, 19]. compactness measures in [13]. 

Definition: 2.1  If  is a Banach space, then Kuratowski's 𝔐𝔑ℭ for   is the map 

: ( ) +→M .   

𝛼(𝒜) = 𝑖𝑛𝑓{ 𝜖 > 0: A finite number of sets with diameter < ϵ,   can cover it}.  

The following formulation recalls the concept of MNC  that was axiomatically provided in [13]. 

Definition: 2.2  If  is represented by the symbol  , then the following characteristics are true: 

a) ker ( ) ( ) | 0  =   = M  and ker ( )N . 

b) If  then ( ) ( )  for all ,  .  

c) ( ( )) ( ( ))conv conv =   for all ,  where denotes the  closure of . 

d) ( ) max{ ( ), ( )} for all  , .  =     
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e) 1 2 1 2 1 2( ) ( ) ( ) 1if      +   +  + =  and 1 2, 0    for all , .   

f) If n  is a decreasing sequence of nonempty closed, bounded subsets of and 

lim ( ) 0n
n→

 = then 
1

n

n

 = is nonempty compact.  

Definition: 2.2 [6]  Let be a nonempty, convex, and closed set in  Banach space . Let 

: → be a continuous map such that, given a non-empty set  , where  is a 

, [0,1)kMNC  with  

𝛯(ϒ(𝑆)) ≤ 𝑘𝛯(𝑆)         (2.1) 

Then, at least one fixed point in is admitted by .   

 We now review the definition below to expand the finding of [19] in a partly ordered 

Banach space.  The consequence of [19] is further refined in a partially ordered Banach space by 

recalling the definition below. 

Theorem:2.1 Consider , . , be the partially ordered Banach space having a positive cone 

is normal. Let : + +→ is a nondecreasing and continuous function and that : →  is 

a monotonic increasing and  continuous operator. There is also 0 ( , ) 1p q  such that for 

0 p q    with  

𝑝 ⩽ 𝛥(𝒴) + 𝜑(𝛥(𝒴)) ⩽ 𝑞 ⇒ 𝛥(ℑ𝒴) + 𝜑(𝛥(ℑ𝒴)) ⩽ �̄�(𝑝, 𝑞)𝛥(𝒴) + 𝜑(𝛥(𝒴)),  (2.2) 

 for all non-empty subset of , where being essentially the measure of 

noncompactness. Then  has a fixed point * and 0 0   for 0  , with the sequence 0

n  

converges monotonically to * . 

 The consequence that follows may be obtained if we recognise the nondecreasing and 

continuous function : ( ) 0as t + +→  in the theorem (1.1).    

Proposition:2.1  Consider , . , be the partially ordered Banach space having a 

positive cone is normal. Let  : → is a monotonic increasing and  continuous operator. If 

there is  0 ( , ) 1 0p q for p q    with   

  𝑝 ⩽ 𝛥(𝒴) ⩽ 𝑞 ⇒ 𝛥(ℑ𝒴) ⩽ 𝜂(𝑝, 𝑞)𝛥(𝒴),    (2.3) 

  for all non-empty subset of , where being essentially the measure of 

noncompactness. Then  has a fixed point * and 0 0  for 0  , with the sequence 0

n

converges monotonically to * . 

 If we take ( ) ( )diam =   in Proposition 2.1 we get next result. 

Proposition: 2.2 Consider , . , be the partially ordered Banach space having a positive cone 

is normal. Let  : → is a monotonic increasing and  continuous operator. If there is  
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0 ( , ) 1 0p q for p q    with   

𝑝 ⩽ 𝑑𝑖𝑎𝑚(𝒴) ⩽ 𝑞 ⇒ 𝑑𝑖𝑎𝑚(ℑ𝒴) ⩽ 𝜂(𝑝, 𝑞)(𝑑𝑖𝑎𝑚(𝒴)),   (2.4) 

  for all non-empty subset of . Then  has a fixed point * and 

0 0 0for    , with the sequence 0

n  converges monotonically to * . 

Proof: Here is a  -invariant nonempty convex  closed subset and ( ) 0diam  = , with respect 

to Propositions (2.1) and 3.2 [12]. This indicates that   is a singleton set, therefore we have a 

fixed point of .  

We assume that there are two different fixed points in order to demonstrate uniqueness. 

We may define the set  ,X  = after  , Y   . In this instance, 

( ) ( ) 0.diam X diam X  =  = −    Then using (2.4) we get 

𝑝 ≤ 𝑑𝑖𝑎𝑚(𝒴) ≤ 𝑞 ⇒ 𝑑𝑖𝑎𝑚(ℑ𝒴) ≤ �̄�(𝑝, 𝑞)(𝑑𝑖𝑎𝑚(𝒴))     (2.5) 

  Since 𝑑𝑖𝑎𝑚(𝒳) = 𝑑𝑖𝑎𝑚(ℑ𝒳)results to contradiction to the property of the 

function 𝜂(𝑝, 𝑞) < 1and hence  = .  

Proposition: 2.3  Consider , . , be the partially ordered Banach space having a positive 

cone is normal. Let  : → is a monotonic increasing and continuous operator. If there is  

0 ( , ) 1 0p q for p q    with   

𝑝 ≤ ‖𝜗1 − 𝜗2‖ ≤ 𝑞 ⇒ ‖ℑ𝜗1 −ℑ𝜗2‖ ≤ 𝜂(𝑝, 𝑞)(‖𝜗1 − 𝜗2‖),    (2.6) 

for all  1 2, .    If 𝜉0 ⊑ ℑ𝜉0 𝑓𝑜𝑟 𝜉0 ∈ 𝔼 then  has unique fixed point *  and sequence 0

n

converges monotonically to * .  

Proof:  We consider : M + → by the rule ( ) ( )diam = , where  

  𝑑𝑖𝑎𝑚(𝒳) = 𝑠𝑢𝑝{‖𝜗1 − 𝜗2‖, 𝜗1, 𝜗2 ∈ 𝒟},    (2.7) 

specifies the set s diameter. In the sense of Definition (1.1), it is obvious from this formulation 

that  is a MNC . Now, by the virtue of equation (2.2). If  

𝑝 ≤ 𝑠𝑢𝑝
𝜗1,𝜗2∈𝑋

[‖𝜗1 − 𝜗2‖] ≤ 𝑞,then 

  𝑠𝑢𝑝
𝜗1,𝜗2∈𝑋

[‖ℑ𝜗1 − ℑ𝜗2‖] ≤ 𝑠𝑢𝑝
𝜗1,𝜗2∈𝑋

‖ℑ𝜗1 −ℑ𝜗2‖ 

    ≤ 𝜂(𝑝, 𝑞) 𝑠𝑢𝑝
𝜗1,𝜗2∈𝑋

[‖𝜗1 − 𝜗2‖] 

   ≤ 𝜂(𝑝, 𝑞) ( 𝑠𝑢𝑝
𝜗1,𝜗2∈𝑋

‖𝜗1 − 𝜗2‖). 

  Therefore, applying the concept of set diameter, we obtain 

𝑝 ⩽ 𝑑𝑖𝑎𝑚(𝒳) ⩽ 𝑞 ⇒ 𝑑𝑖𝑎𝑚(ℑ𝒳) ⩽ 𝜂(𝑝, 𝑞)(𝑑𝑖𝑎𝑚(𝒳)).     (2.8) 

Therefore, from the viewpoint of Proposition 2.1,  has a fixed point. 
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3. Solution of Delay Differential Equation 
  The existence of a solution to the non-homogeneous higher order delay 
differential equation (1.1) in the space of bounded and continuous functions defined on the 
interval [0, ] , represented by [0, ] , is examined in this section. In order to examine the 

problem (1.1), we must take into account the following presumptions: 
1) The non-negative real number  and the monotonic increasing functions 

:[0, ] [0, ] [0, ]G BC BC   +  → possess the following inequality: 

  
|𝐺 (𝜐, 𝒴1(𝜐),𝒴1(𝛽(𝜐))) − 𝐺 (𝜐,𝒴2(𝜐),𝒴2(𝛽(𝜐)))|

≤ 𝜆1|𝒴1(𝜐) − 𝒴2(𝜐)| + 𝜆2|𝒴1(𝛽(𝜐)) − 𝒴2(𝛽(𝜐))|.
   (3.1)  

2) There is  real number * which is not negative  with  

𝑀𝐺
∗ = 𝑚𝑎𝑥{𝐺(𝜐, 0,0, . . . ,0); 𝜐 ∈ [0,1]}.      (3.2) 

 
3) There exist  a positive real number  , with inequality 

  ∑
𝜕𝑟𝒴(0+)

𝜕𝒴𝑟
𝑛−1
𝑟=1

𝜂𝑟

𝑟!
+
((𝜆1+𝜆2)𝜌+𝑀𝐺

∗ )𝜂𝛼

𝛤(𝛼+1)
≤ 𝜌.     (3.3) 

Theorem: 3.1 Under the assumptions (1) - (3)  the delay differential equation (1.1) admits  at 

least one solution ([0, ]) provided ( ) ( )1 2 1   +   + . 

Proof: It needs to be notice that the space [0, ], . , is a partially order Banach space with 

a normal positive cone  : 0 . =  The closed and bounded ball 

{ [0, ] :|| || }B    =    should also be taken into account.  

Next, define the mapping : [0, ] [0, ]  → . By using the inverses differential operator 

on (1.1), we obtain 
   

  𝑄(𝒴(𝜐)) = ∑
𝜕𝑟𝒴(0+)

𝜕𝒴𝑟
𝑛−1
𝑟=1

𝜐𝑟

𝑟!
+ 𝐼𝛼 (𝐺 (𝜐, 𝒴(𝜐),𝒴(𝛽(𝜐)))).  (3.4) 

We prove the operator  is bounded. Consider [0, ]  then we have 

|𝑄(𝒴(𝜐))| ≤ |∑
𝜕𝑟𝒴(0+)

𝜕𝒴𝑟

𝑛−1

𝑟=1

𝜐𝑟

𝑟!
| + |𝐼𝛼 (𝐺 (𝜐, 𝒴(𝜐),𝒴(𝛽(𝜐))))| 

≤ |∑
𝜕𝑟𝒴(0+)

𝜕𝒴𝑟

𝑛−1

𝑟=1

𝜐𝑟

𝑟!
| + |𝐼𝛼 (𝐺 (𝜐,𝒴(𝜐),𝒴(𝛽(𝜐))) − 𝐺(𝜐, 0,0) + 𝐺(𝜐, .0,0))| 

≤ |∑
𝜕𝑟𝒴(0+)

𝜕𝒴𝑟

𝑛−1

𝑟=1

𝜐𝑟

𝑟!
| + |𝐼𝛼 (|𝐺 (𝜐, 𝒴(𝜐),𝒴(𝛽(𝜐))) − 𝐺(𝜐, 0,0)| + |𝐺(𝜐, 0,0)|)| 

≤ |∑
𝜕𝑟𝒴(0+)

𝜕𝒴𝑟

𝑛−1

𝑟=1

𝜐𝑟

𝑟!
| + |𝐼𝛼𝜆1|𝒴(𝜐)| + 𝜆2|𝒴(𝛽(𝜐))| + 𝑀𝐺

∗ | 
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≤ |∑
𝜕𝑟𝒴(0+)

𝜕𝒴𝑟

𝑛−1

𝑟=1

𝜐𝑟

𝑟!
| +
((𝜆1 + 𝜆2)‖𝒴‖ +𝑀𝐺

∗)𝜂𝛼

𝛤(𝛼 + 1)
, 

|𝑄(𝒴(𝜐))| ≤ |∑
𝜕𝑟𝒴(0+)

𝜕𝒴𝑟
𝑛−1
𝑟=1

𝜐𝑟

𝑟!
| +

((𝜆1+𝜆2)‖𝒴‖+𝑀𝐺
∗ )𝜂𝛼

𝛤(𝛼+1)
,     (3.5) 

where ℳ∗ = 𝑠𝑢𝑝{ 𝜒(𝜃, 0,0,0,0): 𝜃 ∈ [0, 𝛿]}. 
Next we prove satisfies the assumptions of Proposition 2.3. Since,  the function is monotonic 

increasing this leads to  being also a non-decreasing and continuous mapping on [0, ] .

  
Now, from equation (3.5) and assumption (3) we confirmed that non-decreasing and 

continuous mapping on  .  

Next, we prove that  satisfies the inequality (2.7). Consider ,  , we obtain  

 |𝑄(𝒳(𝜐)) − 𝑄(𝒴(𝜐))| ≤ |
∑

𝜕𝑟𝒳(0+)

𝜕𝒳𝑟
𝑛−1
𝑟=1

𝜐𝑟

𝑟!
+ 𝐼𝛼 (𝐺 (𝜐,𝒳(𝜐),𝒳(𝛽(𝜐))))

−∑
𝜕𝑟𝒴(0+)

𝜕𝒴𝑟
𝑛−1
𝑟=1

𝜐𝑟

𝑟!
+ 𝐼𝛼 (𝐺 (𝜐,𝒴(𝜐),𝒴(𝛽(𝜐))))

| 

                                        ≤ 𝐼𝛼 (|𝐺 (𝜐,𝒳(𝜐),𝒳(𝛽(𝜐))) − 𝐺 (𝜐, 𝑌(𝜐), 𝑌(𝛽(𝜐)))|) 

≤ ℐ𝛼(𝜆1|𝒳(𝜐) − 𝒴(𝜐)| + 𝜆2|𝒳(𝛽(𝜐)) − 𝒴(𝛽(𝜐))|).   

This inequality is true for all [0, ]  . Therefore we obtain  

𝑠𝑢𝑝
𝜐∈[0,𝛿]

|𝑄(𝒳(𝜐)) − 𝑄(𝒴(𝜐))| ≤ ℐ𝛼

(

 
 

𝜆1 ( 𝑠𝑢𝑝
𝜐∈[0,𝛿]

|𝒳(𝜐) − 𝒴(𝜐)|)

+𝜆2 ( 𝑠𝑢𝑝
𝜐∈[0,𝛿]

|𝒳(𝛽(𝜐)) − 𝒴(𝛽(𝜐))|)
)

 
 
.   

Hence 

‖𝑄𝒳 − 𝑄𝒴‖ ≤ 𝜂(𝑝, 𝑞)‖𝒳 − 𝒴‖.                       (3.6) 

where 𝜂(𝑝, 𝑞) =
(𝜆1+𝜆2)𝛿

𝛼

𝛤(𝛼+1)
.  All the conditions of proposition 2.3 are satisfied. Hence, the operator 

 has a fixed point, which is the solution of (1.1). 

4. Numerical Illustrations 
Example:4.1   

𝐷𝛼𝒴(𝜐) = −𝒴(𝜐) − 𝒴(𝜐 − 0.3) + 𝑒−𝜐+0.3,   2 < 𝛼 ≤ 3    (4.1) 

with  𝒴(0) = 1,𝒴(1)(0) = −1,𝒴(2)(0) = 1 and 𝒴(𝜐) = 𝑒−𝜐, 𝜐 ≤ 0.    (4.2) 

If we take 

𝐺 (𝜐,𝒴(𝜐),𝒴(𝛽(𝜐))) = −𝒴(𝜐) − 𝒴(𝜐 − 0.3) + 𝑒−𝜐+0.3,   (4.3) 

in equation (1.1) we get equation (4.1).  

 Also, 

 |𝐺 (𝜐, 𝒴1(𝜐),𝒴1(𝛽(𝜐))) − 𝐺 (𝜐, 𝒴2(𝜐),𝒴2(𝛽(𝜐)))| 

≤ |−𝒴1(𝜐) − 𝒴1(𝜐 − 0.3) + 𝒴2(𝜐) + 𝒴2(𝜐 − 0.3)| 

≤ |𝒴1(𝜐) − 𝒴2(𝜐)| + |𝒴1(𝜐 − 0.3) − 𝒴2(𝜐 − 0.3)| 
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≤ 𝜆1|𝒴1(𝜐) − 𝒴2(𝜐)| + 𝜆2|𝒴1(𝜐 − 0.3) − 𝒴2(𝜐 − 0.3)|, 

where 
1 2 1 = = . 

 Further 

 ( ) ( )
( ) ( ) ( )

*
1

1 2

1

0 ( ) 1 2. 1 2.
1 1 .

! 1 2 2.5 1 2 2.5 1

r rn
G

r
r

M

r

     



+
−

=

 + +
+ = − + + = +

  +  +  +
   (4.4) 

Now in view of inequality (3.5) we have 

 
( ) ( )

1 2. 1 2
1 .

2 2.5 1 2 2.5 1


 

 
+    −   +  + 

    (4.5) 

Hence we get 

 
( )

( )

2.5 1
.

2. 2.
 

5 1 2


 +


 + −
Moreover 

( )

( ) ( )
1 2 2

1 for 2 3.
1 1

  


 

+
=   

 +  +
 (4.6) 

All the conditions of Theorem 3.1 are satisfied. Hence equation (4.6) has exactly one solution. 

4.1 Numerical Estimation 

 The solution of the differential equation is obtained by the method introduced in [20] as 

follows, 

 ( ) ( ) ( ) ( ) ( ) ( )( )'
2

" 0.30 0 0 0.3 .
2

I e 




    − += + + + − − − +  (4.7) 

Applying the initial conditions we get, 

 

( ) ( ) ( ) ( ) ( ) ( )( )

( )

2
' " 0.3

2

0 0 0 0.3
2

1 .
2

I e

I e I

 




 
 


   

 
 



− +

−

= + + + − − − +

    
= − + + + − −    

   

 (4.8) 
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Fig: 4.1 Plot of the approximate and exact solution of (4.1)  for  and ( ) . 

2 &  2.2,2.4,2.6,2.8,3.0 = =  

 

 
Fig: 4.2 Plot of the approximate and exact solution of (4.1)  for  and ( ) . 

3 &  2.2,2.4,2.6,2.8,3.0 = =  
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Table: 4.1 Error Estimation for the solution of (4.1)  for & ( )  for 2 =  

 

 t 
Exact Sol 

2.2 =  2.4 =  

Approx Sol Error Approx Sol Error 

0.0 1.0000 1.0000 0.0000 1.0000 0.0000 

0.2 0.818731 0.810334 008397 814268 0.004463 

0.4 0.670320 0.645015 0.025305 0.655771 0.014549 

0.6 0.548812 0.513409 0.035403 0.528865 0.019946 

0.8 0.449329 0.420269 0.029059 0.437045 0.012284 

1.0 0.367879 0.363394 0.004485 0.379058 0.011179 

2.6 =  2.8 =  2.4 =  

Approx Sol Error Approx Sol Error Approx Sol Error 

1.0000         0.00000    1.0000     0.0000      1.0000    0.0000 

0.816656  0.002075  0.818077  0.000654   0.818908  0.000177 

0.663568  0.006752    0.669054  0.001266  0.672821   0.002501 

0.541703  0.007109  0.551934    0.003122 0.559816   0.011004 

0.452820   0.003491   0.466895   0.008858   0.478919    0.029589 

0.395687  0.027807  0.412200  00.044320  0.427757   0.059877 

 

Table: 4.2 Error Estimation for the solution of (4.1)  for & ( )  for 3 =  

  t Exact Sol 
2.2 =  2.4 =  

Approx Sol Error Approx Sol Error 

0.0 1.0000 1.0000 0.0000 1.0000 0.0000 

0.2 0.818731 0.81032   0.008411  0.814264   0.004467  

0.4 0.670320 0.64478       0.02554 0.655681  0.014639 

0.6 0.548812 0.512416  0.036395       0.52842 0.020389 

0.8 0.449329 0.417978  0.031351  0.435919  0.013409 

1.0 0.367879 0.359838  0.009357 0.009357 0.009357 

2.6 =  2.8 =  2.4 =  

Approx Sol Error Approx Sol Error Approx Sol Error 

1.0000         0.00000    1.0000     0.0000      1.0000    0.0000 

 0.816655  0.002075  0.818077  0.000654   0.818908  0.000177  

 0.663539  0.006752  0.669048  0.001266  0.672823  0.002501 

 0.541544  0.007109  0.551906 0.003122  0.559839    0.011004  

 0.452412   0.003491   0.466874   0.008858  0.479073 0.029589  

 0.395125  0.027807  0.412425  0.044320  0.428391   0.059877 
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Example: 4.2    

  ( )( ) 2 , 
  



 
= − + 

 
      (4.9) 

  with initial conditions ( ) ( )' "1
0 0, 0 ,  (0)=1,

2
= = −    (4.10) 

and exact solution  21
( ) ( ).

2
  = −        (4.11) 

The assumptions of Theorem 3.1 can be easily verified. Hence the differential equation (4.2) has 

a solution. This solution can be obtained by the numerical scheme introduced in  [20]. 

( ) ( )2 2I I 

 


    



  
= + + − + +   

  
. 

( )

( )

2 2

0

1

2

.i i i

I

I Y Y










  





+

= − + + − +

  
= +  

  

        (4.12)  

 
Fig: 4.3 Plot of the approximate and exact solution of (4.2)  for   and ( ) . 

2 ,  2.2,2.4,2.6,2.8,2.0 = =  

 



1182 

 
 
 
Journal of Computational Analysis and Applications                                                                              VOL. 33, NO. 8, 2024 
Journal's ISSN: 1521-1398 (Paper),1572-9206 (Online) 

                                                                                                                                                  S. S. Handibag et al 1170-1185  

Fig: 4.4 Plot of the approximate and exact solution of (4.2)  for   and ( ) . 

3 &  2.2,2.4,2.6,2.8,2.0 = =  

 

Table: 4.3 Error Estimation for the solution of (4.2)  for & ( )  for 2 =  

 

 t 
Exact Sol 

2.2 =  2.4 =  

Approx Sol Error Approx Sol Error 

 0.0 &  0.00000  0.00000  0.00000  0.00000   0.00000 

 0.2  -0.16000  -0.15968   0.00032  -0.15982  0.00018 

 0.4  -0.24000  -0.23754  0.00245  -0.23841  0.00159  

 0.6   -0.24000  -0.23280   0.00719  
-0.2348

  
0.00514 

 0.8  -0.16000  -0.146412  0.01359  -0.14948   0.01052  

 1.0  & 0.00000  0.01859 &  0.01859   
0.01577

  

0.01577

  

2.6 =  2.8 =  3.0 =  

Approx Sol Error Approx Sol Error Approx Sol Error 

0.00000          0.00000    0.00000    0.00000    0.00000    0.00000    

-0.159901  0.00011  -0.15995   0.00005  -0.15997  0.00003  

      -0.23898  0.00102   -0.23935  0.00064    -0.23959  0.00041 

-0.236383 0.00361   -0.23748  0.00251    -0.23827  0.001723 

-0.151989    0.00801  -0.15399  0.00601   -0.15556   0.00444 

0.0130281  0.01303  0.01052  0.01052   0.00834   0.00834  
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Table: 4.4 Error Estimation for the solution of (4.2)  for & ( )  for 3 =  

 

 t 
Exact Sol 

2.2 =  2.4 =  

Approx Sol Error Approx Sol Error 

 0.0 &  0.00000  0.00000  0.00000  0.00000   0.00000 

 0.2  -0.16000  -0.15956  0.00043  -0.15976  0.00024 

 0.4  -0.24000  -0.23658   0.00342  -0.23779  0.00221 

 0.6   -0.24000  -0.22962   0.01038  
-0.2326

  
0.00737 

 0.8  -0.16000  -0.13927 &  0.02073  -0.14413  0.01587 

 1.0   0.00000  0.03145  0.03145  0.02594  0.02594  

2.6 =  2.8 =  3.0 =  

Approx Sol Error Approx Sol Error Approx Sol Error 

0.00000          0.00000    0.00000    0.00000    0.00000    0.00000    

-0.15986  0.00013   0.15993  0.00007  -0.15993   0.00007  

     -0.23859  0.00141 -0.23911   0.00089    -0.23911  0.00089 

-0.23483  0.00516   -0.23642  0.00357 -0.23642   0.00357 

-0.14803  0.01197   -0.15111   0.00889   -0.15111  0.00889 

0.02095  0.02095   0.01661  0.00890  0.01661   0.01661 

 

  Table 4.1, 4.2, 4.3 and 4.4 shows the numerical values of the exact and approximate 

solutions of problems (4.1) and (4.2) for the delay term 2 = and 3 = . Moreover, we estimated 

the errors in these tables.  
 

5 Conclusion 
 

This study marks a significant breakthrough in extending fixed point theory within the 

framework of partially ordered Banach spaces.  We have established a comprehensive 

Darbo-type fixed point theorem by employing the generalized operators presented in [18]. 

This theorem encompasses a broad spectrum of fixed-point results and their subsequent 

implications, forming an extensive set of theorems. 

Our findings have been effectively applied to higher-order fractional delay differential 

equations, underscoring the practical significance of this research. Within the realm of 

mathematical analysis and its applications, this work contributes to both the practical and 

the theoretical advancement of fixed point theory in partially ordered Banach spaces. 
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